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Abstract. Common fixed point, coincidence point, and homotopy results are presented
for single-valued as well as multivalued f-hybrid compatible generalized ¢-contractive maps
defined on complete metric spaces and more general spaces called complete gauge spaces (i.e
complete uniform spaces). Existence results of coincidence point for single-valued as well as
multivalued f-hybrid compatible generalized ¢-contractive maps are discussed in arbitrary

spaces.

1. INTRODUCTION

In 1986, Jungck [15] introduced the notion of compatible maps. This notion
was extended to multivalued maps independently by Beg and Azam [5], Cho
et al. [8], and Kaneko and Sessa [16]. It is worth noting that the class of
compatible maps contains the class of commuting maps. It also includes other
classes of non-commuting (weakly commuting etc.) maps (see [8, 15]). This
paper present new common fixed point theorems, coincidence point theorems,
and homotopy results for f-hybrid compatible single-valued and multivalued
generalized contractive maps defined on complete gauge spaces.
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The results here extend, improve and complement well known results in the
literature (see [1-4, 6, 7, 9, 12-15, 17-21]). In section 2, we present coincidence
point and homotopy results for f-hybrid compatible single-valued maps on a
complete metric space and, in section 3, we discuss fixed point theory for f-
hybrid compatible maps in gauge spaces. The results of section 2 are extended
to multivalued compatible maps in section 4 and finally, in section 5, we study
the analogue of these results in the setting of gauge spaces.

2. COINCIDENCE POINTS FOR SINGLE VALUED f—HYBRID COMPATIBLE MAPS
IN ARBITRARY SPACES

In this section, we present some local and global coincidence point results
for f-hybrid compatible maps. We also establish a homotopy result for a
pair of f-hybrid compatible maps. Let Y be an arbitrary space, (X,d) be a
complete metric space , f : Y — X be a bijection map, and G: Y — X be a
mapping. If zg € X and r > 0, we let

B(Gf Yo, r) ={z € X : d(z,Gf txg) < 7},
B(zg,r) ={z € X : d(z,x0) <1}

and
fGYB(Gf rxg,r)) ={z e X: fG 2 e B(Gf txy,7)}.

Let F: f~! (WU G Y B(Gf o, r))) — X be a mapping with
FG Y B(Gf 'wg, 7)) C GfHX).
Then F' and G are said to be f-hybrid compatible on W if
lim AFf1Gf e, GF *Ff1e,) =0,
whenever {x,} is a sequence in fG~1(B(Gf 'zg,7)) such that

lim Ff~lz, = lim Gf lz, =t

n—oo
for some ¢t € B(Gf~1xo,r).
Remark 2.1. If F and G are f-hybrid compatible and Ff~'z = Gf 'z for
some x € fG Y B(Gf 'zg,7)), then
FflGf e =G 'Ff e
(i.e. Ff~'and Gf~! commute at coincidence point). This is immediate if we
set x, = x for each n. Furthermore, if Y = X and f is the identity map on

X then our definition of f-hybrid compatibility of maps F' and G reduces to
compatibility of maps F' and G defined by O’Reagan et al. [18].
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Theorem 2.1. LetY be an arbitrary space, (X,d) be a complete metric space,
f:Y — X be a bijection map, ro € X, r >0 with F : f*%W)u
Gil(B(folaco,r))> — X and G:Y — X be f-hybrid compatible maps on
B(Gf~lzo,r) and

FG YB(Gf 'mg, 1)) C GfH(X).
Suppose f~1 and G are continuous and there exists a continuous, nondecreas-

ing function ¢ : [0,00) — [0,00) satisfying ¢(z) < z for z > 0 such that for
z,y € B(Gflxg,r)U fGYB(Gf 'zg,7)) we have

d(Ff e, Ff~y) < o(M(2,y; f71), (2.1)
where
M(z,y; f~) = max{d(Gf "2, Gf 1Y), d(Gf a, Ff ), d(Gf 'y, Ffy),
1
LG e, Pfy) +d(Gfhy, Ff o))}
Also suppose
d(Gf o, Ff ' wg) < — o(r). (2.2)
Then there exists a unique x € B(Gf~lxg,r) with v = Fflx = Gf 'z
Moreover, there exists a unique y € f~1 (B(Gf—lxg, 1")) with fy=Fy = Gy.

Proof. Let Gf 'z = Ff~'zy for some ;1 € X (This is possible since
Gflzg € B(Gf two,r) and FG~Y(B(Gf lxg,r)) C Gf~1(X)). Then, by
(2.)

d(Gf oy, Gf 1ag) <
and so
Gf 'z € B(Gf tag,r).

Now let Gf~'xg = Ff~'xzy (This is possible since Gf'z; € B(Gf txg,r)
and FG=! (B(Gf txg,r)) C Gf~YX)). For n € {3,4,---}, we let

Gf tx, =Ff te, .

This is possible if we show G f 'z, 1 € B(Gf 'wxg,r) since FG1(B(Gf 'z,
r)) € Gf~1(X). To show the above we will in fact establish more i.e., we now
show
A(Gf ™ an, Gf L ang) < QAGf wp1, Gf )
forn e {1,2,---} (2.3)
and Gf~'z; € B(Gf 'xzg,r) fori € {0,--- ,n}.
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Notice

AGf e, Gf wy) = d(Ff o, Ff o)

M (zo,z1; f71))

max{d(Gf xo, Gf a1),d(Gf ay, Gf ),

d(G [~ o, Gf 1a)})

(max{d(Gf ao, Gf a1),d(Gf oy, Gf ),

[d(Gf~ o, G han) + d(Gf~han, G~ Ha2)]})
= ¢(max{d(Gf "o, Gf 'w1), d(G [ wr, Gflaa)})
< ¢(d(Gf o, Gf 1)),

Also from (2.2), we have

d(Gf  wo, Gf o)

IN
A/@\\/\

= S N~ S

Ad(Gf rog, Gf 1ay) + d(Gf oy, Gf lay)
d(Gf o, Gfay) + ¢(d(Gf o, Gf La))
[r —¢(r)] + &(r)

T,

VAN VANVAN

SO
Gf l'zy € B(Gf txg, 7).
Essentially the same argument as above yields
A(Gf oy, Gf Lasy) = d(Ff oy, Fflay)
< @(d(Gf a1, Gf ).
Now suppose there exists k € {2,3,---} with
AGf  m, Gf i) < S(AGf 1, Gf am))
and
Gf 'am € B(Gf 2, r)
for m € {1,2,--- ,k}. We first show
Gf'ap € B(Gf tao, 7).
In the proof we will use the inequality
A(Gf oy, Gflay) < o(r).

If k£ = 2 this is obvious, from

d(Gf e, Gftay) < (A(G ™ ey, Gf~ o)) < 6(r).
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Next consider &£ = 3. Then

d(Gflas, Gflay) d(Ff oy, Ff1zg)

Pp(max{d(Gf ao, Gf o), d(Gf L ao, Gf tay),
G2, G ag), S1d(Gf s, G o)

+d(G [ e, Gf )]}
¢(max{d(Gf_1x2, Gf_1x0)7 d<Gf_1$07 Gf_ll'l),

PGS 1, GF a)), SA(GS a3, Gf o)
+d(Gf e, GF )]}

< lmax{r,r, (), Sl + 6(r)]))

IA

IN

since Gf ~lxg, Gftxs € B(Gf txo,r) and
d(G [ ey, Gf " lag) < QHAGF ™ a1, G~ ao)).

Since ¢2(r) < r and 7 + ¢(r) < 2r,
we have

d(Gfras, Gf o) < o(r).

If £ =4, then

d(Gf ey, Gf1ay) d(Fflas, Ff1lzg)

Pp(max{d(Gf as, Gf txo), d(Gf L ao, Gf tay),
G a5, GF ), Sld(GF 0, G o)
+d(Gf ag, Gf o)}

< lmax(r,r, ¢*(r), 5l + 6N

IA

since Gf '3, Gftxy € B(Gf ‘xg,r). Thus

A(Gf ey, GfLay) < o(r).

Continuing this process, we obtain for k € {5,6,-- },

d(Gf ey, Gftan) < o(r).
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To show Gf "'z 1 € B(Gf1xg,7r), notice
d(Gf ' wo, Gf ' appn)

(

< dGf ao, Gf ray) + d(Ff oo, Fftay,)

< dGf  wo, Gf wy) + (M (2o, 25 £71)

= d(Gf 1z, Gftay) + (max{d(Gf twg, Gf 1xy),
d(Gf_lmef_lxl)v (Gf xkszf xk—i—l)
SA(GS 20, G ) + d(GIon, G a)]})

IN

d(G [ wo, Gf'ar) + p(max{r,r, ¢"(d(Gf o, Gf 1)),
DG 20, G i) + (G oy, G )]
since Gf~tw,, € B(Gf txzo,r) for m € {1,--- ,k}. Since
¢ (d(Gf o, Gf ) < ¢F(r) <,
it follows that
AdGf oy, Gf o) < d(Gf oo, Gftay)
+ plmax{r, $[d(GF w0, G win) + o)),

Let 75, = max{r, %[d(fole, Gflzpi1) +¢(r)]}. If 7, = r, then the preceed-
ing inequality gives

d(Gf wo, Gf apg) < AGf wo, Gf ) + ¢(r)
<[r=o(r)] + o(r) =
Thus, we have
Gf Yz € B(Gf txg,r).
On the other hand, if 7, = %[d(folxo, Gflzpi1) + é(r)], then

d(Gf o, Gf i) <GS o, Gfhan)
O (G 20, G i) + (1)

and so
d(Gf L ag, Gf tapy) < d(Gf oo, Gf 1ay)
451G 0, GF i) + 6]

This implies that

S G, G ) < d(GS 0, G )+ (1),
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As a result
e = Sld(GF 0, Gf ) + O(r)]
<d(Gf ' wo, Gf tar) + o(r)
< = 0)) + 6(r)
=,
which contradicts the definition of 7. Consequently, we have
Gf'ap € B(Gf tag, 7).
Also
(G [ g1, G pgo)
= d(Ff o, Ff ' op41)
< (M (wp, wpq1; £71)
= p(max{d(Gf 'wp, Gf ' wpp1), d(Gf w1, Gf  apg2),

S UG, G i)

< ¢p(max{d(Gf ' wp, Gf wp), d(Gf  wppr, G anga),
LGk, GF i) + (G g, OF io)]})
= ¢p(max{d(Gf ~ ag, Gf '), d(Gf apgn, Gf  agg)})
< G(d(Gf g, G apgn)).
Thus, by induction Gf 'z, € B(Gf lxzg,r) for n € {0,1,2,---} and
AGf o, Gf rop1) < O(dGf a1, Gf ay))
for n € {1,2,--- }. This implies that
(G [ wn, Gf ang) < ¢"(d(Gf  wo, Gflwy))
for n € {1,2,---}. We now claim

[

{Gf~1x,} is a Cauchy sequence.

93

(2.4)

(2.5)

Suppose not. Then we can find a § > 0 and two sequences of integers {m(k)},

(n(k)}, m(k) > n(k) > k with
Tk = d(Gf_lxn(k)a Gf_lxm(k)) >0

(2.6)

for k € {1,2,---}. Choose m(k) to be the smallest number exceeding n(k) for

which (2.6) holds. Then we may assume

dGf Tmpy—1, Gf  an)) < 0.

(2.7)
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In view of (2.4), (2.6) and (2.7), we have
0 <ryg

< A(Gf Ty, G T Tiy—1) + UGS Ty—1, Gf " i)
< g™~ NA(Gf ey, Gf T ag)) + 6.

Therefore,

lim re = 1)
n—oo

(Note limy, .o ¢"(a) = 0 for any a > 0 since if we take a > 0 and a, = ¢"(a),
then a, = ¢(an—1) < ap—1. Thus a, | ¢ (say). Since ¢ = ¢(c), we have ¢ = 0).
From (2.4) we have

0 < 1y
< AdGF gy GF  ngy1) + AGF 2yt G Tnry)
+d(Gf Ty +1, GF iy 1)
< "B (d(Gf  mo, Gf )
+¢" 8N (d(G f a0, Gf 1)) + d(F f 2y, Ff T nry)-
Notice

A(F [ @y, Ff @ r)
< d(max{d(G [ @nmy, Gf @), d(Gf Ty Gf  @ngiy11),
_ _ 1 _ _
AGF Ty G Tmiy41)s SldGf Y0t G Ty 41)
+ d(Gf Ty, GF Ty +1)]})
< ¢(max{rk7 ¢n(k) (d(Gf_1$07 Gf_lxl))> (bm(k) (d(Gf_l.ZU(), Gf_1$1)),

1 _ _ _ _
e +d(Gf Yy GF 1) + UG Ty G T Ty +)1})

< p(max{ry, o" B (d(Gf zo, Gfa1)), o™ (d(Gf Lo, Gf Lay)),
et 310" G 0, G ) + 9" OGS o, G )
< o(ry, + ¢"B(d(G Lo, Gf o)) + ¢ B (G fwo, G Lan))).

Therefore,
0 <y

< "G w0, Gf ) + "G o, GF )
$(ri, + "W (d(Gf o, Gf M) + ¢ W (G o, Gf ).

Taking the limit as k — oo yields § < ¢(d) since limg_,o, 7 = ¢ and lim,,
¢"(a) = 0 for any a > 0. This is a contradiction. Hence {Gf lz,} is a
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Cauchy sequence and (2.5) holds. Since (X, d) is complete, there exists x €
B(Gf~lxg,r) with Gf 'z, — z asn — oco. Also Ff 'z, =Gf 'z, —
x as n — oo. Since lim, Ff~'z, = = = lim, Gf 'z, and Ff 'z, =
Gf g € B(Gf twg,r) for n € {1,2,---}, the continuity of f~! and G
and f-hybrid compatibility of F' and G imply that

lim d(Ff'Gf e, Gf 1z) = lim d(Ff'Gf o, Gf 'Ff1z,) =0

since

AFf1Gf e, Gf o) <d(Ff1Gf e, Gf 1 Ff 1,

+d(Gf R f e, Gf ).
Thus Ff~'Gf 'z, - Gf 'z asn — oo. Now Ff~lx = Gf 'z since
d(Fftz,Gf )

<d(Ff e, Ff'Gf ) + d(Ff 1 Gf ey, Gf )

< ¢p(max{d(Gf 'z, Gf G wy), d(Gf T a, Ff ),
UGS G, FS G ), S1A(GS e, FF G )
+d( GG ey, Ff 1)) + d(Ff G f e, Gf ).
Taking the limit as n — oo, we have (from above we know Ff~'Gf~lz, —
Gf 'z and Gf 1z, — )
d(Ff~lz,Gflz) < qS(max{O,d(Gf_lx,Ff_lx),O,%d(Gf‘lz:,Ff_lm)})

= ¢(d(Gf x, Ff ).

We claim that z = G'f~'z. Suppose that d(z,Gf~'z) = s for some s > 0.
Since

Ad(Fftz,, Ff1Gf )

S QS(maX{d(Gf_lxna Gf_IGf_lxn)a
dGf wn, Ff '), d(Gf G a, FfTIGf ),
%[d(Gf_liL'n, Ff_le_lxn) + d(Gf_le_lﬂj‘n, Ff_lllin)}}),

which on letting n — oo gives (recall from above that Ff~'Gf~ 'z, — Gf
and Ff~ 'z, — x)

s =d(z,Gf'z) < p(max{d(z, Gf'2),0,0, %[d(w, Gf'z)+d(Gf tz,x)]})
= ¢(d(z,Gf 1)) = ¢(s) < s,



96 H. K. Pathak, M. S. Khan and J. K. Kim

a contradiction. Hence x = Gf~'z = Ff~'z. Uniqueness of common fixed
point of Gf~! and Ff~! follows easily from (2.1). Indeed, if 2’ = G2’ = Fa'
with o # 2/, then

d(z,a') = d(Ff'a, Ffly) < (M(z,2's 7))
= Glmax{d(z,'),0,0, J[d(w, ) +d(e',2)]}) = 6(d(z, 7))

which gives a contradiction. Further, let f~'a = y then since f is a surjective
map we have a unique y € f~! (B(Gf‘lsco,r)) with fy = Fy = Gy. 0

If Y = X and f is the identity map on X then our theorem 2.1 reduces to
the following result of O’'Regan et al. [18, Theorem 2.1].

Corollary 2.2. Let (X,d) be a complete metric space, xg € X, r > 0
with F : B(Gxg,r)) U G_l(B(Gxo,r))) — X and G: X — X be compatible

maps on B(Gxg,r) and FG~1(B(Gxo,7)) C G(X). Suppose G is continuous
and there exists a continuous, nondecreasing function ¢ : [0,00) — [0,00)
satisfying ¢(z) < z for z > 0 such that for x,y € B(Gxo,r) UG 1 (B(Gxo,1))
we have

d(Fz, Fy) < ¢(M(z,y)),
where

M(z,y) = max{d(Gz,Gy),d(Gz, Fz),d(Gy, Fy),

%[d(Gm, Fy) +d(Gy, F'z)]}.

Also suppose
d(Gxo, Fzg) <1 — ¢(r).

Then there exists a unique x € B(Gxy, 7“)) with © = Fx = Gz .

Corollary 2.3. Let Y be an arbitrary space, (X,d) be a complete met-
ric space, f 'Y — X be a bijection map, vro € X, r > 0 and F :

f~H B(wo,r)) — X . Suppose f~' is continuous and there exists a continu-
ous, nondecreasing function ¢ : [0,00) — [0,00) satisfying ¢(z) < z for z >0
such that for x,y € B(xg,r) we have

d(Ff~ e, Ff~y) < o(M(z,y; f71),

where

M(z,y; 1) = max{d(f 'z, f'y),d(f e, Ff ), d(fy, Ffty),

Sl Py d( B ),
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Also suppose
d(f "z, Ff ao) <1 — ¢(r).
Then there exists a unique y € f1 (B(ZE(), 7")) with fy=Fy.

If Y = X and f is the identity map on X then our corollary 2.3 reduces to
the following result of O’Regan et al. [18, Corollary 2.2].

