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Abstract. Common fixed point, coincidence point, and homotopy results are presented

for single-valued as well as multivalued f -hybrid compatible generalized φ-contractive maps

defined on complete metric spaces and more general spaces called complete gauge spaces (i.e

complete uniform spaces). Existence results of coincidence point for single-valued as well as

multivalued f -hybrid compatible generalized φ-contractive maps are discussed in arbitrary

spaces.

1. Introduction

In 1986, Jungck [15] introduced the notion of compatible maps. This notion
was extended to multivalued maps independently by Beg and Azam [5], Cho
et al. [8], and Kaneko and Sessa [16]. It is worth noting that the class of
compatible maps contains the class of commuting maps. It also includes other
classes of non-commuting (weakly commuting etc.) maps (see [8, 15]). This
paper present new common fixed point theorems, coincidence point theorems,
and homotopy results for f -hybrid compatible single-valued and multivalued
generalized contractive maps defined on complete gauge spaces.
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The results here extend, improve and complement well known results in the
literature (see [1-4, 6, 7, 9, 12-15, 17-21]). In section 2, we present coincidence
point and homotopy results for f -hybrid compatible single-valued maps on a
complete metric space and, in section 3, we discuss fixed point theory for f -
hybrid compatible maps in gauge spaces. The results of section 2 are extended
to multivalued compatible maps in section 4 and finally, in section 5, we study
the analogue of these results in the setting of gauge spaces.

2. Coincidence points for single valued f-hybrid compatible maps
in arbitrary spaces

In this section, we present some local and global coincidence point results
for f -hybrid compatible maps. We also establish a homotopy result for a
pair of f -hybrid compatible maps. Let Y be an arbitrary space, (X, d) be a
complete metric space , f : Y → X be a bijection map, and G : Y → X be a
mapping. If x0 ∈ X and r > 0 , we let

B(Gf−1x0, r) = {x ∈ X : d(x,Gf−1x0) < r} ,

B(x0, r) = {x ∈ X : d(x, x0) < r}
and

fG−1(B(Gf−1x0, r)) = {x ∈ X : fG−1x ∈ B(Gf−1x0, r)} .

Let F : f−1
(
B(Gf−1x0, r)∪G−1(B(Gf−1x0, r))

)
→ X be a mapping with

FG−1(B(Gf−1x0, r)) ⊆ Gf−1(X).

Then F and G are said to be f -hybrid compatible on B(Gf−1x0, r) if

lim
n→∞ d(Ff−1Gf−1xn, Gf−1Ff−1xn) = 0,

whenever {xn} is a sequence in fG−1(B(Gf−1x0, r)) such that

lim
n→∞Ff−1xn = lim

n→∞Gf−1xn = t

for some t ∈ B(Gf−1x0, r).

Remark 2.1. If F and G are f -hybrid compatible and Ff−1x = Gf−1x for
some x ∈ fG−1(B(Gf−1x0, r)), then

Ff−1Gf−1x = Gf−1Ff−1x

(i.e. Ff−1 and Gf−1 commute at coincidence point). This is immediate if we
set xn = x for each n. Furthermore, if Y = X and f is the identity map on
X then our definition of f -hybrid compatibility of maps F and G reduces to
compatibility of maps F and G defined by O’Reagan et al. [18].
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Theorem 2.1. Let Y be an arbitrary space, (X, d) be a complete metric space,
f : Y → X be a bijection map, x0 ∈ X , r > 0 with F : f−1

(
B(Gf−1x0, r))∪

G−1(B(Gf−1x0, r))
)
→ X and G : Y → X be f-hybrid compatible maps on

B(Gf−1x0, r) and

FG−1(B(Gf−1x0, r)) ⊆ Gf−1(X).

Suppose f−1 and G are continuous and there exists a continuous, nondecreas-
ing function φ : [0,∞) → [0,∞) satisfying φ(z) < z for z > 0 such that for
x, y ∈ B(Gf−1x0, r) ∪ fG−1(B(Gf−1x0, r)) we have

d(Ff−1x, Ff−1y) ≤ φ(M(x, y; f−1)), (2.1)

where

M(x, y; f−1) = max{d(Gf−1x,Gf−1y), d(Gf−1x, Ff−1x), d(Gf−1y, Ff−1y),
1
2
[d(Gf−1x, Ff−1y) + d(Gf−1y, Ff−1x)]}.