Corollary 2.4. Let (X,d) be a complete metric space, zo € X, r >0 and

F : B(xg,7) — X . Suppose there exists a continuous, nondecreasing function
¢ :]0,00) — [0,00) satisfying ¢(z) < z for z > 0 such that for x,y € B(xo,T)
we have

d(Fz, Fy) < ¢(M(z,y)),
where
1
M(z,y) = max{d(z,y), d(z, Fz), d(y, Fy), 5[d(z, Fy) + d(y, Fz)]}.

Also suppose

d(xo, Fzg) < r — ¢(r).
Then there exists a unique x© € B(xo,r) with v = Fz .

We now state the global result corresponding to Theorem 2.1.

Theorem 2.5. Let Y be an arbitrary space, (X,d) be a complete metric
space, f Y — X be a biyection map, F' :' Y — X and G:Y — X be f-
hybrid compatible maps and Ff~1(X) C Gf~1(X). Suppose f~1 and G are
continuous and there exists a continuous, nondecreasing function ¢ : [0,00) —
[0,00) satisfying ¢(z) < z for z > 0 such that for x,y € X we have

d(Ff e, Ff'y) < o(M(z,y; f71)),
where

M(z,y; f71) = max{d(Gf~ e, Gfhy), d(Gf e, Ff~ta), d(Gf "y, Ff~Hy),
SA(GS e, Ff ) + Gy, P )
Then there exists a unique y € f~! (B(Gf—lxo,r)> with fy=Fy=Gy.

If Y = X and f is the identity map on X then our Theorem 2.5 reduces to
the following result of O’'Regan et al. [18, Theorem 2.3].

Corollary 2.6. Let (X,d) be a complete metric space with F : X — X and
G : X — X compatible maps and F(X) C G(X). Suppose G is continuous
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and there exists a continuous, nondecreasing function ¢ : [0,00) — [0,00)
satisfying ¢(z) < z for z > 0 such that for x,y € X we have

d(Fz, Fy) < ¢(M(z,y)),
where
1
M (z,y) = max{d(Gz, Gy),d(Gz, F'x),d(Gy, F'y), 5[d(Gx, Fy) + d(Gy, Fr)]}.
Then there exists a unique © € X with v = Fox = Gx.

Next we present a homotopy result for f-hybrid compatible maps.

Theorem 2.7. Let Y be an arbitrary space, (X,d) be a complete metric
space, f Y — X be a bijection map, and U an open subset of X with H :
(FFLO)UGEHU)) x [0,1] = X and G:Y — X and for each X € [0,1], H)
and G are f-hybrid compatible on U, and Hy(G~*(U)) C Gf~1(X). Assume
the following conditions hold:
(i) for X €[0,1], f(y) = G(y) = H(y,\) cannot occur fory € f~1(9(U))
(where O(U) denotes the boundary of U in X );
(i) f~! and G are continuous;
(iii) there exists a continuous, nondecreasing function ¢ : [0,00) — [0, 00
satisfying ¢(z) < z for z > 0 such that for all X € | a
UU fG=YU) we have

A(H [~ @, A, Hf 7y, A) < o(M (2,9, f71),

=
—

where
M(z,y, % f1) = max{d(Gf ' (2), Gf 7' (), d(Gf(x), H(f 'z, X)),

AGS ™ (9) H 'y, N, (G (), H(T 9, 0)

+d(Gf ), H(f e, )]

(iv) H(f 1x,\) is continuous in X uniformly for x € U;

(v) ¢la+0b) < d(a) + ¢(b) fora>0,b=>0;

(vi) H(f~1(U) x [0,1]) is bounded.
In addition assume Hof~! and Gf~! have a coincident point (i.e. there evists
r € UUfGYU) with Hof *(z) = Gf~(z))). Then for each X € [0,1], we
have that f, Hy and G have a unique coincidence point yy € G~1(U) (here
Hyf~Y() = HfY(-,\)). Moreover, for each X € [0,1], Hyf~" and Gf~!
have a unique common fived point x) € fG™Y(U) (i.e. zx = Hf Yx),\) =
G (an)).
Remark 2.2. In Theorem 2.7, we assume there exists x € U U fG~1(U) with

Hof™'(x) = Gf ().
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In fact Hof ! and Gf~! have a common fixed point G f~1(x). To see this,
notice

Gf UG (@) =Gf ' (Hof '(2)) = Hof Y (Gf ' (x)) = Hf H(Gf}(x),0)
(since Hof ™! and Gf~! commute at the coincidence point x). Now
d(GfHa), G UG H(2)
=d(Hf ' (2,0), Hf /(G }(2),0))
< ¢(max{d(Gf~(x), Gf NG f (@), d(Gf~ (2), Hf ' (,0)),
d(Gf NG @), HfHG S (@), 0)), %[d(Gf_l(x%Hf_l(Gf_l(x)yo))

+d(GFHG (@), Hf (2, 0))]})
< p(max{d(Gf~(z), Gf G (2))),0,0,

%[d(Gf_l(w), GfHGf M (@))) + d(GFHGf =), Gf (@)}

= ¢(d(Gf (), Gf UG (),
which gives Gf~!(z) = Gf~Y(Gf~(z))). Hence, we have

Gf Ha) =G G (@) = Hof 1 (GfH(x).
We also use the fact in the proof of Theorem 2.7 that a topological space X
is connected iff the only open and subsets of X are X and 0.

Proof. First, we shall prove that for each A € [0,1], Hyf~! and Gf~! have a
common fixed point z). To see this, let

A={\e[0,1]: Hf Y (z,\) = Gf(z) for some x € U U fG~H(U)}.

Since Hyf~! and Gf~! have a coincidence point, 0 € A and so A is nonempty.
We now show that A is both open and closed in [0, 1] and so by the connect-
edness of [0, 1], we have A = [0, 1].

First we show A is open in [0,1]. Let A\g € A. Then there exists z¢ €
fG7L(U) with

H [ (w0, o) = Gf~(x0).

Then Gf~'xg € U and since U is open, there exists a ball B(Gf~!(z0),9),
0 > 0, with

B(Gf~(xzg),d) CU.
Now, by (iv), there exists n(d) > 0 with

A(Gf (o), Hf Nwo, \) = d(Hfxo, o), Hf (0, \))
<0 —¢(0)
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for A € [0,1] and [A—Xo| < . Now (iii) with Theorem 2.1 (here r = §, F = H)
and G = G) guarantees that there exists z) € B(Gf~1(x),d) C U with
oy = HyfH(xn) = GfH(xy)

for X € [0,1] and |XA — Xg| < 7 (note if yy = f~H(zy) € f~HU) then f(yy) =
Hx(yx) = G(yx) € U and f(yn) = G(y») implies yy = f~(xx) € G7'(U), i.e,
xy € fG71(U)). As a result A is open in [0, 1].

Next we show A is closed in [0, 1]. Let {\x} € A be such that \y — X € [0, 1]
as k — 0o. Then for each k, there exists z; € fG~1(U) with

Hf g, A) = Gf ).
We claim {Gf~!(zx)} C U is a Cauchy sequence. Suppose not. Then we
can find a 6 > 0 and two subsequences of integers {m(k)}, {n(k)} such that
m(k) > n(k) > k with

k= d(Gf (@nw), Gf (@m@)) =6 (2.8)
for k € {1,2,---}. Notice
§<ry < dGf N (@n) Hf " (@ngiys A))

+d(H (@), Ny H ™ (@) A))
+d(Hf~ (@me)s A GF ™ Emr)))

d(Hf~ (xn(k)a An(k)), Hf N @nm), N)
+d(H [~ (@), )y HE ™ (@i )
+d(H f~ (l“m 0 Ay H ™ (@) Amgr)))-

IN

Also
d(Gfil(xn(k)% Hfil(xn(k)v )‘))7 d(Gfil(xm(k))v Hfil(xm(k)v A)),
é[d@f*l(xn(k)), Hf’l(:c 0 )+ d(Gf’l(x - HI e D)
< (ZS(II]&X{T]C, d(Gfil(xn(k))a Hfil(xn )) (Gf ( Tm(k)> )‘)
Hfil(xm(k)v A))a Tk + %[d(Gfil(xm(k))a Hfi (xm(k)v )‘)) + d(Gfil(xn(k))v
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From (iv) we may find &k large enough (i.e., k > ko) such that

and
Now for k£ > kg, we have
d<rmp < d(Hf_l(ﬂfn(k) )‘n(k) Hf ( (k)> A))

+d(G ™ @nm)s HE (@ngy, N)])-
Therefore, for k > ko, we have using (v) that

0<®(rp) =rk— d(re) < dHF @y Angi)s HF ™ (@ngiys A)
+d(Hf M@ (e)s Ny H T (@) M)
+¢(§[d(Gf_ (@m(i))s HI ™ (@), A))
+d(G ™ (@ng))s HE ™ (@ (iys A)))-
In view of (iv), we obtain

lim d(Gf 'z, ®), Hf™ N, (k)» )

k—o0

= lim d(H f ™ (@nys A HF 7 (@) Anii)))

k—o0

=0.
Similarly, we have

lim d(Gf H(zp, ),Hf71($m(k)a)‘))

k—o0

= lim d(Hf~ ( (k)s A)s Hf™ ( (k)> Am(k)))

k—o0

= 0.
Letting £ — oo, we have
lim ®(r;) = 0. (2.9)
n—00
Now (vi) implies that there exists M > 0 with r, < M for k € {1,2,---}.
Consequently, for k € {1,2,---} we obtain

®(rg) > min ®(z) = B(rg) for some ry € [4, M],
z€[8, M)
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which contradicts (2.9). Hence (2.8) holds. Since (X,d) is complete there
exists z € U with d(Gf ! (zx),2) — 0 as k — oo. Now

d(z, Hyf~H(zx)) < d(a,Gf ™ aw) +d(GfHaw), Haf~ (zx))
d(l‘, Gf_l(xk)) + d(Hf_l(xkv /\k)a Hf_l(xk‘> A))

which on letting k — oo yields limy_,oo Hyf~(zx) = x. Using the continuity
of G, f~! and f-hybrid compatibility of Hyf~! and Gf~!, we obtain

Jim d(HAfH G (), G ()

= lim d(H\f~(Glen), G (Haf @)
=0

d(H\f G aw), Gf 7 (@) < d(HAfTHGS ™ (an)), GFH(HAS ™ (2n)))
+d(GfTHHA T (@), G (2):
Thus Hyf~YGf Y (x1)) — Gf 'z as k — oo. Next we show
Hf V() = G \(a).

Notice
d(H [ (@, A), Gf (@) < d(H [ @, A), Hf NG (), \))
+d(H NG (), ), Gf (=)
< d(H UG k), ), Gf ()

Folmax{d(G (@), GF G ),
AG (@), HF ),
AGF MG ), HE (G ), V),
LG (@), H (G (), Y)
(GG @) HE @ ).

8

)
Taking the limit as k& — oo yields (here we use Hyf ' (Gf Y (zx)) — Gf
and Gfla), — )

Ad(Hf (2, \),Gf Hz)) < o(max{0,d(Gf Y(z), Hf 1 (z,))),0,
[d(Gf (), Hf (z, A)]})

d(HfH(z, 1), Gf(2))).
This implies that Hf~!(z,\) = Gf~!(x) and so

Hf Mz, \) = Gf ().

S N~ S



Coincidence point and homotopy results for f-hybrid compatible maps 103

We claim that z = G'f~'z. Suppose that d(z,Gf 'x) = s for some s > 0.
Since

d(H fHar, A), Hf NG (@), A) < d(max{d(Gf (xx), GfF T (GFHaw)),
d(GfHan), Haf (),
d(GfHGF N aw), Haf NG ),
1

§[d(Gf_1(xk)v Hyf NG )

+d(Gf UG N aw), Hxf (@)},

which on letting k — oo gives (recall from above that H,f (G f 1 (zx)) —
Gf~'(x) and Hyf~"(xx) — )

s=d(z,Gf'z) < ¢(max{d(z,Gf 'x),0,0,
1
(.G )+ d(Gf e 2)]))
= ¢(dx,Gf ') = ¢(s) <,
a contradiction. Hence
r=Gf \w) = Hf '@, \).

From (i), # € U and so z = Gf~!(x) implies z € fG~Y(U). Consequently,
A € A. Hence A is closed in [0, 1]. Thus we can deduce that A = [0, 1] and so
for each A € [0,1], Hyf ! and G f~! have a common fixed point x) € fG~1(U)

(ie. zy = Hf 1(z\,A) = Gf~1(x))). Now fix A € [0,1]. Tt remains to show
the uniqueness. If y\ = G~ (y\) = Hrf "' (y)) with z # ), then

d(xka‘rlk) = d(Hfil(x)\v ) Hf~ (xM ))
= gb(max{d(m,\, yA)? 0,0, i[d($>\7 m//\) + d($/)\v m)x)]})
= ¢(d(zr, 7)),

which gives a contradiction. Further, let f~1z\ = v, then since f is a surjective
map we have a unique yy € G~1(U) with fyy = Hyyx = Gya. O

A

If Y = X and f is the identity map on X then our Theorem 2.7 reduces to
the following result of O’'Regan et al. [18, Theorem 2.4].

Corollary 2.8. Let (X,d) be a complete metric space and U an open subset
of X with H: (UUG YU)) x[0,1] = X and G : X — X and for each
A €[0,1], Hy and G are compatible on U, and H\(G~1(U)) C G(X). Assume
the following conditions hold:
(i) for A € [0,1], x = G(z) = H(x,\) cannot occur for x € OU (the
boundary of U in X );
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(ii) G is continuous;

(iii) there exists a continuous, nondecreasing function ¢ : [0,00) — [0, 00)
satisfying ¢(z) < z for z > 0 such that for all X € [0,1] and z,y €
UuUG YU) we have

d(H(z,\), H(y,\)) < ¢(M(z,y,])),
where
M(.%', Y, )‘) - max{d(G(:(:), G(y))7 d(G(x>v H(x, /\))7

AG (), Hly, V), 3 [d(Gw), Hly, ) + d(Gly), Hw )]

(iv) H(z,\) is continuous in X uniformly for x € U;
(V) éa +0) < d(a) +¢(b) fora>0,b=0;
(vi) H(U % [0,1]) is bounded.

In addition assume Hy and G have a coincidence point (i.e. there exists x €
G~YU) with Hy(z) = G(z)). Then for each X € [0,1], we have that Hy and
G have a coincidence point x € G=Y(U) (here Hy(-) = H(-,\)). Moreover,
for each X € [0,1], Hy and G have a unique common fized point G(x)).

Corollary 2.9. Let (X, d) be a complete metric space with U an open subset
of X with H : U x [0,1] — X . Assume the following conditions hold:

(i) x # H(x,\) for x € OU (the boundary of U in X ) and X € [0, 1];
(ii) There exists a continuous, nondecreasing function ¢ : [0,00) — [0, 00)

satisfying ¢(z) < z for z > 0 such that for all X € [0,1] and z,y € U
we have

d(H (z, ), H(y, A)) < ¢(M(z,y,A)),
where
M(:L“, Y, )‘) = max{d(x7 y)’ d(x7 H(fL‘, A))v d(y’ H(yv )‘))7
Sl H(y, X)) + dly, H )]
(iii) H(z,\) is continuous in X uniformly for x € U;
(iv) ¢(a+0b) < ¢(a) + ¢(b) fora>0,b>0;
(v) H(U x [0,1]) is bounded.

In addition assume Hy has a fized point. Then for each \ € [0,1], we have
that Hy has a fived point xx € U (here Hy(-) = H(-, \)).
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3. FIXED POINT THEORY FOR SINGLE VALUED MAPS IN GAUGE SPACES

In this section, we present some local and global common fixed point results
for f-hybrid compatible maps. Let Y be an arbitrary space, E = (E, {da}aca)
be a gauge space endowed with a complete gauge structure {d, : « € A}; here
A is a directed set (see [11, pp. 198, 308]). Let f : Y — E be a bijection
map,G : Y — E. For r = {ro}aea € (0,00)* and z¢ € E, we define

B(Gf 'zg,r) ={y € E: do(Gf '20,9) < 14 for all a € A}
and
B(Gf~lxg,r) = {y € E:do(Gf ' xg,y) <74 forall a € A}.
Let F: f~(B(Gf~1zo,7)) UG (B(Gf'o,7))) — E with
FGY(B(Gf 'wo, 1)) C GfH(E).

Then F and G are called f-hybrid compatible on B(Gf~1 zg,r) if for each
a €A,

lim do(Ff1Gf e, Gf 1Ff1z,) =0

whenever {z,} is a sequence in fG~1(B(Gf~1x¢,7)) such that for each a € A,

lim do(Ff o, t) = lim do(Gf ta,,t) =0
for some t € B(Gf~1xg, 7).
Remark 3.1. If F and G are f-hybrid compatible and Ff~'z = Gf~'x for
some x € fG Y B(Gf 'zg,7)), then

Fflaf e =Gf'Ffta

(i.e. Ff~' and Gf~! commute at coincidence point). This is clear if we let
x, = x for each n

A subset 2 of E is bounded if for each o € A, there exists M, > 0 with
do(z,y) < M, for all z,y € Q.

Theorem 3.1. Let Y be an arbitrary space, E be a complete gauge space,
f:Y — E be a bijection map, vo € E, 1 = {ratacar € (0,00)* with
F: f7Y(B(Gf1xe,7) UG Y B(Gf 1 20,7)) - E and G : Y — E, f-
hybrid compatible on B(Gf~txo,r) and

FG N (B(Gf wg,r)) C GfH(E).

Suppose f~1 and G are continuous and for each o € X, there exists a con-
tinuous, nondecreasing function ¢, : [0,00) — [0,00) satisfying ¢o(z) < z for
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z > 0 such that for x,y € B(Gf txg,r)U fG Y (B(Gf txg,r)) we have

do(Ff e, Ff1y) < ¢a(Ma(z,y; f71)), (3.1)
where
Mg (z,y; f71)
= max{do(Gf tz, Gf 1), do(Gf e, Ffta), do(Gfty, Ff1y),
1

E[da(Gfila% Ffily) + dOé(Gfilyv Ffilx)]}

Also suppose
for each o € A, we have do(Gf xo, Ff ' 20) < 7o — dalra). (3.2)

Then there exists a unique x € B(Gf~lzg,r) with v = Ff 'z = Gf 'z
Moreover, there exists a unique y € f~! (B(Gf_lxo, r)) with fy=Fy=Gy.

Proof. Let Gf 'z = Ff~'zy for some ;1 € X (This is possible since
Gflxg € B(Gf txg,r) and FG Y(B(Gf 'z9,7)) € Gf 1(E)). Then, by
(3.2),

da(Gf_l-'Ela Gf_lx[)) < Tq
for each o € A and so

Gf 'z, € B(Gf txg,r).
Now let Gf~lzy = Ff~lz; (this is possible since Gf~lz; € B(Gf twg,r)
and FG~YB(Gf two,r)) C GfYE)). Fix a« € A. Forn € {2,3,---}, we let
Gfill'n_t'_l = Ff~'z, . This is possible if we have

Gf 'z, € B(Gf tao,7)
since FG~Y(B(Gf tzo,7r)) € Gf~Y(E). Essentially the same reasoning as in
Theorem 2.1 guarantees that

Gf Yz, € Bo(Gf 1z, m0) = {y : da(Gzo,y) < 7o}

and {Gf~'z,} is a Cauchy sequence with respect to d,. Since we can do this
for any o € A, we have

Gf 'z, € B(Gf lzg,r)

and the sequence {Gf~ 'z, } is Cauchy. Hence, there exists z € B(Gf~lzo,r)
such that Gf~ 'z, — 2. Also, Ff'z, = Gf'x,.1 — 2 as n — oo. Since
lim, Ff~ 'z, = = lim,, Gf 'z, and Ff~ 'z, = Gf'z,.1 € B(Gf 'xzg,r)
for n € {1,2,---}, the continuity of f~! and G and f-hybrid compatibility of
F and G imply that

lim do(Ff1Gf e, Gf1z) = lim d(Ff1Gf 1z, Gf 1Ff1z,) =0
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for each o € A since
do(FfIGf ey, Gf 1a) < do(FfIGf oy, GF AR f ey,
+do(GfFf e, Gr).
Thus Ff~'Gf 'z, — Gf 'z as n — co. Now fix o € A. Then
do(Ff~ e, Gf 1)
<do(Ffla, Ff1Gf ' a,) + do(Ff1Gf 1 a,, Gfta)
< ¢o(max{do (Gf 'z, Gf T Gf ay),
do(Gf 2, Ff'2),do(Gf T G an, Ff G ),
1

§[da(Gf_1$7 FIGf  ag) +da(Gf T Gf " an, Ff2)]})

+do(Ff1Gf ey, Gf ).

Taking the limit as n — oo, we have (from above we know Ff~'Gf 'z, —
Gf 'z and Ff 'z, — )

do(Ff 2, Gf2) < ¢a(max{0,do(Gf 'z, Ff~2),0,
Sda(GF e, P a)))

= ¢a(do(Gf 'z, Ff'2)).
This implies that
do(Ff 2, Gf12) =0
for each @ € A. As a result, Fo = Gz. Also (as in Theorem 2.1) one can
show that do(z,Gf lx) = 0 for each & € A and so x = Gf 'z = Ff 1z
The uniqueness is easy to establish. Further, let f~'z = y then since f is a
surjective map we have a unique y € G=1(U) with fy = Fy = Gy. O

If Y = F and f is the identity map on E then our Theorem 3.1 reduces to
the following result of O’'Regan et al. [18, Theorem 3.1].

Corollary 3.2. Let E be a complete gauge space, o9 € E, 7 = {ro}taca €
(0,00)A with F : (B(Gxg,r) U G~ YB(Gxo,7))) — E and G : E — E
compatible on B(Gxg,r) and FG~*(B(Gwo,7)) € G(E). Suppose G is con-
tinuous and for each o € A, there exists a continuous, nondecreasing func-
tion ¢q : [0,00) — [0,00) satisfying ¢po(z) < z for z > 0 such that for
x,y € B(Gzo,r) UG Y B(Gxo,7)) we have

dOé(FwaFy) S (ZS(X(Ma(may))a
where

My (z,y) = max{dy(Gz, Gy),do(Gz, Fx),ds(Gy, Fy),
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1
Also suppose
for each a € A, we have do(Gzo, Fxo) < 16 — Pa(ra)-

Then there exists a unique x© € B(Gxg,r) with x = Fx = Gz .

IfY = E, f and G are the identity maps on E then our Theorem 3.1 reduces
to the following result of O’Regan et al. [18, Corollary 3.2].

Corollary 3.3. Let E be a complete gauge space, xo € E, r € (0, oo)A with
F:FE — FE and G : E — E compatible maps and F(FE) C G(FE). Suppose
G is continuous and for each o € A\, there exists a continuous, nondecreasing
function ¢q : [0,00) — [0,00) satisfying ¢o(z) < z for z > 0 such that for
x,y € E we have
da(Fl'aFy) < %(Ma(:c,y)),
where
Ma(z,y) = max{da(Gz, GY), do(Gz, F'z), do(Gy, Fy),

%[da(agg, Fy) + do(Gy, Fz)]}.

Then there exists a unique © € E with x = Fox = Gx.

Theorem 3.4. Let Y be an arbitrary space, E be a complete gauge space,
f:Y — E be a bijection map, and U an open subset of E with H : (f~*(U)U
G1U) x[0,1]] = FE and G : Y — E and for each X € [0,1], Hy and
G are f-hybrid compatible on U, and Hy\(G1(U)) C Gf~Y(E). Assume the
following conditions hold:
(i) for X € [0,1], f(y) = G(y) = H(y,)\) cannot occur for y € f~1(0U)
(OU denotes the boundary of U in E);
(i) f~! and G are continuous;
(iii) for each av € A, there exists a continuous, nondecreasing function ¢ :
[0,00) — [0,00) satisfying ¢o(z) < z for z > 0 such that for all X €
0,1] and z,y € UUG YU) we have

do(Hf (2, A), Hf My, N) < ¢a(Malz,y, X f71),
where

Mo, % 1) = mas{da(GF 7 (2), GF ™ (0), da(GS 7 (@), H ),
Aal G~ (), H (0, )), 51da(G ™ (@), HI~ (0, )
(G5 ), B )]
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(iv) for every € = {ea}aen € (0,00)", there exists 6 = 6(¢) > 0 (which does
not depend on o) such that t,s € [0,1] with |s —t| < ¢ and o € A, we
have

do(Hf Yz, t), Hf Y(z,5)) < €qa
forx e U;
(v) for each o € A, ¢po(a+b) < po(a) + ¢o(b) fora>0,b>0;
(vi) H(f~1(U) x [0,1]) is bounded.

In addition assume Hof™' and Gf~' have a coincidence point (i.e. there
exists v € UU fG=Y(U) with Hof 1 (z) = Gf~1(x)). Then for each X € [0,1],
we have that f, Hy and G have a unique coincidence point yy € G~ (U) (here
Hyf~Y() = HfY(.,\)). Moreover, for each A € [0,1], Hyf~' and Gf~!
have a unique common fived point x) € fGL(U) (i.e. zx = Hf Y xx,\) =
Gf 1 (zy)).

Proof. Let
A={\e0,1]: Hf Yz, \) = GfL(z) for some z € UU fG~H(U)}.

Clearly A is nonempty. We will show that A is both open and closed in [0, 1]
and so by the connectedness of [0,1], for each A € [0,1], Hyf~! and Gf~!
have a coincidence point x) since A = [0, 1].
First we show A is open in [0,1]. Let A\g € A. Then there exists z¢ €
fG~1(U) with
H ™ (o, M) = Gf ().
Then G f~1(xg) € U. Since U is open, there exists 61, ..., d,, in (0, 00) with

U(Gf o), 60)N---nU(Gf Haxo),0m) C U;

here U(G f~1(x0), ;) = {x : do, (z, Gf (o)) < )} fori € {1,2,--- ,m} (with
a; € A forie {1,2,---,}). Consequently, there exists 6 = {dq}aca € (0,00)
with

B(Gf=Y(x0),0) CU.
Now, fix aw € A. Then, by (iv), there exists n = n(d) > 0 with
da(G [ (wo), Hf (20, A) =da(H ™ (20, Ao), Hf (20, A))
< 5a - Qsa(éa)
for A € [0,1] and |\ — A\g| < 7. Theorem 3.1 (here r =6, F' = H) and G = G)
guarantees that there exists z) € B(Gf~(x¢),d) C U with
oy = Hyf"H(22) = Gf (@)
for A € [0,1] and |A — Xg| < 1. (note if yy = f~1(x)) € f~1(U) then
fa) = Hx(yp) =G(yr) €U
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and f(yx) = G(yy) implies yp = f~1(z\) € G Y(U),ie., z\ € FGTLU)).
Since x\ = G(x)) implies

Ty € fG_l(U)’
it follows that A is open in [0, 1].

Next we show A is closed in [0, 1]. Let {A;} be a sequence in A such that
M — A €[0,1] as k — oo. Then for each k, there exists z, € fG~H(U) with

Hf Nag, M) = Gf ().

Fix o € A. Essentially the same reasoning as in Theorem 2.7 guarantees that
{G f;l (zx)} C U is a Cauchy sequence with respect to d, and so there exists
x € U with Gf~1(x}) — x as k — o0o. Also as in Theorem 2.7 we have that

do(Gf M), Hf (@, 1) =0
and
do(z,Gf 1 (z)) =0
for every ao € A. Thus
r=Gf Nx)=Hf Yz, N).

From (i), z € U and so * = G'f ~1(z) implies x € fG~1(U). It follows that \ €
A. Hence A is closed in [0, 1]. Thus, for each A € [0,1], Hyf~! and G f~! have
a coincidence point x (i.e. Hf l(xy,\) = Gf~(x))). Now fix a € A and
A € [0,1]. Tt remains to show the uniqueness. If y = Gf~1(yx) = Hyf1(y»)
with z) # z/\, then

da(x)uxl)\) = da(Hf_l(acA,/\),Hf_l(x&,)\))
< plmax{da(en, 12),0,0, 5 [dalr, ) + da(ah,22)])
= ¢(d06($)\?$/)\)))

which gives a contradiction. Further, let f~!z\ = y, then since f is a surjective
map we have a unique yy € G~H(U) with fyy = Hyyx = Gy». O

If Y = F and f is the identity maps on E then our Theorem 3.4 reduces to
the following result of O'Regan et al. [18, Theorem 3.3].

Corollary 3.5. Let E be a complete gauge space and U an open subset of E
with H : (UUG=Y(U))x[0,1] — E and G : E — E and for each X € [0,1], H)
and G are compatible on U, and H\(G~*(U)) C G(E). Assume the following
conditions hold:
(i) for A € [0,1], x = G(z) = H(xz,\) cannot occur for x € OU (the
boundary of U in E);
(ii) G is continuous;
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(iii) for each av € A, there exists a continuous, nondecreasing function ¢4 :
[0,00) — [0,00) satisfying ¢a(z) < z for z > 0 such that for all X\ €
[0,1] and 2,y € UUG Y (U) we have

do(H (2, A), H(y, A)) < ¢a(Ma(z,y, A)),

where
Ma(z,y, A) = max{da(G(2),G(y)), da(G(z), H(z, N)), da(G(y), H(y, N)),

S 0a(C (), Hly, M) + da(Gly), H(z, )]}

(iv) for every € = {eataen € (0,00)", there exists § = 6(e) > 0 (which does
not depend on o) such that t,s € [0,1] with |s —t| < 6 and o € A, we
have

da(H(2,0), H(z, 8)) < ca
forx e U;
(v) for each a € A, ¢o(a+b) < dala) + ¢a(b) fora >0, b>0;
(vi) H(U % [0,1]) is bounded.

In addition assume Hy and G have a coincidence point (i.e. there exists x €
G~YU) with Hyo(z) = G(x)). Then for each \ € [0,1], we have that Hy and
G have a coincidence point xy € G~YU) (here Hy(.) = H(.,\)). Moreover,
for each \ € [0,1], Hy and G have a unique common fixed point G(x)).

IfY = E, f and G are the identity maps on E then our Theorem 3.4 reduces
to the following result of O’Regan et al. [18, Corollary 3.4].

Corollary 3.6. Let E be a complete gauge space and U an open subset of E
with H : U x [0,1] — E . Assume the following conditions hold:
(i) = # H(x,\) for x € OU (the boundary of U in E) and X € [0, 1];
(ii) for each o € A, there exists a continuous, nondecreasing function ¢ :
[0,00) — [0,00) satisfying ¢o(2) < z for z > 0 such that for all X €
[0,1] and x,y € U we have

da(H(z,A), H(y, \)) < ¢a(Ma(z,y, ),

where
Mq(x,y,A) = max{da(x,y), do(x, H(x, ), do(y, H(y, N)),

%[da(x, H(y,\)) + da(y, H(z, X)) };

(iii) for every € = {€a}aca € (0,00)", there exists § = 6(e) > 0 (which does
not depend on «) such that t,s € [0,1] with |s —t| < and o € A, we
have

do(H(z,t), H(x,38)) < €4
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forx € U;
(iv) for each a € A, ¢po(a+b) < po(a) + ¢a(b) fora >0, b > 0;
(v) H(U x [0,1]) is bounded.

In addition assume Hy has a fived point. Then for each A € [0,1], we have
that Hy has a unique fived point xx € U (here Hx(-) = H(-,\)).

We end this section with a result motivated from ideas in [13, 17, 18].

Theorem 3.7. Let Y be an arbitrary space, E be a complete gauge space,
f Y — E be a bijection map, v9 € E, 7 = {ra}aer € (0,00)" with
F: f~YB(Gf twg,r) UG YB(Gf tz9,7)) — E and G:Y — E, f-hybrid
compatible on B(Gf~lzo,7) and FGY(B(Gf txg,r)) C Gf Y(E). Suppose
f~' and G are continuous and for each oo € A, there exists a continuous,
nondecreasing function ¢, : [0,00) — [0,00) satisfying ¢o(2) < z for z > 0.
Also assume there exists functions 3 : A — A and v : A — A such that for
each o € A and z,y € B(Gflzo,r) U fG Y B(Gf 120,7)) we have

da(Ff_lxa Ff_ly) < ¢ﬂ(o¢) (d'y(oz) (Gf_lfL‘, Gf_ly)) (33)
Further suppose for each o € A that

D D) PB(r(0) a1 (@) (dyn(e) (G F w0, Ff~ o)) (3.4)
n=1

+do(Gf wo, Ff 20) < ra
holds; here °(a) = a and 4™ (o) = y(v* " Y(«)) forn € {1,2,---}. Then there
exists © € B(Gf~lzg,r) with x = Ff 'z =Gf 2.

Remark 3.2. Suppose for each o € A the following conditions hold:
do(Gf o, Ff20) < Ta — dpa) (ra). (3.5)

and
o0
D 880 Pa(r(@) P81 (@) (Tyn(@) = DB (0)) (Tyn(@)) < Da(a) (). (3:6)
n=1

Then (3.4) also holds.

Proof. Let Gf~'z; = Ff~'xq for some z1 € F (this is possible since G f 1z €
B(Gftxg,r) and FG~Y(B(Gf129,7)) C Gf~1(FE)). Then, by (3.4),

do(Gfray, Gf Lag) < 74

for each a € A and so Gf~tx; € B(Gf 1xg,7). Now let Gf lag = Ff~1m
(this is possible since Gf~lx1 € B(Gf lxg,r) and FG™Y(B(Gf 1xg,7)) C
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Gf~YE)). Forn € {2,3,-}, we let
Gf_1$n+1 = Ff_lxw

This is possible if we show Gf ~1z,, € B(Gf zg,r) since FG™Y(B (Gflzg, 1)) C
Gf~Y(E). Fix a € A. Notice for n € {1,2,---} that

do(Gf rapi1, Gf ray) = do(Ff e, Ff e, 1)
< dp(a) (dy(a) (G an, Gf an1))
and so
do(Gf  wnyr, Gf )

< BB(a) BB () -+ P(rn=1 (@) (o () (G w1, Gf )

= D) B (@) D5(rn=1 (@) (A () (GF w0, Ff " 20)).
From (3.4) and the precessing inequality, it follows that

do(Gf Y api1, Gf tag) < do(Gf oo, Gf Lay) + do(Gf Loy, Gf Lay)
4ot do(Gf an, G )

<D D) PB(r(e)) BB () (i) (G 0,
k=1

Ff12g)) + do(Gf o, Ffa)
<Ta-
This implies that
Gf 'y € Ba(Gf T wo,ma) = {y : da(Gf " w0,y) < 7o}
for each o € A and so
Gf 'z, € B(Gf tag,r).
Again fix « € A. We claim
{Gf~'z,} is a Cauchy sequence with respect to d,. (3.7)
Let n,p € {0,1,---}. Then we have
do (G [ g, Gf i)
< do(Gf Tngp, Gf M nap—1) + -+ da(Gf an, Gf  ang)

< D80)P0r(a)) Pty () (o) (G w0, Ff ag)).

k=n

This together with (3.4) guarantees that {Gf 'z, } is a Cauchy sequence with
respect to d,. Thus (3.7) is true for each o € A. Consequently, the sequence
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{Gf~'z,} is Cauchy. So there exists * € B(Gf~1xg,r) with Gf 1z, — z.
Also, Ff~'z, = Gf'z,,1 — = as n — oo. Since

limFflz, =z =limGf 1z,
n n
and
Ff_lxn = Gf_lmn+1 € B(Gf_IOUo,T)

for n € {1,2,---}, the continuity of f~! and G and f-hybrid compatibility of
F and G imply that

lim do(Ff1Gf ey, Gf ) = Jim do(Ff1Gf ey, Gf 1 Ff12,) =0
for each a € A. Thus Ff~'Gf 'z, - Gf 'z as n — oco. Now fix a € A.
Then

do(Ff 'z, Gf 2) < do(Ff o, Ff'Gf tay)
+do(FFIGf e, Gf )
< Bp(a) (dyo) (GfF TG an, Gf 1))
+do(Ff G f e, Gf L),
Taking the limit as n — oo, we obtain (note ds(Ff 'Gf tlx,, Gftx) — 0,
ds(Gf'Gf 'w,, Gf'z) — 0 and ?5(5)(0) = 0 for all 6 € A)
do(Ff~tz,Gf1z) = 0.
Thus do(Ff~'2z,Gf~'x) = 0 for each a € A and so we have
Ffle=Gf'a.
Also, for each a € A,
Qo F ™ 0, FF G 00) < bty (o) (GF 0, GG ),
which on letting n — oo gives do (2, Gf~'x) = 0 for each o € A. As a result

r=Gf e =Ffla O

If Y = F and f is the identity maps on E then our Theorem 3.7 reduces to
the following result of O'Regan et al. [18, Theorem 3.5].