Also suppose
d(Gf−1x0, Ff−1x0) < r − φ(r). (2.2)

Then there exists a unique x ∈ B(Gf−1x0, r) with x = Ff−1x = Gf−1x .
Moreover, there exists a unique y ∈ f−1

(
B(Gf−1x0, r)

)
with fy = Fy = Gy .

Proof. Let Gf−1x1 = Ff−1x0 for some x1 ∈ X (This is possible since
Gf−1x0 ∈ B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(X)). Then, by
(2.2),

d(Gf−1x1, Gf−1x0) < r

and so
Gf−1x1 ∈ B(Gf−1x0, r).

Now let Gf−1x2 = Ff−1x1 (This is possible since Gf−1x1 ∈ B(Gf−1x0, r)
and FG−1 (B(Gf−1x0, r)) ⊆ Gf−1(X)). For n ∈ {3, 4, · · · }, we let

Gf−1xn = Ff−1xn−1.

This is possible if we show Gf−1xn−1 ∈ B(Gf−1x0, r) since FG−1(B(Gf−1x0,
r)) ⊆ Gf−1(X). To show the above we will in fact establish more i.e., we now
show 




d(Gf−1xn, Gf−1xn+1) ≤ φ(d(Gf−1xn−1, Gf−1xn))
for n ∈ {1, 2, · · · }

and Gf−1xi ∈ B(Gf−1x0, r) for i ∈ {0, · · · , n}.
(2.3)
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Notice

d(Gf−1x1, Gf−1x2) = d(Ff−1x0, Ff−1x1)
≤ φ(M(x0, x1; f−1))
= φ(max{d(Gf−1x0, Gf−1x1), d(Gf−1x1, Gf−1x2),

1
2
d(Gf−1x0, Gf−1x2)})

≤ φ(max{d(Gf−1x0, Gf−1x1), d(Gf−1x1, Gf−1x2),
1
2
[d(Gf−1x0, Gf−1x1) + d(Gf−1x1, Gf−1x2)]}))

= φ(max{d(Gf−1x0, Gf−1x1), d(Gf−1x1, Gf−1x2)})
≤ φ(d(Gf−1x0, Gf−1x1)).

Also from (2.2), we have

d(Gf−1x0, Gf−1x2) ≤ d(Gf−1x0, Gf−1x1) + d(Gf−1x1, Gf−1x2)
≤ d(Gf−1x0, Gf−1x1) + φ(d(Gf−1x0, Gf−1x1))
< [r − φ(r)] + φ(r)
= r,

so
Gf−1x2 ∈ B(Gf−1x0, r).

Essentially the same argument as above yields

d(Gf−1x2, Gf−1x3) = d(Ff−1x1, Ff−1x2)

≤ φ(d(Gf−1x1, Gf−1x2)).

Now suppose there exists k ∈ {2, 3, · · · } with

d(Gf−1xm, Gf−1xm+1) ≤ φ(d(Gf−1xm−1, Gf−1xm))

and
Gf−1xm ∈ B(Gf−1x0, r)

for m ∈ {1, 2, · · · , k}. We first show

Gf−1xk+1 ∈ B(Gf−1x0, r).

In the proof we will use the inequality

d(Gf−1xk, Gf−1x1) ≤ φ(r).

If k = 2 this is obvious, from

d(Gf−1x2, Gf−1x1) ≤ φ(d(Gf−1x1, Gf−1x0)) ≤ φ(r).
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Next consider k = 3. Then

d(Gf−1x3, Gf−1x1) = d(Ff−1x2, Ff−1x0)
≤ φ(max{d(Gf−1x2, Gf−1x0), d(Gf−1x0, Gf−1x1),

d(Gf−1x2, Gf−1x3),
1
2
[d(Gf−1x3, Gf−1x0)

+d(Gf−1x2, Gf−1x1)]})
≤ φ(max{d(Gf−1x2, Gf−1x0), d(Gf−1x0, Gf−1x1),

φ2(d(Gf−1x1, Gf−1x0)),
1
2
[d(Gf−1x3, Gf−1x0)

+d(Gf−1x2, Gf−1x1)]})
≤ φ(max{r, r, φ2(r),

1
2
[r + φ(r)]})

since Gf−1x2, Gf−1x3 ∈ B(Gf−1x0, r) and

d(Gf−1x3, Gf−1x2) ≤ φ2(d(Gf−1x1, Gf−1x0)).

Since φ2(r) ≤ r and r + φ(r) ≤ 2r,
we have

d(Gf−1x3, Gf−1x1) ≤ φ(r).