Corollary 3.8. Let E be a complete gauge space, g € E, 1 = {ro}taca €
(0,00)Y with F : (B(Gxg,r) U G~ YB(Gxo,7))) — E and G : E — E
compatible on B(Gxg,7) and FG~Y(B(Gxg,7)) € G(E). Suppose G is con-
tinuous and for each o € A, there exists a continuous, nondecreasing function
o 1 [0,00) — [0,00) satisfying ¢a(z) < z for z > 0. Also assume there
exists functions 3 : A — A and v : A — A such that for each o € A and
z,y € B(Gzo,7) UG Y (B(Gzg,7)) we have

do(Fz, Fy) < dp(a)(dya)(Gz, GY)).
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Further suppose for each o € A that

o0
Z D3(a)PB(v()) - PB(v—1(a)) (dyn(a)(GTo, Fxo)) + do(Gxo, Fxo) < 74
n=1

holds; here °(a) = a and 4™ (o) = y(v* " Y(«)) forn € {1,2,---}. Then there
exists x € B(Gxo,r) with x = Fx = Gz .

IfY = E, f and G are the identity maps on E then our Theorem 3.7 reduces
to the following result of O’Regan et al. [18, Corollary 3.6].

Corollary 3.9. Let E be a complete gauge space, xo € E, r = {ra}aca €
(0,00)A with F : B(xo,r) — E. Suppose for each o € A, there erists a
continuous, nondecreasing function ¢, : [0,00) — [0,00) satisfying ¢o(z) < z
for z > 0. Also assume there exists functions B : A — A and v: A — A such
that for each a € A and z,y € B(xo,r) we have

do(Fz, Fy) < ¢5(a)(ds(a) (7, 9))-
Further suppose for each o € A that

Z DB(a)PB(v()) - PB(vn—1(a)) (dyn(a)(T0, FT0)) + da(T0, Fzo) < T4

n=1
holds; here v°(a) = a and 4" (a) = y(v* " Y(a)) forn € {1,2,---}. Then there
exists © € B(xg,r) with x = Fx.

4. FIXED POINT THEORY FOR MULTIVALUED MAPS IN METRIC SPACES

This section presents fixed point, coincidence point, and homotopy results
for multivalued generalized contractive maps. Let (X, d) be a metric space.
Let CD(X) be the family of all nonempty closed subsets of X. We set

B(Ca 7’) = UIECB(‘Ta 7’)

where C' is a subset of X and r > 0. For any A, B € CD(X), we define the
generalized Hausdorff distance D to be

D(A,B)=inf{e >0: AC B(B,¢),BC B(A,¢)} €0, 0.
Let Y be an arbitrary space and f : Y — X be a bijection map. Let F :
fYB(Gftzg,r) UG YB(Gf tag,7))) — CD(X) and G : Y — X be a
mapping with
FGYB(Gf 'z, 7)) C GfH(X).
Then F and G are called f-hybrid compatible on B(Gf~lxg,r) if
lim dist(Gf Yy, Ff *Gftz,) =0
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whenever {z,,} is a sequence in fG~Y(B(Gf lzg,7)) and {y,} is a sequence
in B(Gf txg,r) such that

lim Gf lz, =t= lim y,
n—oo

n—oo
for some t € B(Gf~1xg,r), where y, € Ff~ 'z, forn e {1,2,---}.

Remark 4.1. If F and G are f-hybrid compatible and Gf~ 'z € Ff~ 'z for
some z € fG Y B(Gf 'xzg,r)), then

Gflaf e e FflGfta.
This is clear if we set x, = « and vy, = Gf 'z for all n.

Theorem 4.1. Let Y be an arbitrary space, (X,d) be a complete met-
ric space, f 1Y — X be a biyection map, xo € X, r > 0 with F :
fYB(Gf 1z, r) UG Y B(Gf tzg,7))) - CD(X) and G : Y — X com-
patible maps on B(Gxzo,r) and FG™Y(B(Gf txg,r)) C Gf~Y(X). Suppose
=1 and G are continuous and there exists a continuous function ¢ : [0, 00) —
[0,00) satisfying ¢(z) < z for z > 0 and ¢ nondecreasing on (0,r] such that
for z,y € B(Gflzg,7)U fG Y B(Gf 'xg,7)) we have
D(Ff ', Ff~'y) < ¢(M(z,y; f71)), (4.1)
with strict inequality if M (x,y; f~1) # 0; here
M(z,y; f71) = max{d(Gf 'z, Gfy), dist(Gf ', Ff ),
1
dist(Gf ™y, Ffy), 5ldist(Gf "z, Ffly)
+ dist(Gf Yy, Ff~1a)]}.

Also suppose

dist(Gf oo, Ff o) <r— ¢(r) (4.2)
D ¢'(t) < oo fort € (0,1 — ¢(r)] (4.3)
i=0
and
D —o(r) < (r). (4.4)
i=0

Then there exists * € B(Gflxzg,r) with Gf 'z € Ff~'z and Ff~! and
Gf~' have a common fired point Gf 'x provided Gf'Gfla = Gf 'z
and Gf 'z € B(Gflzo,r) U fG Y (B(Gf txg,r)). Moreover, there exists
a unique y € f1 (B(Gf_lxo,'r)) with fy =Gy € Fy.
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Proof. First we show there exists € B(Gf~lxg,r) with
Gf lzreFflz.

We are finished if M (z,yf~!) = 0 for some x,y € B(Gf~1xq,r) since dist(G
f~la, Ff ) < M(z,y; /1) and so

Gf lzeFfla=Ff 'z
(also we obtain Gf 1y € Ff~ly). By (4.2), there exists z € Ff~lxy with
d(Gf1ag, 2) < .

)
Since Gf~tzg € B(Gf tzg,7) and FG~YB(Gf txo,7)) € Gf~1(X) and so
Fflzg C Gf71(X), we have z € Gf~1(X). Thus there exists z; € X with
2z =Gf lz. As a result, we have

Gf lzy e Ff 1z
and
A(Gf ey, Gf o) < .

Notice Gf~tzy € B(Gf 'zg,r). We may assume M (xq,z1; f~') # 0 since
otherwise we are finished. Since, from (4.1), we have that

D(F [~ wo, Ff~tar) < 6(M(zo, 21 /1),
we may choose € > 0 with

D(F f~ o, Ff ~'a1) 4+ € < ¢(M (o, 15 f 7))

Thus we can choose w € Ff~'x; so that

d(Gf oy, w) < D(Ff tag, Ff o) + e

Since Gf~'z1 € B(Gf tzg,7) and FG~YB(Gf tzo,7)) € Gf~1(X) and so
Fflxy CGf1(X), we have

weG fﬁl(X ).
Therefore, there exists x5 € X with w = Gf~'zy. Consequently, we have
Gf lzy e Ff oy

and
A(Gf e, Gf ag) < D(Ff oo, Ff o) + ¢
and so
d(Gf~ a1, Gf " as) < (M (w0, 15 f71)).
Now we show

d(Gf ey, Gf a) < Q(A(Gf o, GfHan)). (4.5)
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Notice
d(Gf ey, Gf Las) < p(max{d(Gf  tzo, Gf 1),
dist(Gftzg, Ff ), dist(Gftxy, Fftay),

%[dist(Gf_lxo,Ff_lxl) +dist(Gf ey, Ff wo)]}).

Let
B = max{d(Gf " zo, Gf 1), dist(Gf wo, F f wo),
dist(Gf 1oy, Ffay), %[dist(Gf’lxo, Ffla)
+ dist(Gf oy, Fflao)]}.
If 81 = d(Gf two,Gf1x1), then we immediately have (4.5). If 31 = dist(G
f~two, F f~120), then again (4.5) holds since dist(Gf~txg, F f1xg) < d(Gf1
w0, Gf1x1). Now assume (3 = dist(Gflazy, Ff~txy). If 1 # 0, then

d(Gf ey, Gf Lay) < ¢(dist(Gftay, Ff1ay))
< dist(Gf oy, Ff'ay))
< d(Gf ey, Gf ),

a contradiction. Thus 31 = dist(Gf'z1, Ff~'r1) = 0 and (4.5) is true since
d(Gf~ay, Gf " ag) < ¢(Br) = ¢(0) = 0.
Finally assume
B = %[dist(Gf_lxo,Ff_lml) + dist(Gf ey, Ff o).
Then (4.5) is trivial if 8; = 0. If 81 # 0, then

d(Gflwy, Gf wg) < ¢(B1) < B
= %[dist(Gf‘lmo,Ff‘lxl) + dist(Gf oy, Fflag)]

This implies that

1 1
§d(Gf71961, Gf tag) < §d(Gf71960, Gf tay)
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and so

B = %[dist(Gf_lxg,Ff_lxl) + dist(Gf oy, Fflag)]

1
< §d(Gf_11:0,Gf_1x2)

< %[d(Gf_lxo, GFlan) + d(GF ey, Gf o)
<d(Gf Lz, Gfay),
which contradicts the definition of 3;. As a result (4.5) is true. Also
d(Gf oy, Gf Las) <d(Gf tao, Gf o)) + d(Gf ey, Gf tay)

< d(Gf  ao, Gf Lay) + o(d(Gf ao, Gfay))
<[r=o(r)]+o(r—o(r))
<[r—o(r)]+o(r)
=r

and hence Gf ~'zo € B(Gf 'z, 7). If M(z1,22; ') = 0, then, as before, we
are finished. So we assume M (z1,x2; f~!) # 0. Choose § > 0 with

D(Ff a1, Ff wg) + 6 < ¢(M (1, z0; f 1))
As above we can choose 3 € X with Gf 'z € Ff~lzy and
A(Gf o, Gftag) < (M (w1, 29; f71)).
We now show that
A(Gf ey, Gf Las) < @(d(Gf oy, GfLay)). (4.6)
To see this notice
d(Gf ', Gfag) < p(max{d(Gf w1, Gf ay),
dist(Gf ey, Ff a), dist(Gf g, F ftay),
%[dist(Gf‘lxl, Fflay) + dist(Gf Loy, Ff21)]}).
Let
By = max{d(Gf ta1, Gf 1ay), dist(Gf oy, Ff ), dist(GfLag, Fftay),

é[dist(Gf_lxl, FfYas) + dist(Gf " ag, Ff )]}

If By = d(Gf'z1,Gf L), then clearly (4.6) holds. If 3y = dist(Gflzy, F
f~tx1), then (4.6) is true since dist(Gf oy, Ff~lay) < d(Gf 1oy, Gf lag).
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If Bo = dist(Gf lzo, Ff~txy), then if £y # 0 we have

d(Gf G wg) < ¢(B2) < Be
= dist(Gf Lao, Fflay)
< d(Gf g, Gf ay),
which is a contradiction. Thus £y = dist(Gf'ae, Ff lz9) = 0, so
A(GF Vs, G g) < 6(2) = 6(0) = 0

and (4.6) is true. Finally assume
1
By = S [dist(Gf~ oy, Ff o) + dist(Gf ', P~ an)].

If By = 0, then d(Gf ~lzo, Gf La3) < ¢(B2) = #(0) = 0, s0 (4.6) is immediate.
If By # 0, then

d(Gf ey, G as) < ¢(Ba) < P
= %[dist(Gfﬁlxl, FfYao) + dist(Gf tag, Fftay))

< (G, Cf )
1
< §[d(Gf‘1x1, Gflwa) + d(Gf e, Gflay),
SO
1 1
5d(Gf*lg;Q,Gf*la;g) < Ed(Gf’lxl,Gf’le).
Consequently

By = =[dist(Gf ray, Fftas) + dist(Gf Loy, Fftay)]

< Zd(Gf e, Gf 1 as)

— NN

< 5[cz(c:f—lml, Gf tey) + d(Gf ey, Gf ta3)]
<d(Gf ey, Gf ),
which contradicts the definition of 3. As a result (4.6) holds. and so
(G we, Gfag) < (A(Gf e, Gf )
< ¢*(d(Gf o, Gf ).
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From (4.4), we obtain
A(Gf o, Gf Las) < d(GfYag, Gf ray) + d(Gf Loy, Gf tay)
+d(Gf g, Gf )
< [r = o(r)] + H(d(G [ wo, Gf )
+ ¢*(d(Gf o, Gf )
< [r=o(r)] + ¢(r — ¢(r)) + ¢*(r — ¢(r))

<r+ D¢ (r—o(r) — o(r)]
j=1

<r.

As aresult Gf 'z € B(Gf 'x,7). Continuing inductively we can construct
a sequence {x,} in X with
Gf 'ans1 € Ff o,
for n € {3,4,---} and
A(Gf w1, Gf " ran) < G(M(zp-1, 20 f 7))

(here we assumed without loss of generality that M (z,_1,2,; f~!) # 0). Es-
sentially the same argument as above guarantees that

AGf e, Gf " ang) < G(A(GSf  an 1, Gf )
aE (4.7)
< QM(d(Gf wo, Gf )
and
Gf 'z € B(Gf ag,r) forn € {3,4,---}.

The sequence {G'f1x,} is Cauchy. To see this, notice for n € {1,2,---} and
p€{1,2,---} that (4.7) gives

d(fola:nij, folxn) < d(fola:nﬂ,, fola:nﬂ,_l)
+d(Gf a1, G )
< "N A(GS w0, G )
+ ¢"M(d(Gf o, Gf 1)

<Y PGS o, G ).
j=n
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The preceeding inequality together with (4.3) guarantees that {Gf~1x,} is a
Cauchy sequence. Since (X,d) is complete, there exists x € B(Gf~lxzg,r)
with Gf~ 'z, — 2 as n — oco. Now since Gf 'z, 1 € Ff la, for n €
{1,2,---}, it follows that

dist(z, Ff 1x,) < d(z,Gf 1op1) — 0

as n — o0o. The continuity of f~! and G and f-hybrid compatibility of F' and
G imply that
lim dist(Gf tz, Ff1Gf1z,) =0
n—od
since
dist(Gf to, Ff1Gf 1a,) <d(Gf e, Gf 1Gf 1 any)
+ dist(Gf G f a1, FfIGf ay).

We claim that G'f 'z € Ff~'x. Notice (here we use the inequality:
|dist(w, A) — dist(w, B)] < D(A, B) for w € X and A,B € CD(X))

dist(Gf~'w, Ff ') < dist(Gf 'z, Ff~ G f ay)

+ D(Ff1Gf ., Ff 1)
< dist(GfYe, Ff G ay,)

+ ¢p(max{d(Gf 'z, Gf G f ay),
dist(Gf 'z, Ff '),
dist(Gf'Gf  an, Ff'Gfan),
Sldist(Gf e, Ff G )
+ dist(Gf G wn, Ff2)]}).

Taking the limit as n — oo, we have (notice that dist(Gf 'z, Ff~'Gflz,)
— 0, and also that dist(Gf'Gf 'z, Ff'Gf lz,) <d(Gf1Gf la,,
Gf'Gf 1 a,) +dist(GF'Gftap1, Ff1Gf12,) — 0 and

| dist(Gf LG ftay,, Ffla) — dist(Gf o, Ff ') < d(Gf1Gftay,
Gf'z) —0),

dist(Ff 'z, Gf 'z) < p(max{0, dist(Gf 'z, Ff~'z),0,
%dist(G F e, FF1a)))
= ¢(dist(GfLa, Ffta)).
Thus dist(Gf 'z, Ff~'z) = 0 and so
Gf lze Ff-lz =Ff 'z
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Finally, we show that ' and G have a common fixed point provided G f 'z =
Gf'Gf 'z and Gf 'z € B(Gf 'z, 7) UG Y (B(Gf 1xg,7)). To see this,
let z = Gf 'z = Gf'Gf~'z. Now 2z = Gf~ 'z and 2 € B(Gflxg,r) U
fG Y B(Gftxo,7)). We now consider two cases, namely when z € fG~1(
B(Gf~txg,r)) and when z € B(Gf~lxzg,r). Suppose first z € fG~H(B(Gf!
zg,r)). Then
Gf 'z e B(Gf tag,r)
and so
z € B(Gf tag,r).
This implies that
z € fGH(B(Gf o, 1))
Notice z = Gflo = Gf 'z = Gf'Gf~'z. By Remark 4.1, we have
Gfl\Gf e e Frtaf 'tz
and so
2=Gf lze Ff 1z
Now suppose z € B(Gf~1xg,r). Then
dist(Gf G f  apyr, Fft2)
< dist(Gf1Gf Y, Ff G ftan) + D(FfIGf ey, Ffl2)
< dist(Gf 'Gf rapr, FfIGF 1 ay) + p(max{d(Gf'Gf an, Gf12),
dist(Gf G f Yoy, Ff G f ey, dist(Gf 1z, Ff12),

%[dist(Gf’lz, FfGf e, + dist(Gf1Gf e, Ff12)]))
< dist(Gf 'Gf rapir, FfIGf 1 ay) + p(max{d(GfGfay, 2),
dist(Gf G f ta,, Ff G f ey, dist(z, Ff~12),
%[dz‘st(z, FFGS ) + dist(Gf Gf an, Ff12)]D).
Letting n — oo, we obtain, as before,
dist(z, Ff~12) < p(max{0,0, dist(z, Ff~12), %[dist(z,F L.

This implies that

dist(z, Ff~1z) = 0.
Hence z is a common fixed point of Gf~! and Ff~!'. Further, let f~1z =y
then since f is a surjective map we have a unique y € f~! m)
with fy = Gy € Fy. O



124 H. K. Pathak, M. S. Khan and J. K. Kim

Remark 4.2. Let f, G and F be as in Theorem 4.1. Also suppose
GfHC@GFFY) € BGf o, r);

here C(Gf L, FfY) ={z € B(Gflzg,r): Gf v € Ff o, Gf1Gf o =
Gf~1x}. Then there exists x € B(Gflzo,r) with

Gflz e Ff e
Moreover, F f~! and G f~! have a common fixed point Gf 'z provided Gf~1Gf 1z =
Gf ta.
Remark 4.3. Let f, G and F be as in Theorem 4.1. In addition, assume
that
d(Gf e, Gf1Gf2) < dist(Gf G f 1o, Ff1Gf )

+ dist(Gfta, Ff 1)

+D(Ff e, Ff1Gf 1)
for all z € fG~Y(B(Gf 'xzo,7)). Then Gf~! and Ff~! have a common fixed
point.

As in Theorem 4.1, there exists € B(G f~1xg,r) such that
Gf lze Ffla.
We claim 2 = Gf ~'x. Suppose that d(z,Gf12) = s for some s > 0. Since

d(Gf e, Gf1Gfx,) < dist(Gf G f e, Ff1Gftay)
+ dist(Gf tan, Ffta,)
+ D(Ff 'z, FfGf1a,)

< dist(Gf LG f ta,, Ff1GF ay)

+ dist(Gf Yan, Ff'ay,)
+ p(max{d(Gf 'z, Gf1Gfay),
dist(Gf Lan, Ff'ay),
dist(Gf G f ey, FfIGf  ay),

%[dist(Gfﬁlxn, FfGf  ay)
+ dist(Gf T Gf L wy, Ff e},
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< dist(Gf G f  an, FfGf  ay)
+d(Gf o, Gf  anga)
+ ¢(max{d(Gf z,, GG f ay),
AGf ay, Gf L ang),
dist(Gf G f an, Ff G 2y),

%[d(G F e, GF G )
+dist(Gf T Gf a1, FFIGF )
+ d(Gf G e, Gf )]},

which on letting n — oo gives (recall from Theorem 5.1 that Gf 'z, — =,
dist(Gf1Gftop, FfIGf12,) — 0 and dist(Gf1Gfto,, Ff1Gf!
x,) < dGf G e, GF Gy ) + dist(GF G f a1, FfIGF!
xn) — 0)
s = d(z,Gf'z) < ¢(max{d(z,Gf'x),0,0,
1

S ld(z, Gf~'x) +d(Gf e, 2)]})

= ¢(d(x,Gfz)) = 6(s) < s,

a contradiction. Hence z = Gf 'z € Ff~'x and so x is a common fixed point
of Gf~' and Ff~1.

Remark 4.4. Let F : f~YB(Gf tzo,r) UG HB(Gf 1zg,7))) — CD(X)
and G : Y — X with FG™Y(B(Gftxg,r)) C Gf~1(X). Theorem 4.1 remains
valid if we use the following notion of compatibility which is slightly different
from the above definition. F' and G are said to be f-hybrid compatible on
B(Gf~1xg,r) if for all x € fG™H(B(Gf1xg, 7)),

Gf 'Fflz e CD(X)
and
Jim DGf ' Ff e, FF1Gf tz,) =0,
whenever {z,} is a sequence in fG~1(B(Gf'xg,r)) such that
lim Gf 'z, =te M= lim Ff 'z,

n—oo n—oo

for some ¢t € B(Gf~'zg,r) and M € CD(X). Here we must mention that
if ' and G are f-hybrid compatible and Gf~'z € Ff~'z for some = €
fG Y B(Gf'xg,r)), then Ff~! and Gf~! commute at coincidence points.
To see this, let z,, = = for each n. Then

Gf lz,=Gf e — Gf 'z
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and Ff~'x, — Fx. Put M = Ff~'z. Then M € CD(X) and Gf 'z € M.
From the f-hybrid compatibility of G and F' it follows that

D(Gf'Ff e, Ff'Gf ) = D(Gf T Ff an, Ff'Gf an) — 0,
that is,
DGf Ff e FflGf1z) =o.
This implies that
GflFf e =Ff'Gf ta.

We now sketch the proof of Theorem 4.1 with this notion. As in the proof of
Theorem 4.1, we may obtain that Gf 'z, € Ff 'z, with

d(Gf  an, Gf Y ant1) < QG ap1, G ay))
(< ™d(Gf o, Gf'a1)))

and that {G f~'xz,} is a Cauchy sequence. Since (X, d) is complete, there exists
r € B(Gflxg,r) with Gf 'z, — x asn — co. We claim the sequence
{Ff~lz,} is Cauchy in the space (CD(X), D). Using (4.1), we obtain

D(Ff a1, Ff 'a,) < p(max{d(Gf a1, Gf Lan),
dist(Gf ' an_1, Ff 'an_1),
dist(Gf an, Ff ay),
%[dist(G [ e, Ff )

+ dist(Gf Loy, Ff a,-1)]})
< ¢(max{d(Gf w1, Gf an),
d(Gf  wn1, Gf ),
AGf e, Gf tens1),
SA(CT 1, G e )])
< p(max{d(Gf ' zn_1,Gf ' an),
d(Gf L an, Gf tent1),
%[d(Gf‘lxn—h Gflan)
+d(Gf an, Gf  ang)]})
< ¢p(max{d(Gf  wp_1,Gf tzy),
A(Gf w, Gf  wni1)]}).
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! max{d(Gf 'z, 1,Gf ), d(Gf  an, Gf 12n )]}
=d(Gf o1, GF ay),
then
D(Ff Yo, 1, Ffta,) < ¢(d(Gf a1, Gf tay))
< Q"((A(Gf o, Gf ).
! max{d(Gf  x, 1, Gf ra,), d(Gf  an, Gf o))}
= d(Gf ey, Gf any),
then

D(Ff 'ap1, Ff n) < ¢(d(Gf o, Gf tant))
< "M A(Gf o, Gf ).
But ¢" 1 (d(Gf 2o, Gf 1)) < ¢"(d(Gf Lo, Gf 1)) since ¢(z) < z and
¢ is nondecreasing. Thus
D(Ff a1, Ff'z,) < ¢"(d(Gf 1wo, Gf 1))
in all cases. Notice for n € {1,2,---} and p € {1,2,---}, we have
D(Ff  @nyp, Ff 'an) < D(Ff  anip, Ff ' @ngp-1)
+D(Ff ™ wngr, Ff )
" TP(A(G S wo, Gf )
" A(G S 2o, Gf )
< ) FAGf o, Gf ).

j=n+1

IN

The preceeding inequality together with (4.3) guarantees that {Ff~1x,} is a
Cauchy sequence in the complete metric space (CD(X), D).
Now let Ff~'z, — M. Then

dist(z, M) < d(z,Gf ‘z,) + dist(Gf rz,, M)
< d(z,Gf 'an) + D(Ff a1, M),
which on taking n — oo yields x € M since M is closed. Since {z,} is

a sequence in fG~1(B(Gf lzg,r)) such that Ff~tx, — M € CD(X) and
Gf 'z, — x € M, the f-hybrid compatibility of F' and G implies that

lim D(Gf 'Ffa,, Ff'Gf ' ,) = 0.

n—oo
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Now from the continuity of f~! and G, we have

lim dist(Gf tz, Ff1Gf1z,) =0

since
dist(Gf e, Ff1Gfte,) < d(Gf 'z, Gf1Gf 1)
+dist(Gf G f e, FfIGf ay)
< dGf e, G G )

+D(Gf T Ff g, FFI G ).
Next we show Gf 'z € Ff~'z. Notice

dist(Gf e, Ff'z) < d(Gf e, Gf LG fLany)

+ dist(Gf G ftapp, Ffl2)

<d(Gf 'z, Gf G f eng)
+D(GfFf e, Ff )

<dGf e, G Gf 1t a,)
+D(Gf Y Ff e, FGfe,)
+ D(Ff'Gf e, Ff )

<d(Gf 'z, Gf G f )
+D(GfYFf e, FIGf,)
+ p(max{d(Gf'Gf a,, Gf ),
dist(Gf G f ey, FfIGf ),
dist(Gftz, Ff1x),

%[dist(foleflxn, Fflx)
+ dist(Gf e, Ff G ta,)]))).

Taking the limit as n — oo and using the continuity of f~! and G, we have
(notice that dist(Gf 1z, Ff1Gf1z,) — 0, dist(Gf 'Gf 1o, 1, Ff1G
f~ta,) < DGfFf e, Ff1'Gftz,) — 0, and also that dist(Gf~'G
[l FfAIGfte,) <dGf1Gf o, GF1Gf o, q) + dist(GF LG
flop, FFIGf12,) — 0 and |dist(Gf G f ta,, Ff~tz) — dist(Gf ',



Coincidence point and homotopy results for f-hybrid compatible maps 129

Ffa)| <dGf G f an, Gfa) — 0),
dist(Ff 'z, Gf'z) < ¢(max{0,0,dist(Gf ‘x, Fflz),
%dm(c Fla, FFla)))
= @(dist(Gf o, Ff1x)).

Thus
dist(Gf e, Ff~tz) =0
and so
Gf e e Ff-la =Ff s

Using a previous argument, it can be seen that Ff~! and Gf~! have a
common fixed point z € B(Gf~1zg,r) provided Gf 'z = Gf~'Gf~'z and
Gf~ 'z € B(Gflzo,r) U fG7Y(B(Gf txg,7)). Further, let f~lz = y then
since f is a surjective map we have a unique y € f_l(B(folmo,r)) with
fy=Gy e Fy.

If Y = X and f is the identity map on X then our theorem 4.1 reduces to
the following result of O’'Regan et al. [18, Theorem 4.1].

Corollary 4.2. Let (X,d) be a complete metric space, xg € X, r > 0 with
F : (B(Gzg,7) UG Y(B(Gxg,7))) — CD(X) and G : X — X compatible
maps on B(Gxg,r) and FG~Y(B(Gxg,7)) C G(X). Suppose G is continuous
and there exists a continuous function ¢ : [0,00) — [0,00) satisfying ¢(z) < z
for z > 0 and ¢ nondecreasing on (0,r] such that for x,y € B(Gzg,r) U
G~ Y B(Gxg,7)) we have

D(Fz, Fy) < ¢(M(z,y)),
with strict inequality if M (z,y) # 0; here
M(z,y) = max{d(Gz, Gy), dist(Gz, Fx), dist(Gy, Fy),
%[dist(Gaz, Fy) + dist(Gy, Fx)|}.
Also suppose
dist(Gxg, Fxg) <1 — (1)

> ¢ (t) < oo fort € (0,1 — ¢(r)]
1=0
and

> ¢ (r—o(r) < ¢(r).
=0
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Then there ezists x € B(Gxg,r) with Gz € Fxz. Moreover, F and G
have a common fixed point Gz provided GGz = Gx and Gx € B(Gxg,r) U
G~ Y(B(Gzo,7)).

Corollary 4.3. Let Y be an arbitrary space, (X,d) be a complete met-
ric space, f Y — X be a bijection map, xro € X, r > 0 with F :
7 (Blzo,r), 7)) — CD(X) and Ff~"(B(zo,r)) C f~'(X). Suppose f~
is continuous and there exists a continuous function ¢ : [0,00) — [0,00)
satisfying ¢(z) < z for z > 0 and ¢ nondecreasing on (0,7] such that for

T,y € ffl(B(xo,r)> we have
D(Ff~ 'z, Ff'y) < ¢(M(z,y; f 7)),
with strict inequality if M (x,y; f=1) # 0; here
M(z,y; 1) = max{d(f~'a, fly), dist(f~ e, Ff~ ), dist(f~ 1y, Ff1y),
%[dist(fﬁlx,Fffly) +dist(fy, Ff1x)]}.
Also suppose
dist(ftao, Ff o) < r — é(r)

Zd)z(t) < oo forte (0,1 — o(r)]
=0
and

Z«zﬂ'(r —¢(r)) < o(r).

1

Then there exists x € f_1<B(xo,r)) with f~lx e Ff~lz .

00
=0

Corollary 4.4. Let (X,d) be a complete metric space, xg € X, r > 0
with F : B(xg,7) — CD(X). Suppose there exists a continuous function
¢ :[0,00) — [0, 00) satisfying ¢(z) < z for z > 0 and ¢ nondecreasing on (0, r]
such that for x,y € B(xg,r) we have

D(Fz, Fy) < ¢(M(z,y)),
with strict inequality if M (x,y) # 0; here

M (z,y) = max{d(z,y), dist(x, Fx), dist(y, Fy),

%[dist(x, Fy) + dist(y, Fx)]}.

Also suppose
dist(xo, Fzg) <1 — (1)
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> ¢l(t) < oo fort € (0,1 — ()]
1=0
and

D i —o(r) < ¢(r).
=0

Then there exists x € B(xg,r) with x € Fx .

Next we derive a global result.

Theorem 4.5. Let Y be an arbitrary space, (X,d) be a complete metric
space, f 'Y — X be a bijection map, F :Y — X and G :Y — X be
f-hybrid compatible maps and Ff~Y(X) C Gf~Y(X). Suppose f~' and G are
continuous and there exists rq > 0 and a continuous, nondecreasing function
¢ : [0,00) — [0,00) satisfying ¢(z) < z for z > 0 and ¢ nondecreasing on
(0,70 such that for x,y € X we have

d(Ff e, Ffy) < ¢(M(z,y; 7)), (4.8)
with strict inequality if M (x,y; f=1) # 0; here
M(z,y; ) = max{d(Gf e, Gfly),d(Gf e, Ff~e),d(Gf 1y, Ffy),

SlA(GS ™, Ffy) + Gy, FF )]

Also suppose
Zgbi(t) < oo fort € (0,79]. (4.9)
i=0
Then there exists x € X with
Gf lze Ffla.
Moreover, Ff~' and Gf~' have a common fized point G f~ 'z provided
GflGf e =Gf .
Proof. First we claim
inf dist(G fla, Fflz) =o. (4.10)
BAS
Suppose
inf dist(Gftx, Ff~lz) = > 0.
xe
Note ¢(d) < §. Since ¢ is continuous, we can find € > 0 with
o(t) <o fort € [0,0 +¢). (4.11)
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Choose w € X with
§ < dist(Gf 7w, Ff~'w) < 6 +e. (4.12)
Since Ff~1(X) C Gf~1(X), we have
Ff~twc GfY(X)
and so there exists z € X so that
Gf lze Fftw

and

§<d(Gf 'w,Gf ) <d+te (4.13)
Also

dist(Gf 12, Ff12) < D(Ff tw, Ff12)
< p(max{d(Gfw,Gf '),
dist(Gf~ w, Ff~tw), dist(Gftz, Ff~12),

%[dist(Gf‘lw, Ff=12) +dist(Gf 'z, Ff~tw)]}).
We claim

dist(Gf 1z, Ff~12) < 6. (4.14)
Let

B = max{d(Gf tw, Gf12),dist(Gf w, Ffw),dist(Gf 'z, Ff12),
%[dist(G Flw, FF12) + dist(Gf 2, Ffw)])).
If 3=d(Gf tw,Gf12), then, by (4.11) and (4.13), we have
dist(Gf 2, Ff~12) < p(d(Gftw,Gf12)) < 6,

so (4.14) holds. If 8 = dist(Gf~'w, Ff~!w), then, using (4.11) and (4.12),
we obtain

dist(Gf Lz, Ff712) < ¢(dist(Gf~ w, Gftw)) < 6,
so (4.14) holds. If B = dist(Gf~ 'z, Ff~'2), then 3 = 0 since if 3 # 0, then
dist(Gf Lz, Ff712) < ¢(dist(Gf Lz, Ff~12))
< dist(Gf 1z, Ff12),
a contradiction. As a result, (4.14) holds. Finally, assume
B = %[dz’st(Gf’lw, Ff12) +dist(Gf 'z, Fftw)l.

If =0, then
dist(Gf 'z, Ff~'2) < ¢(8) = ¢(0) =0,
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so (4.14) holds. If 8 # 0, then
dist(Gf 'z, Ff~'2) < ¢(8) < 3
- %[dist(G Flw, Ff12) + dist(Gf s, Ff~'w))
< %[d(Gf_lw,Gf_lz) +dist(Gflz, Ff~12)
+d(Gf 2, Gf12)]

= %[d(Gf_lw, Gf'2) +dist(Gf 'z, Ff~12)].
Therefore,
%dist(Gf_lz,Ff_lz) < %d(Gf‘lw,Gf_lz)
and so
8= %[dist(Gf‘lw, Ff'2) + dist(Gf 'z, F f~w)]
< %[d(Gf‘lw, Gf™'2) +dist(Gf 'z, Ff~12)]

< %d(Gf‘lw, Gft2)+ %d(Gf‘lw, Gf12)

— d(Gf M, GF 2,
which contradicts the definition of 3. Hence, in all cases, (4.14) holds and so
(4.10) holds. As a result, there exists zo € X with

dist(Gftzg, Ff txg) < 19
and, therefore, there exists y € Ff~lzg with
d(Gf ao,y) < ro.

Since Ff~1(X) C Gf~1(X), we have

Ff 'tz C G H(X)
so y € Gf~1(X). Consequently, there exists 1 € X with y = Gf "'z1. Thus,

d(Gf tae, GfLay) < ro.

As in Theorem 4.1, we can construct a sequence {z,} so that

Gf 'an1 € Ff lay
for n € {1,2,---} with

d(Gf_lxm Gf eny) < O(M(2n, wn1; f71)).

The same reasoning as in Theorem 4.1 guarantees that {G'f 'z, } is a Cauchy
sequence, so there exists * € X with Gf 'z, — z. Essentially the same
reasoning as in Theorem 4.1 guarantees that dist(Gf 'z, Ff~'z) = 0 so
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Gf 'z € Ff~'z. It remains to show Ff~! and Gf~! have a common fixed
point provided Gf 'z = Gf'Gf~'x. Let 2 = Gf 'z = Gf~'Gf~'z. Then,
by Remark 4.1, we have that

z=Gf lze FflGgf e =Ff .

Further, let f~'2 = y then since f is a surjective map we have a unique
y € f*1<B(Gf—1:U0,7“)> with fy = Gy € Fy. O

Corollary 4.6. Let (X,d) be a complete metric space with F: X — CD(X).
Suppose there exists ro > 0 and a continuous function ¢ : [0,00) — [0,00)
satisfying ¢(z) < z for z > 0 and ¢ nondecreasing on (0,ro] such that for
x,y € X we have

D(Fz, Fy) < ¢(M(z,y)),
with strict inequality if M(x,y) # 0; here

M(x,y) = max{d(z,y), dist(z, Fx), dist(y, Fy),

1
3 [dist(x, Fy) + dist(y, Fx)]}.
Also suppose
Z(ﬁi(t) < oo fort € (0,7g].
i=0

Then there exists x € X with x € Fx .

Next we prove a homotopy result.

Theorem 4.7. Let Y be an arbitrary space, (X,d) be a complete metric
space, f:Y — X be a bijection map, and U an open subset of X with H :
(fFHOYUG Y U)) x [0,1] = X and G:Y — X and for each \ € [0,1], Hy
and G are f-hybrid compatible on U, and H\(G™*(U)) C Gf~1(X). Assume
the following conditions hold:
(i) Gf~YU) C U (ie. U is invariant under Gf~1);
(ii) f=! and G are continuous;
(iii) there exists a continuous nondecreasing function ¢ : [0,00) — [0, 00)
satisfying ¢(z) < z for z > 0 such that for all X € [0,1] and z,y €
UU fG=Y(U) we have

DHf (@A), Hf 'y, N) < o(M(z,y, X £ 1)),
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with strict inequality if M (x,y, \; f~1) # 0; here
M(z,y, s f71) = max{d(G [~ (2), Gf (), dist(Gf " (z), Hf " (z, ),

dist(Gf ™), HI ™ 9, )), 5 dist(G (@), H £~ (5, 0)
+dist(GF ), B ()]

(iv) for any e > 0, there exists 6 = 6(e) > 0 such that when t,s € [0, 1] with
|t —s| < 0 then

D(Hf_l(x,t),Hf_l(x, s)) <e

forzcU;
(V) there exists ro > 0 such that

D i) < o0
1=0

fort € (0,70 — ¢(ro)];

(vi) Z%o &"(r —o(r)) < o(r) for any r € (0, ro];

(vii) inf{dist(Gf~1(x), H\f1(x)): 2 € OU, X € [0,1]} > 0;
here Hyf~1(-) = Hf71(-, \).

In addition assume Hof™' and Gf~' have a coincidence point (i.e. there
exists v € fG™H(U) with Gf~'(x) € Hof ~!(x)). Then for each X € [0,1], we
have that Hyf~' and Gf~! have a coincidence point xy € fG~H(U).
Remark 4.5. In Theorem 4.7 notice

for A € [0,1], Gf Y(z) ¢ Hf !(x,\) for z € OU.

This is implicitly implied by the other assumptions. To see this, suppose there
exist some g € QU and A\ € [0, 1] such that

Gf Y xo) € Hf H(x0, Mo).
Then
dist(Gf 1 (x0), Hf (20, X)) = 0.
From condition (vii), we have
0 < inf{dist(Gf~(x), Hxf () : 2 € OU, A €[0,1]}
< dist(Gf (x0), Hf (w0, Xo)) = 0.

This is a contradiction. As a result, for A € [0,1], Gf~(z) ¢ Hf '(x,\) for
x € 9U.
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Proof. First, we shall show that for each A € [0,1], Hyxf~! and Gf~! have a
common fixed point zy. Let
A={\e[0,1]:Gf Yx) € Hf *(z,\) for some 2 € UU fG~1(U)}.

Since Hyp and G have a coincidence point, 0 € A and so A is nonempty.
It is enough to show that A is both open and closed in [0, 1] since by the
connectedness of [0, 1], we have A = [0, 1].

First we show A is open in [0,1]. Let A\g € A. Then there exists z¢ €
fG~Y(U) with

Gf_l(.’Eo) € Hf_l(l‘o, )\0)

Then G f~1(x9) € U and since U is open, there exists a ball B(Gf~!(zo),9),
d > 0 (choose also § < rg), with

B(Gf~(=zg),d) CU.
Now, by (iv), there exists n(d) > 0 with
dist(Gf 1 (x0), Hf (w0, \) < D(HfY(xo, Xo), Hf (0, \)) < § — ¢()
for A € [0,1] and |A — Ag| < n. Now Theorem 4.1 (here r = 6, FF = H) and
G = G) guarantees that there exists ) € B(Gf~(xg),0) C U with
Gf~H(xx) € Haf" (@)

for A € [0,1] and |A — Xo| < 1 (note zy € U and Gf 1(x)) € U since
Gf~YU) C U, soxy € fGHU) for A € [0,1] and |A — Ag| < 7). Conse-
quently A is open in [0, 1].

Next we show A is closed in [0,1]. Let {A\r} be a sequence in A with
M — A € [0,1] as k — oo. Then for each k, there exists z € fG~H(U) with

Gfil (xk) S Hfil (xk, )\k)

We claim
inf dist(G f (zy),0U) > 0. (4.15)

Suppose it is not true. Fix i € {1,2,--- }. Then there exist n; € {1,2,---} and

a Yn, € OU such that
1

1(n:)
(with I(n;) — oo if n; — oo) and since f~! and G are continuous, we may
assume

d(Gf~ (2n,),yn,) <

AGF G () G ) < 5.

Therefore, there exist a subsequence S of {1,2,---} and a sequence {y;} C 0U
(for ¢ € S) such that

ACFNGF (@), GF () < % fori € S, (4.16)
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This together with (vii) gives
0 < inf{dist(Gf 1 (x), Hyf ' (z)) : x € U, X € [0,1]}
< liminf dist(Gf (yi), Hx, £~ (1))

i—oo in S

If
liminf dist(Gf (yi), Hx, f ' (y:)) = 0 (4.17)
i—oo IN S
is true, then we obtain a contradiction from the preceeding inequality and so
(4.15) is true. To prove (4.17), notice
liminf dist(Gf~(yi), Ha, f ' ()

i—oo 1N S

< liminf [d(Gf N y:), G HGf (x)))
i—oo 1N S

+ dist(Gf NG N (x:)), Hao f H(yi))]
< liminf [1—|—D(H)\f ( f_l(xi)),H)\if_l(yi))]

i—oo in S ¢

= hmliIIllfSD(HAiff (Gf @), Ha f (i)

< liminf ¢(max{d(Gf (G f (), Gf (),
i—oo 1IN S

dist(G UG (i), HFTHG ™ (a) M), dist(GF~ (yi), HE ™ (i, M),

st (@G (@), H ™ i M)

+dist(Gf i), Hf NG @), M)}
(here we used the fact that Gf ~1(z;) € Hy, f~(z;) implies G f~H(Gf~(z;)) €
Hy,f"YGf Y (x;)) (see Remark 4.1). Let

n=max{d(Gf NG @), Gf " (ys), dist(Gf TGS (),
Hf NG ), M), dist(GF (i) HEHyis M),

S dist(G £ (G ™ ), HF (e M) it (G~ (), HF (G (), A

| Ifp=d(Gf(Gf(x:)), Gf*(yi)), then
liminf dist(Gf~" (i), Hx, S~ (vi)
i—oo 1IN S

< liminf ¢(d(Gf NG (@), Gf (i)

i—oo 1N S

< liminf d(Gf NG f @), Gf (wi)

i—oo 1N S



138 H. K. Pathak, M. S. Khan and J. K. Kim

o (4.17) is true. If n = dist(Gf~HGf x:)), Hf 1{(Gf1(x;),\;)), then
obviously 7 = 0, so (4.17) is true. If n = dist(Gf~*(y;), Hf 1 (yi, \i)), then

liminf dist(Gf~ (), Hx, f ()

i—oo in S
< liminf ¢(dist(Gf(yi), Hf 7 (yi, M)
i—oo 1N S
< ¢( liminf dist(Gf~ ( i), Hf™ (Z/z, Ai)))
i—oo in S

which gives lim 1nfz_)Oo i s dist(Gf Y (yi), Hy, f (i) = 0 since ¢(z) < z if
z > 0, so (4.17) is true (here we used the fact that if {¢,} is a sequence of
nonnegative real numbers, then liminf ¢(t,) < ¢(liminft,)). Finally, if n =

sldist(Gf~HGf (@), H(yi X)) +dist(Gf~ (y), Hf (G f~ (i), Ai))]}, then

since ¢(n) < n, we have
liminf dist(Gf~" (yi), Hx,.f ™" (1))

i—oo 1N S

giliorgiiﬁfsi[dz’st(Gf‘l(Gf‘l( D) H I~ (i, )
0y HEY (G @), )
< hmlnf[ d(Gf~ (Gf_l(l‘i))aGf_l(yi))

i—oo 111 S

+sdist(GF ™ ), HF (i M)+ 5 d(GF (G (@) GF 7 (91)
. %dist(Gf‘l(Gf‘l(w-)) H (G () 2)

< hmlnf[ + dzst(Gf Yyi), Hf Ny Ai)) + 0],

i—oo 1N S {

—I—dist(Gf_l( ;

which implies

liminf dist(Gf 1 (y:), Hx, f " (y ))§1 liminf dist(Gf~ (), Hx, f " (3)),

i—oo IN S 2 i—oo IN S

o (4.17) is immediate (here we used Remark 4.1). Thus there exists § > 0
(choose also § < 1) with

A(Gf Han),2) >0
for all K > 1 and for all z € 9U. Since Gf~!(x}) € U for each k, we have
B(Gf~Y(xx),0) CU for k > 1.
As a result, by (iv) we have
dist(Gf ™ (@ng)s Haf ™ (2n)) < D(H " (@ngy Ang), H ™ (@, A))
<0 — ¢(0).
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Now Theorem 4.1 guarantees that G f~! and H,f~! have a coincidence point
Trn, € B(Gf~Y(xn,),0) C U. As before, we have that

Trn, € FGTHU).

Consequently A € A and so A is closed in [0, 1]. Hence we can deduce that
A =0,1] and so for each A € [0,1], Hyf~! and Gf~! have a coincidence point
zy € fGTHU) (ie. Gf Y (xy) € Hf Mz, N)). O

If Y = X and f is the identity map on X then our Theorem 4.7 reduces to
the following result of O’'Regan et al. [18, Theorem 4.5].

Corollary 4.8. Let (X,d) be a complete metric space and U an open subset
of X with H: (UUG~Y(U)) x[0,1] - CD(X) and G : X — X and for each
A €[0,1], Hx and G are compatible on U, and H)\(G~1(U)) C G(X). Assume
the following conditions hold:
(i) G(U) C U (i.e. U is invariant under G );
(ii) G is continuous;
(iii) there exists a continuous nondecreasing function ¢ : [0,00) — [0, 00)
satisfying ¢(z) < z for z > 0 such that for all X € [0,1] a
UuG Y U) we have

D(H(a, \), H(y, N)) < 6(M(z,5, V),
with strict inequality if M (z,y,\) # 0; here
M(z,y,\) = max{d(G(x),G(y)), dist(G(z), H(x, \)), dist(G(y), H(y, \)),
* dist(G(x), H(y, ) + dist(C(y), H(x, N)]}:

(iv) for any e > 0, there exists 6 = 0(e) > 0 such that when t,s € [0, 1] with
|t —s| < 0 then
D(H(z,t),H(x,s)) <e

forx e U;
(v) there exists rg > 0 such that

D ¢i(t) < oo
i=0

for t € (0,79 — ¢(ro)];
(vi) E%o o'(r —o(r)) < o(r) for any r € (0, ro];
(vii) inf{dist(G(x), Hx(z)) : € OU, XA € [0,1]} > 0; here Hx(.) = H(., A).



140 H. K. Pathak, M. S. Khan and J. K. Kim

In addition assume Hy and G have a coincidence point (i.e. there exists x €
G~YU) with G(x) € Ho(z)). Then for each \ € [0,1], we have that Hy and
G have a coincidence point x) € G=1(U).

O’Regan et al.[18, Theorem 4.6 | obtained the following homotopy result
via Zorn’s Lemma.

Theorem 4.9. Let (X,d) be a complete metric space and U an open subset
of X with H: (UUG™1(U)) x[0,1] - CD(X) and G : X — X and for each
A €[0,1], Hy and G are compatible on U, and Hy\(G~1(U)) C G(X). Assume
the following conditions hold:
(i) for A € [0,1], G(z) & H(xz,\) for x € OU (the boundary of U in X)
and G(U) CU;
(ii) H is closed (i.e. has closed graph), G is continuous and

d(G(z), Gy)) < d(G(x),y)

for allx € G™YU) and y € U;

(iii) there exists a continuous nondecreasing function ¢ : [0,00) — [0, 00)
satisfying ¢(z) < z for z > 0 and all A € [0,1] and z,y € UUG~Y(U)
we have

D(H(xz, ), H(y, A) < ¢(M(z,y, 7)),
with strict inequality if M (z,y,\) # 0; here

M (z,y, A) = max{d(G(z), G(y)), dist(G(x), H(x, X)), dist(G(y), H(y, ),
S dist(G(w), H(y, N)) + dist(G(y), H(x, )]}
(iv) there exists a continuous increasing function v : [0,1] — R such that

D(H (x,t), H(z,s)) < [¢(t) = 9(s)|

for allt,s € [0,1] and x € U;
(v) there exists rg > 0 such that

D 6t < oo
=0

fort € (0,70 — ¢(ro)];
(vi) 220 ¢'(r = 6(r)) < é(r) for any r € (0, ro];
(vii) @ :[0,00) — [0, 00) is strictly increasing (here ®(x) = x — ¢(x));
and
(viii) @~ 1(a)+ @ 1(b) < @ 1(a+b) fora>0 and b > 0.

In addition assume Hy and G have a coincidence point (i.e. there exists
r € G YU) with G(z) € Ho(z)). Then Hy and G have a coincidence point.
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Next we obtain a simplified proof of a homotopy result via Zorn’s Lemma by
dropping condition (viii), replacing condition (ii)with more general condition
and modifying conditions (iii) and (iv) of Theorem 4.9. In fact, we prove the
following.

Theorem 4.10. Let Y be an arbitrary space, (X,d) be a complete metric
space, f 'Y — X be a bijection map, and U an open subset of X with
H:(fFYU)uUG Y U)) x[0,1] = CD(X) and G:Y — X and for each \ €
[0,1], Hy and G are f-hybrid compatible on U, and Hy\(G™*(U)) C Gf~HX).
Assume the following conditions hold:

(i) for X € [0,1), Gf~Y(z) € Hf Y (x,\) for x € OU (the boundary of U

in X) and Gf~1(U) CU;
(ii) H is closed (i.e. has closed graph), f~' and G are continuous and

d(GfHx),GfHy) < dGfH(2),y)

for allx € fG=Y(U) and y € U;

(iii) there exists a continuous nondecreasing function ¢ : [0,00) — [0, 00)
satisfying ¢(z) < z for z >0 and all X € [0,1] and =,y € UUFGY(U)
we have

D(Hf™ (a, ), Hf (5, ) < o(M(z,y, A f 1),
with strict inequality if M (z,y, ) # 0; here
M(z,y, X f71) = max{d(G [} (x), G (y), dist(Gf~H(x), H ™ (x,A),
dist(Gf ™), HI 9, )), 5ldist (G (@), H £~ (5, 0)
+dist(GfH(y), Hf (2, )]}

(iv) there exists a continuous increasing function v : [0,1] — R such that

DU ), H 7 ) = dlar )] < 5H6(8) = ()

for all t,s € [0,1] and x € U;
(v) there exists o > 0 such that

D ¢i(t) < o0
=0

fort € (0,70 — ¢(ro)];
(vi) D2y @' (r— é(r)) < @(r) for any r € (0,70]; and

(vii) @ : [0,00) — [0,00) is monotone increasing (here ®(z) = x — ¢(x));
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In addition assume Hof~' and Gf~' have a coincidence point (i.e. there
ezists x € fG7H(U) with

Gf~H(z) € Hof ~(x)).
Then Hif~! and Gf~' have a coincidence point. Moreover, Hy and G have
a coincidence point y € f~B(Gf 1z, r).
Remark 4.6. Condition (ii) of Theorem 4.10 (here we also assume G f ~}(U) C

U) includes the class of maps satisfying the following condition:

(ii)* H is closed, (Gf~1)? = Gf~! on fG~Y(U) and Gf~! is nonexpansive on
U (ie. d(Gf Y (x),Gf y)) < d(x,y) for all z,y € U).

To see this, let G be a map satisfying condition (i4)* and let z € fG~1(U)
and y € U. Then

G NG (@), Gf ) < dGf (@), ).
Since (Gf~ 12 =Gf~1 on fG~L(U), it follows that
d(Gf N (2),GfH(y) = d(GfHGf (@), GF(y))
< d(Gf (), y).
Clearly Gf~1 is continuous. So Gf~! satisfies (ii).

Let U be an open convex subset of a Hilbert space X. Then the metric
projection P is a nonexpansive mapping from X to U with P2 = P (see [10,
pp. 72, 73]). Therefore, the class of maps Gf~! satisfying condition (i7)*
includes the class of metric projections.

Proof. Let
Q={(t,x) €[0,1] x fGTHU) : GfH(z) € Hf '(z,1)}.

Then @ is nonempty since Hyof~ ' and G f~! have a coincidence point. We
now define the partial order on @ (see (vii) for transitivity) as follows:

(t,x) < (s,y) iff t < s and d(Gf ' (2), Gf(y)) < (s) — ¥(t).

Let P be a totally ordered subset of @ and let t* = sup{t : (t,z) € P}.
Consider a sequence {(tn,z,)} € P such that (tn,xn) < (tn+1,Tn+1) and
t, — t*. Then

AGf Y xp), Gf Ham)) < U(tn) — Y(tm)for all m > n.

This implies that {G f~!(z,)} is a Cauchy sequence and so converges to z* € U.
Since Gf~Yzn) € Hy, f~Hxn), vn € fG~HU) for each n, it follows by the
f-hybrid compatibility of G and H;, that

Gf NG Han)) € HFTHGSHan), tn)
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(see Remark 4.1). Since H is closed and G is continuous, we have (t*,2*) € @)
(note Gf~L(2*) € Hf(z*,t*) and from (i) 2* € U and so Gf~(z*) € U i.e.
z* € fG7Y(U)). Since P is totally ordered, it follows from the definition of ¢*
that

(t,x) < (¥, 2) for every (t,x) € P.

Therefore (t*,2*) is an upper bound of P. By Zorn’s lemma ) admits a
maximal element (tg,z¢) € Q. Note g € fG~H(U) (i.e. Gf (zg) € U) and

Gf Nzo) € Hf (zo,t0).

We claim tg = 1. Suppose it is not true. Then, choose r > 0 (with r < r¢)
and t € (to, 1] with B(Gf~'(z0),r) C U and

r—o(r) = Y(t) —Y(to) < (1) —Y(to) =ro — d(10).

Notice
dist(Gf~ (xo), Hf ' (wo,t)) < dist(Gf ™ (xo), Hf (w0, t0))
+D(Hf_1<.1‘07 tO): Hf_l(l'o, t))

1
< 04 S[p() — ¥ (to)]
1
)
1
= 5@(7“) < ®(r)=r—o(r).
Now Theorem 4.1 guarantees that H,f~! and Gf~! have a coincidence point

x € B(Gflwg,r). Note v € U and Gf~!(z) € U (from (i), so = € fFG~H(U).
Hence (t,x) € Q. From (ii) and above, we have

d(Gf~ (@), GfH(x)) < d(Gf (o), x) <7 =1(t) — ¥(to) and to < t.

Therefore, (tg,zp) < (t,z). This contradicts the maximality of (o, xp). Con-
sequently, tp = 1 and so we are finished. O

5. FIXED POINT THEORY FOR MULTIVALUED MAPS IN GAUGE SPACES

In this section, we discuss analogue of some of the results of section 4 in
gauge spaces. For this section, E = (E,{ds}aca) will denote a gauge space
endowed with a complete gauge structure {d, : « € A}. For any A, B C E,
we define the generalized Hausdorff pseudometric induced by d, to be

Dy(A,B)=inf{e >0: Ve € A,Vy € B,3z" € A,Jy* € B

such that do(z,y") < €,da(x*,y) < €},
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with the convention that inf(()) = co. Let Y be an arbitrary space, f:Y — E
be a bijection map, F : f~(B(Gf tzg,r) UG Y (B(Gf 1xg,7))) — CB(E)
and G :Y — E with

FG™NB(Gf o)) C GfH(E).

Then F and G are said to be f-hybrid compatible on B(G f~1zg,r) if for each
a € A,
lim disto(Gf Yy, Ff1Gf1z,) =0

whenever {x,} is a sequence in G™1(B(Gf1x¢,7)) and {y,} is a sequence in
B(Gf~1xg,r) such that for each o € A,

lim do(yn,t) = lim do(Gf a,,t) =0

for some t € B(Gf~1zg,r), where y,, € Ff 'z, forn € {1,2,---}.

Remark 5.1. If Ff~! and Gf~' are f-hybrid compatible and Gf~ 'z €
Ff~1lx for some z € fG~YHB(Gf txo,r)), then

GflGf e e FftGaf .

Theorem 5.1. Let Y be an arbitrary space, E be a complete gauge space,
f Y — E be a bijection map, vo € E, 7 = {ra}aear € (0,00) with
F: f~YB(Gf twg,r) U fG Y B(Gf txg,r))) = CD(E) and G:Y — E be
f-hybrid compatible maps on B(Gf~lxg,r) and
FGY(B(Gf zg,r)) CGfH(E).

Suppose £~ and G are continuous and for each oo € A, there exists a continu-
ous function ¢, : [0,00) — [0, 00) satisfying o (2) < z for z > 0 and ¢, strictly
increasing on (0,74] such that for x,y € B(Gf~tzg,r)UfG Y (B(Gf txg,r))
we have

Do(Ff ™2, Ff'y) < ¢a(Malw,y; f71); (5.1)
here
M(z,y; f~1) = max{da(Gf "2, Gf 1y, dista(Gf o, Ff ),
dista(Gf Yy, F~'y), Sldista(GS 2, )
+ disto(Gf Yy, Ff )]},
Also suppose for each o € A that
®,, is strictly increasing on [0,00); here ®q(x) = x — Ppo(x) (5.2)
disto(Gf Lo, Fftrg) < ra — da(ra) (5.3)
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> 0a(t) < 00 fort € (0,70 = Galra)) (5.4)

and = -
Z (ﬁiy(ra - ¢a(ra)) < ¢a(ra)- (5'5)

i=0

Finally assume the following condition holds:

for every x € fG™H(B(Gf xo,7)) and every e = {eatacn € (0,00)*
there exists y € Ff "z with do(Gf 12, y) < disto(Gf Lo, Ff~1z) + €,
for every o € A.
(5.6)

Then there exists © € B(Gf~xg,r) with Gf 'z € Ff~ 'z and Ff~' and
Gf~! have a common fized point Gf 'z provided Gf'\Gf'a = Gf 'z and
Gr € B(Gflzo,r) U fG Y B(Gftzg,7)). Moreover, there exists a unique
ye f1 <B(Gf_1m0,7“)> with fy =Gy € Fy.

Proof. From (5.3) and (5.6), we may choose z € F f~lzy with
da(fola;o, 2) < T — ¢a(rq) for every a € A.

Since Gf~lzy € B(Gf two,r) and FG1(B(Gf1xg,7)) C Gf~1(F) and so
Ff(z0) C Gf~1(E), we have

z€ GfY(E).
Therefore, there exists 1 € E with z = G f~'z;. Consequently, we have
Gf 'z € Fftag

and

A(Gf oy, Gf 1ag) < 1o — ¢dalra) for every o € A. (5.7)
Notice Gf~'xy € B(Gf lzg,r). Now for a € A, choose ¢, > 0 with ¢, <
ba(re) and ®,1(€q) < 74 such that

Qba(da(Gf_le, Gf_lxl) + Ea) +€q + Qba(q)(;l(ea)) < ¢a(ra - ¢a(ra)) (5'8)

(this is possible from (5.7) and the fact that ¢, is strictly increasing on (0, 74]).
From (5.6) we can find y € F f~'z; such that for every o € A, we have

do(Gf L ay,y) < disto(Gf ey, Ffa1) 4+ €4 < Do(Ff tag, Ff121) + €q.
Since Gf 'z € B(Gf txg,r) and FG~Y(B(Gwo,7)) C G(E) we have
Ff~'ay € GfH(E),
and so y € Gf~Y(E). Thus there exists 2o € E with
y=Gf x,.
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As a result,
do(Gf a1, Gf tas) < disto(Gf o1, Ff 1) + €
< ]_70[(}7’!)"_15007 Foxy) + €q.
We claim
do(Gf 121, Gf22) < ¢a(da(Gf 20, Gf 21) + €0)
+ o + da(®5" (€a))-
To see this notice

Da(Ff_ll‘Ov Ff_lxl) + €a < ¢a(maX{da(Gf_1$Oa Gf_llil)v
disto (G f 2o, Fflag), disto(Gf 2y, Ff '),
$ldista(Gfao, Ff o) + disto (Gf a1, F f 7 20)]}) + €a.

Let
Na = max{da(Gf_lzL‘o, Gf_lznl), dista(Gf_lxo, Ff_lzno),

disto(Gf ey, Ff~tay), %[dista(Gf_l$oa Fflz)
+ disto(Gf tay, Ffao)]}.

If 9o = do(Gf'z0, Gf~121), then (5.10) holds.
If o = disto(Gf 'z, Ff '), then

Na < da(Gf_1x07 G'f_lxl)(S TOI)
so (5.10) holds. If 1, = disto(Gftz1, Ff~121), then (5.9) gives
dista(Gf w1, Ff~ 1) < da(Gf a1, Gf )

< (ba(diSta(Gf_lxlaFf_lxl)) + €q,

so disto(Gf oy, Ff~tzy) < ®_1(es). Therefore,
do(Gf 21, Gf 1 2) < 6a(Py ' (€)) + €as
so (5.10) holds. Finally if
Na = %[dista(folxo,Ffflxl) + dista(folzcl,Ffflxo)],
then .
da(fola:l, Gfill’g) < Q[dista(folxo, Ffflscl)
+ disto(Gfzy, Ffao)] + e
1
< lda(GF a0, G )

+ da(Gf71x17 Gfile)] + 60&7

(5.9)

(5.10)

(5.11)
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SO
%da(Gf_lxo,Gf_lxg) < %da(Gf_lxo, Gftzy) + eq.
Consequently
do(Gf'o1, Gf tan) < ¢a(%[di5ta(Gf_1$07 Fftay)
+ disto(Gf a1, Ffa0)]) + €a
< Gu(5[da(GS 20, G 1)
+da(Gf 01, Gf ' a)]) + €a
< Galda(Gf ™ w0, G 1a1) + €a) + €as

(note do(Gftzo,Gf 121) + €0 < 74) so (5.10) holds. As a result, (5.10) is
true in all cases. Therefore, it follows from (5.8) and (5.10) that
do(Gf 121, Gf ') < Pa(ra — Palra)). (5.12)
Notice for all « € A
do(Gf a0, Gf T aa) < do(Gf a0, Gf 'an) + da(Gf 'y, Gf lag)
< [ra = ¢a(ra)] + ¢alra — dalra))
< [ra = ¢alra)] + ¢a(ra) =ra.

This implies that
Gf lxy € B(Gf txg, 7).

Next for a € A, choose d, > 0 With ¢o(ra—0da (7)) +0a < 7o and @71(5,) < 74
such that

Qba(da(Gfilﬂfl, Gf71x2) +6a) +0a + ¢a(©;1(5a)) < ‘J%(Ta — ¢a(ra)) (5.13)

(this is possible from (5.12)). From (5.6), we may choose x3 € E so that
Gf lxs € Ff~lzy and
do (G f o, Gf tas) < disto(Gf ' mo, Ff 129) + 04

< Do(Ff~ oy, Fftas) + 6,
As before, we have

do(Gf Yoy, Gf La3) < doldo(Gf Lo, Gf Las) + 04)

+ 0o + ¢a (@5 (6a)

and this together with (5.13) gives

do(Gf 29, Gf as) < G2(ra — dalra))- (5.15)

(5.14)
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Now for each o € A, we have
do(Gf 20, Gf o) < do(Gf 1 wo, Gf 121) + do(Gf a1, Gf 1)
+ do(Gf g, Gf )
<[ra = ¢alra)l + ¢a(ra — da(ra))
+ ¢¢21(7‘a — ¢a(ra))

< 7o+ [Z ¢Jo'4(7'04 - ¢a(ra)) - (ﬁa(T’a)]
j=1

< r4-

Proceed inductively to obtain Gf 'z, € Ff~lx, 1 for n € {3,4,---} with
Gf 'en € B(Gf @, r)
and
da(Gf_lxna Gf_1$n+1) < Gp(ra — da(ra))
for each o € A. Now (5.4) implies that {Gf~'x,} is Cauchy with respect to
dg for each a € A. Consequently {G f~1x,} is a Cauchy sequence in E. Since
E is complete, there exists x € B(Gf~ 1z, r) with Gf 'z, — z. Now since

Gf lz, € Ffla, forn € {1,2,---}, it follows that from the continuity of
f~! and G and f-hybrid compatibility of F' and G that

lim disto(Gf e, Ff1Gf1z,) =0
for each oo € A. Now fix @ € A. Then
disto(Gf rz, Ff'z) < disto(Gf o, Ff1Gf ay,)
+Do(Ff'Gf ey, Ff'a)
disto(Gftz, Ff1Gftay,)
+ o (max{d (Gf 1z, Gf1Gf x,),
disto(Gf Lz, Ff~ta),
disto(Gf G f an, FfIGf ay),
%[dista(Gf_lx, Fflaftz,)
tdisto(Gf LG fan, Ff o)),
Letting n — oo, we obtain (as in Theorem 4.1) that
dz’sta(Ff_la:,Gf_lx) < ¢a(max{0,dista(Gf_1x,Ff_lx),O,
1
idista(Gf_lx, Ff=l2)})

= ¢a(disto(Gf'w, Ff '),

IN
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This implies that

disto(Gf ta, Ff'z) =0
for each o € A. Thus

Gf lze Ff-lz =Ff 'z

As in Theorem 4.1 it is easy to check that Ff~! and Gf~! have a common
fixed point provided Gf~'z = Gf~'Gf~ 'z and Gf 'z € B(Gflzg,r) U
fG~Y(B(Gf 'xg,r)). Further, let f~'x = y then since f is a surjective map,
we have a unique y € f~! (B(Gf_lxo,r)) with fy =Gy € Fy. O

If Y = FE and f is the identity map on E then our theorem 5.1 reduces to
the following result of O'Regan et al. [18, Theorem 5.1].

Corollary 5.2. Let E be a complete gauge space, xog € E, 1 = {ro}taca €
(0,00)» with F : (B(Gxg,r) UG (B(Gxo,7))) — CD(E) and G : E — E
compatible maps on B(Gxg,r) and FG™(B(Gxo,r)) C G(E). Suppose G
18 continuous and for each o € A, there exists a continuous function ¢q :
[0,00) — [0,00) satisfying ¢po(2) < z for z > 0 and ¢, strictly increasing on
(0,74] such that for z,y € B(Gzo,r) UG 1(B(Gxo,7)) we have

Do (Fz, Fy) < ¢pa(Ma(z,y)); (5.1)

here

M(x,y) = max{d,(Gzx,Gy), dist,(Gz, Fx), dist,(Gy, Fy),

1
3 [disto(Gx, Fy) + disto(Gy, Fx)}.
Also suppose for each o € A that

D, is strictly increasing on [0,00); here ®o(x) = x — ¢o(x) (5.2")
disto(Gxo, Fxo) < ro — ¢a(ra) (5.3")
iqﬁ’a(t) < oo fort € (0,rq — da(ra)] (5.4")

and =
364~ galr) < ) (55

Finally assume the following condition holds:
for every x € GH(B(Gxo,7)) and every € = {ea yaeca € (0,00)"
there exists y € Fo with do(Gz,y) < disto(Gx, F'x) + €4
for every a € A.
(5.6")
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Then there exists x € B(Gxg,r) with Gx € Fx. Moreover, F' and G

have a common fixed point Gz provided GGz = Gx and Gx € B(Gxg,r) U
G~ Y(B(Gxg,7)).

Theorem 5.3. Let Y be an arbitrary space, E be a complete gauge space,
f:Y — E be a bijection map, and U an open subset of E with H : f~(U U
fGY(U)) x [0,1] — CD(E) and G :Y — E and for each \ € [0,1], Hy and
G are f-hybrid compatible on U, and Hy\(G~1(U)) C Gf~Y(E). Assume the
following conditions hold:

() GfFY(U) CcU;

(i) Hf ! is closed, G is continuous;

(iii) for each oo € A, there exists a continuous strictly increasing function
Go 2 [0,00) = [0,00) satisfying ¢o(z) < z for z > 0 and for all A € [0, 1]
and z,y € UU fG™H(U) we have

Da(H [N, ), Hf 7y, N) < ¢a(Mal@,y, X f71)),

Mo (@,y, A f71) = max{da(Gf ' (2), GfH(y)), dista(Gf " (2), Hf (2, N)),

dista( G~ (4), HF~ (3, V), 3 dista (G (2), H (5, ))

+ dista(Gf ' (y), Hf (2, M)}

(iv) for every € = {eaYaecn € (0,00)", there exists § = 6(e) > 0 (which does
not depend on «) such that when t,s € [0,1] with |t — s| < J, then

Do(Hf ™ (z,t), Hf ! (z,5)) < €a

for allz € U and all o € A;
(v) for each each oo € A and for any s, € (0,00),

D dh(t) < oo
i=0
fort € (0,84 — da(sa)] and
Z ¢fx<3a - ¢a(3a)) < ¢a(5a)§
i=0

(vi) for each a € A, ®, : [0,00) — [0,00) is monotone increasing (here
Ba(z) = & — dalx));
and

(vii) for every A € [0,1] and every € = {ea}acn € (0,00)" there exists
y € fG~YU) with Gf 1y € Ff~'x with

do(Gfre, Gfly) < disto(Gf o, Ff1z) + €,
for every a € A.
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(viii) there exists ag € A with
inf{disto, (Gf "(z), Hef H(z)) : 2 € OU,t € [0,1]} > 0;
here Hyf~1(:) = Hf71(-,¢t).
In addition assume Hof~' and Gf~' have a coincidence point (i.e. there
ezists x € fG7H(U) with
GfY(z) € Hof '(z)).
Then Hyf~' and Gf~' have a coincidence point. Moreover, there exists a
unique y € f1 (m) with fy =Gy € Fy.
Remark 5.2. Note
for A € [0,1], Gf~Y(x) € Hf '(x,\) for z € OU
is implicitly implied by the other assumptions.
Proof. Let
A={\e[0,1]: Gf Hx) € Hf Y(x,\) for some z € fG~H(U)}.

Since Hof~! and Gf~! have a coincidence point, A is nonempty.
First we show A is open in [0,1]. Let A\g € A. Then there exists z¢ €
fG~Y(U) with
Gfil(l‘o) € Hffl(.%’o, )\0).
Then Gf~!(xo) € U. Since U is open, there exists § = {04}acr € (0,00)"
with

B(Gf~(=zp),d) CU.
Now fix @ € A. Then by (iv), there exists n(d) > 0 with
diStOé(Gf_l($0)v Hf_l(xO’ A) < Da(Hf_l(l‘o, o), Hf_l(SUOv A)) < 6a—9a(0a)

for A € [0,1] and |[A — Xo| < 7. Now Theorem 5.1 guarantees that there exists
Ty € B(Gf—l(xo),é) C U with

Gf_l(x)\) S H)\f_l ("IJ‘)\)

for A € [0,1] and |A — Ao| < 7. As a result A is open in [0, 1].

Next we show A is closed in [0,1]. Let {A\x} be a sequence in A with
A — X € [0,1] as k — oo. By definition, for each k, there exists 2, € fG~1(U)
with

Gf k) € Hf (g, M)
We claim
inf dist, (G Y (zy),0U) > 0.
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Suppose it is not true. Fix i € {1,2,---}. Then there exist n; € {1,2,---} and
a Yn, € OU such that

ACL (@n) ) < l(li)(with (i) — o0 if i — o0).

Since f~! and G is continuous, we may assume

AGF G () G ) < 5.

Therefore, there exist a subsequence Sy, of {1,2,---} and a sequence {y;} C
oU (for i € S,,) such that

AGF (G i), GF () < for i€ .
This together with (viii) implies
0 < inf{dista, (Gf (), Hyf () : x € U, X € [0,1]}
< liminf  dista(GF 7 (yi), Hx f ™ (92)-

i—o00 1N Sq

Essentially the same argument as in Theorem 4.5 guarantees that

lminf  dista, (G (i), Hx f ' (yi) =0,

i—00 11 Sa
so this contradicts (5.17). Consequently (5.16) is true. So, there exists €5, > 0
with
dao (Gf_l(xk‘)v Z) > €qg
for all kK > 1 and for all z € OU. Since Gf ~(x) € U for each k, there exists
€ = {eatacn € (0,00)" such that
B(Gf~(ak),e) CU

for k > 1. Fix a € A. Then by (iv) there exists an integer ng (which does not
depend on «) such that

dista(Gf_l(an), HAf_l(an)) < Da(Hf_l(xnm )‘no)v Hf_l(xnoa A))
< €q — Qboa(ea)‘

Now Theorem 5.1 guarantees that Gf~!' and Hyf~! have a coincidence point
Trn, € B(Gf~1(xp,),0) CU. As aresult, A € A. Hence A is closed in [0, 1].
This completes the proof. O

If Y = F and f is the identity map on F then our theorem 5.3 reduces to
the following result of O’Regan et al. [18, Theorem 5.2].

Corollary 5.4. Let E be a complete guage space and U an open subset of
E with H : (UUG~YU)) x [0,1] — CD(E) and G : E — E and for each
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A €[0,1], Hy and G are compatible on U, and H)\(G~1(U)) C G(E). Assume
the following conditions hold:

(i) G(U) CU;
(ii) H is closed, G is continuous;
(iii) for each oo € A, there exists a continuous strictly increasing function
Go 2 [0,00) — [0,00) satisfying ¢o(2) < z for z > 0 and for all A € [0, 1]
and z,y € UUGY(U) we have

Da(H(z,X), Hly, V) < a(Malr, 3, 3)),

My (z,y,A) = max{d,(G(x),G(y)), disto(G(zx), H(z,\)),
dista(Gly), H(y, V), 3 ldista(G(z), H(y, V)

+dista(G(y), H(z, )]}

(iv) for every € = {eaYaecn € (0,00)", there exists § = 6(e) > 0 (which does
not depend on ) such that when t,s € [0, 1] with |t — s| < J, then

Dy (H(z,t),H(x,8)) < €q

for allz € U and all a € A;
(v) for each each o € A and for any s, € (0,00),

D dh(t) < oo
=0
fort € (0,84 — du(Sa)] and
Z ¢g<3a - ¢a(3a)) < ¢a(5a)§
=0

(vi) for each v € A, &, : [0,00) — [0,00) is strictly increasing (here
Po(z) =2 — da(x));
and

(vii) for every A € [0,1] and every € = {ea}acn € (0,00)* there exists
y € G~YU) with Gy € Fx with

do(Gz,Gy) < disto(Gz, Fx) + €4

for every o € A.
(viii) there ezists ag € A with

inf{dista,(G(z), Hi(z)) : € 0U,t € [0,1]} > 0;
here Hy(.) = H(.,t).
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In addition assume Hy and G have a coincidence point (i.e. there exists x €
G~ YU) with G(z) € Ho(z)). Then Hy and G have a coincidence point.

O’Regan et al. [18, Theorem 5.3] proved the following result:

Theorem 5.5. Let E be a complete gauge space and U an open subset of
E with H: (UUG'(U)) x[0,1] - CD(E) and G : E — E and for each
A € [0,1], Hy and G are compatible on U, and Hy(G~1(U)) C G(E). Assume
the following conditions hold:

(i) for A €[0,1], G(z) € H(x,\) for x € OU and G(U) CU;

(ii) H is closed, G is continuous and for each o € A,

do(G(z), G(y)) < da(G(2),y)

for allz € G™YU) and y € U;

(iii) for each oo € A, there exists a continuous strictly increasing function
ba : [0,00) — [0, 00) satisfying o (z) < z for z > 0 and for all X € [0, 1]
and x,y € UUG 1(U) we have

Do(H(z,A), H(y,A) < ¢pa(Ma(z,y,N)),
Ma(-rv Y, )‘) = max{da(G(:U), G(y))7 diSta(G(x)a H(QS‘, )‘))a

distalGly), H(y, ), 5 dista(G(2), H(y, V)
+ diSta(G(y)a H(:E7 A))]L

(iv) there exists M = {Ma}aen € (0,00) and there exists a continuous
increasing function 1 : [0,1] — R such that for every a € A,

Do(H(z,t), H(z,5)) < Ma|t(t) — (s)|
for allt,s €[0,1] and z € U;

(v) for each each o € A and for any s, € (0,00),
PBLAGERES
i=0
fort € (0,84 — Pa(sa)] and

Z ¢L(5a - ¢a(5a)) < ¢a(8a);
=0

(vi) for each o € A, &4 : [0,00) — [0,00) is strictly increasing (here
O (z) =2 — ¢polz)) and
o' (a) + @5 (b) < @' (a +D)

fora>0andb>0;
and
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(vii) for every A € [0,1] and every ¢ = {ea}acr € (0,00)" there exists
y € GYU) with Gy € Fz with

do(Gz,Gy) < disto(Gz, Fx) + €4
for every a € A.

In addition assume Hy and G have a coincidence point (i.e. there exists x €
G~Y(U) with G(z) € Ho(z)). Then Hy and G have a coincidence point.

We now extend and improve the above result in the following:

Theorem 5.6. Let Y be an arbitrary space, E be a complete gauge space,
f:Y — E be a bijection map, and U an open subset of E with H : f~(U U
fGYU)) x [0,1] — CD(E) and G :Y — E and for each X\ € [0,1], Hy and
G are f-hybrid compatible on U, and Hy\(G~Y(U)) C Gf~Y(E). Assume the
following conditions hold:

(i) for A€ [0,1], GfYx) € Hf 1(z,)\) for x € OU and Gf~1(U) C U;
(i) Hf~! is closed, f~1 and G are continuous and for each a € A,

do(GfH (@), Gf M) < dal(GfH(2),y)
for allx € fG™X(U) and y € U;

(iii) for each oo € A, there exists a continuous strictly increasing function
ba : [0,00) — [0,00) satisfying ¢a(2) < z for 2 > 0 and for all X € [0,1]
and x,y € UU fG~HU) we have

Da(HF (. 2), HF ™, 3)) < ba(Malr.%: ),
Mo, 25§71 = mac{da (G5 (), GF ™ 0), dista(GF ™), HF ™z, )
dista(Gf ™ (), HT ™ (9, ), ldista (G (@), H £~ (3, 0)
+dista(GF (), HF ™ ()]

(iv) there exists M = {My}acn € (0,00) and there exists a continuous
increasing function 1 : [0,1] — R such that for every a € A,

Da(H (1), HF ™ (2,5)) < 5 Malo(t) — (s)

for all t,s € [0,1] and x € U;
(v) for each each o € A and for any s, € (0,00),

D Gi(t) < oo
=0
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fort € (0,84 — Pa(Sa)] and
Z ¢g<3a - ¢a(3a)) < ¢a(5a)§
i=0

(vi) for each o € A, &, : [0,00) — [0,00) is monotone increasing (here
Po(z) == — dalz)) ;
and
(vii) for every A € [0,1] and every € = {ea}aca € (0,00)" there exists
y € fGTHU) with Gf~'y € Ff~'z with
do(Gfra, Gf Ly) < disto(Gf Lz, Ff ) + €4
for every a € A.
In addition assume Hof~' and Gf~' have a coincidence point (i.e. there
exists v € fGY(U) with Gf~1(x) € Hof '(x)). Then H1f~! and Gf~! have
a coincidence point.

Proof. Let
Q={(t,z) €[0,1] x fFGHU): GfYx) e Hf (x,1)}.

Then @ is nonempty since Hy and G have a coincidence point. On ) define
the partial order

(1) < (5,9) iff £ < 5 and da(GS1(2), GS1(y)) < Mali(s) — (1)
for every a € A. Let P be a totally ordered subset of ) and let
t* =sup{t: (t,z) € P}.
Take a sequence {(tn,zn)} C P such that
(tn,2n) < (tnt1, Tns1)

and t,, — t*. Then, as in Theorem 4.6, {G f~!(x,)} is Cauchy with respect to
dy, for each o € A and so (t*,z*) € @ with

(t,x) < (t*,x) for every (t,z) € P.

Thus (t*,z*) is an upper bound of P. By Zorn’s lemma @ admits a maximal
element (¢, 70) € Q. Note 79 € fG1(U) and Gf (o) € Hf~(xo, o).

We claim ¢y = 1. Suppose our claim is false. Note since U is open, there
exist 1, ,0m € (0,00) with

U(Gf 1z, 61) N~ NU(GF 3, 0m) C U;
here U(Gf120,6;) = {z : do,(x,Gftmg) < &} for i € {1,2,--- ,m} and
a; € A fori € {1,2,--- ,m}. Choose r = {ro}aca € (0,00)" and t € (to, 1]
with
B(Gf_lon,T) CU and rq — d)a(ra) = Ma[w(t) - w(t())]
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Notice for every o € A that

disto(GfNxo), Hf H(zo,t) < disto(Gf Hxo), Hf (z0,t0))
—|—Da(Hf_1(ZL‘0,t0),Hf_l(l‘o,t))

< SMAY() — Y(to)]
- %(Ta — Pa(ra)) <Ta — ¢a(ra).

Now Theorem 5.1 guarantees that H; f~! and G f~! have a coincidence point
x € B(Gf~lzg,r). Note x € U and Gf~(z) € U (from (i)), so z € fG~1(U).
Hence (t,z) € @ and from (ii), we have

da(G [ (20), Gf(2)) < da(Gf ™ (20), 2)
<rq < My[th(t) — (to)] and tg < ¢

for every a € A. Therefore, (tg, o) < (¢,2). This contradicts the maximality
of (to,zg). As a result, tg = 1 and so we are finished. O

Our final result was motivated by a result in [17].

Theorem 5.7. Let Y be an arbitrary space, E be a complete gauge space,
f:Y — E be a bijection map, x9 € E, r = {ro}aca € (0,00)" with F :
fYB(Gf 1z, r)UfGH(B(Gxo,7))) — CD(E) and G :Y — E compatible
maps on B(Gf~1xzg,r) and FG™Y(B(Gf 1xo,7)) C Gf~Y(E). Suppose f~1
and G are continuous and for each o € A, there exists a continuous monotone
increasing function ¢, : [0,00) — [0,00) satisfying ¢a(z) < z for z > 0. Also
assume there exists functions 3 : A — A and v : A — A such that for each
a €A and z,y € B(Gf1zo,7) U fG Y B(Gf tz0,7)) we have

Do(Ff™'2, Ff'y) < dpa) (dyo) (GF 1, G 1y)). (5.16)
Further suppose the following conditions hold:
for each o € A we have disto(Gf twg, Ff tag) < 74 — bp(a)(Ta)  (5.17)
and
for every x € fG™H(B(Gf Yxo,7)) and every € = {€aYaen € (0,00)*
there exists y € Fa with do(Gf~ x,y) < disto(Gfta, Ff12) + e,

for every a € A.
(5.18)
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Finally assume for each oo € A that
> BP0 F86m1(@) (@) = Doty (@) (T @) (5.19)
n=1

< Pp(a)(Ta)-
Then there exists * € B(Gf~lxzo,r) with Gf 'z € Ff~'z and Ff~! and
Gf~' have a common fived point Gf 'z provided Gf'Gf 'z = Gf 'z
and Gf 'z € B(Gflxg,r) U fG Y B(Gf twg,r)). Moreover, there exists
a unique y € f1 (B(Gf*1$o,r)) with fy=Gy € Fy.
Proof. From (5.17) and (5.18), we may choose z € F f~!zg with
do(Gf g, 2) < 1o — Pp(a)(ra) for every a € A.

Since Gf~tzy € B(Gf two,r) and FG™Y(B(Gf1xg,r)) € Gf1(FE) and so
Ff=l(z0) C Gf~YE), we have z € Gf1(E). Therefore, there exists 71 € F
with 2 = Gf~lz1. As a result, we have

Gf lz e Fftag

and
d(Gf ey, Gf o) < 1o — Pp(a)(ra) for every a € A. (5.20)

Notice Gf ~'xy € B(Gf'xg,7). Now for a € A, choose ¢, > 0 with
D) (o) (Gf 0, GF ' 21)) + €0 < Dp(a) (Ty(a) — Pa(r(a)) (Ty(@))  (5:21)

(this is possible from (5.20) and the fact that ¢, is monotone increasing).
From (5.18) we can choose y € F f~'x1 such that for every a € A, we have

do(Gf w1, y) < dista(Gf a1, Ff'21) + €a < Do(Ff 2o, Ff'a1) + €a.
Since Gf~txy € B(Gf twg,r) and FG~(B(Gf 1xg,7)) C Gf~H(E) we have
Ff e CGfY(E),

and so y € Gf~Y(E). Thus y = Gf 'z for some x5 € E. As a result,
do(Gfray, Gf L) disto(Gf ey, Ffte1) + eq

Do(Ff'mo, Ff'z1) + €a

D5(a) () (Gf a0, Gf ~121)) + €a

and this together with (5.21) gives for each o € A that

do(Gf 21, GF 1 22) < dga) (Tr(a) = Por(a) (Ty@)- (5.22)

VAN VAN VAN
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Notice for each oo € A

do(Gf 122, Gf  ay)

IN

do(G [ a0, Gf ) + do(Gf G f ~lag)
< [ra = dp) (Ta)] + p(a) (Ty(a)

~08(+()) (T(e)))
< [ra— P8 (ra)] + ¢ﬁ(a)(ra) =Ta

and so G'f~'zo € B(Gf'zp,r). Now fix o € A and choose d,, > 0 so that

$5(0) (dy(@) (GF ™21, G 7)) + B < Bp(a)D5(3(0)) (Ty2(0) — PB(12(0)) (T2(a))):

(5.23)
Again from (5.18) we can choose z € F f~'xy such that for every a € A, we
have

do(Gf ™ w9, 2) < disto(Gf 'wo, Ff ' a2) + 00 < Da(Ff a1, Ff ' 22) + ba.

Since Gf~twy € B(Gf twg,r) and FG™H(B(Gf txg,r)) C Gf~H(E) we have
Ff 'z CGfY(E),

and so z € Gf~Y(E). Thus z = G f~'as for some z3 € E. Consequently,

do(Gf rwg, Gfa3) disto(Gf tag, Fftas) + 64

Do(Ff~ oy, Ff ag) + 6a
D(a) () (Gf a1, Gf 1)) + 6o

ININ A

and this together with (5.23) yields for each a € A that

do(G ™ w2, Gf 7 13) < d(0) Bp(r() (T2(0) = BB (P2(@)))- (5:24)

Notice Gf~'zz € B(Gf 'xg,r). Proceed inductively to obtain G'f 'z, €
Fflz, for n € {2,3,---} such that

da(Gf ™ on, GF ™ ns1) < Bpa) (o)) B30 () (Pyn(a)

(5.25)
— 9817 (a)) (T4n(a)))
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for each a € A. Notice Gf 'z, 1 € B(Gf lzg,r) for each n € {2,3,---}
since for o € A we have

da(Gf_lxn+1a Gf_IJ:O)
< (G f Y20, Gf V1) + da(GF Yy, G Lirg) +
+ da(Gf_lxna Gf_lanrl)

<D b8 B8 BarE1 (@) (Tt (a) — Bt () (T (@)
k=1

+do(Gf w0, Gf )
< da(Gf_lev Gf_lxl) + ¢ﬁ(a) (Ta)
< [TO& - ¢,8(a) (T(l)] + ¢ﬁ(a) (Ta)
= Tq.

Also for each v € A and n,p € {0,1,- -}, we have

da(Gf nip, GF 'an) <Y Bp(e) Do) Poh— (a)) Pk () —

P(8(v*(@)) (Tyk(a)))-

This together with (5.19) guarantees that {Gf~'x,} is a Cauchy sequence with

respect to d,. Consequently, there exists € B(Gf~1xg,r) with Gf~lz, —
x. Now since Gf 'z, € Ff~lz, for n € {1,2,---}, we have from the
continuity of f~! and G and f-hybrid compatibility of F' and G that

Jim_ disto(Gftz, Ff1Gfta,) =0
for each & € A. Now fix o € A. Then
disto(Gf e, Fflz) < dzsta(Gf z, Ff1Gfe,)
D (FfrGf  a,, Ffta)
< dzst (Gz, FGxy) +
D5(0) () (GF TG an, Gf ).

Taking the limit as n — oo, we obtain disty(Ff 'z, Gf1x) = 0 for each
o € A. Thus

Gf e e Ff-lxa =Ff 'z
As in Theorem 4.1 it can be seen that Ff~! and Gf~! have a common
fixed point provided Gf 'z = Gf'Gf~'x and Gf 'z € B(Gflwg,r) U
fG Y B(Gf txg,r)). Further, let f~'x = y then since f is a surjective map
we have a unique y € f~! (B(Gf_lxo,r)> with fy = Gy € Fy. O
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Corollary 5.8. Let E be a complete gauge space, g € E, 1 = {ro}taca €
(0,00)» with F : (B(Gxg,r) UG (B(Gxo,7))) — CD(E) and G : E — E
compatible maps on B(Gzo,r) and FG~1(B(Gxo,r)) C G(E). Suppose G is
continuous and for each o € A, there exists a continuous strictly increasing
function ¢ : [0,00) — [0,00) satisfying ¢a(z) < z for z > 0. Also assume
there exists functions B: A — A and v : A — A such that for each o € A and
z,y € B(Gzo,7) UG Y(B(Gzo,7)) we have

Do(Fz, Fy) < ¢g(a)(dy(a) (G, Gy)).
Further suppose the following conditions hold:
for each a € A we have dist,(Gro, F2o) < 1o — ¢g(a)(Ta)

and

for every x € G (B(Gxg,r)) and every € = {€a}aen € (0,00)*
there exists y € Fo with do(Gz,y) < disto(Gz, F'x) + €4
for every a € A.

Finally assume for each o € A that
Y B Dsra)) DB a)) (Pyn(a) = Datrn(@)) (Tn(a)) < D) (ra)-
n=1

Then there ezists x € B(Gxg,r) with Gz € Fxz. Moreover, F and G
have a common fixed point Gz provided GGz = Gz and Gx € B(Gxzg,r) U
G~ YB(Gzo,7)).
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