If k = 4, then

d(Gf−1x4, Gf−1x1) = d(Ff−1x3, Ff−1x0)
≤ φ(max{d(Gf−1x3, Gf−1x0), d(Gf−1x0, Gf−1x1),

d(Gf−1x3, Gf−1x4),
1
2
[d(Gf−1x4, Gf−1x0)

+d(Gf−1x3, Gf−1x1)]})
≤ φ(max{r, r, φ3(r),

1
2
[r + φ(r)]})

since Gf−1x3, Gf−1x4 ∈ B(Gf−1x0, r). Thus

d(Gf−1x4, Gf−1x1) ≤ φ(r).

Continuing this process, we obtain for k ∈ {5, 6, · · · },

d(Gf−1xk, Gf−1x1) ≤ φ(r).
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To show Gf−1xk+1 ∈ B(Gf−1x0, r), notice

d(Gf−1x0, Gf−1xk+1)
≤ d(Gf−1x0, Gf−1x1) + d(Ff−1x0, Ff−1xk)
≤ d(Gf−1x0, Gf−1x1) + φ(M(x0, xk; f−1)
= d(Gf−1x0, Gf−1x1) + φ(max{d(Gf−1x0, Gf−1xk),

d(Gf−1x0, Gf−1x1), d(Gf−1xk, Gf−1xk+1),
1
2
[d(Gf−1x0, Gf−1xk+1) + d(Gf−1xk, Gf−1x1)]})

≤ d(Gf−1x0, Gf−1x1) + φ(max{r, r, φk(d(Gf−1x0, Gf−1x1)),
1
2
[d(Gf−1x0, Gf−1xk+1) + d(Gf−1xk, Gf−1x1)]})

since Gf−1xm ∈ B(Gf−1x0, r) for m ∈ {1, · · · , k}. Since

φk(d(Gf−1x0, Gf−1x1)) ≤ φk(r) ≤ r,

it follows that
d(Gf−1x0, Gf−1xk+1) ≤ d(Gf−1x0, Gf−1x1)

+ φ(max{r, 1
2
[d(Gf−1x0, Gf−1xk+1) + φ(r))]}).

Let τk = max{r, 1
2 [d(Gf−1x0, Gf−1xk+1)+φ(r)]}. If τk = r, then the preceed-

ing inequality gives

d(Gf−1x0, Gf−1xk+1) ≤ d(Gf−1x0, Gf−1x1) + φ(r)

< [r − φ(r)] + φ(r) = r.

Thus, we have
Gf−1xk+1 ∈ B(Gf−1x0, r).

On the other hand, if τk = 1
2 [d(Gf−1x0, Gf−1xk+1) + φ(r)], then

d(Gf−1x0, Gf−1xk+1) ≤ d(Gf−1x0, Gf−1x1)

+ φ(
1
2
[d(Gf−1x0, Gf−1xk+1) + φ(r)])

and so
d(Gf−1x0, Gf−1xk+1) < d(Gf−1x0, Gf−1x1)

+
1
2
[d(Gf−1x0, Gf−1xk+1) + φ(r)].

This implies that
1
2
d(Gf−1x0, Gf−1xk+1) < d(Gf−1x0, Gf−1x1) +

1
2
φ(r).
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As a result

τk =
1
2
[d(Gf−1x0, Gf−1xk+1) + φ(r)]

< d(Gf−1x0, Gf−1x1) + φ(r)

< [r − φ(r)] + φ(r)
= r,

which contradicts the definition of τk. Consequently, we have

Gf−1xk+1 ∈ B(Gf−1x0, r).

Also

d(Gf−1xk+1, Gf−1xk+2)

= d(Ff−1xk, Ff−1xk+1)

≤ φ(M(xk, xk+1; f−1)

= φ(max{d(Gf−1xk, Gf−1xk+1), d(Gf−1xk+1, Gf−1xk+2),
1
2
d(Gf−1xk, Gf−1xk+2)})

≤ φ(max{d(Gf−1xk, Gf−1xk+1), d(Gf−1xk+1, Gf−1xk+2),
1
2
[d(Gf−1xk, Gf−1xk+1) + d(Gf−1xk+1, Gf−1xk+2)]}))

= φ(max{d(Gf−1xk, Gf−1xk+1), d(Gf−1xk+1, Gf−1xk+2)})
≤ φ(d(Gf−1xk, Gf−1xk+1)).

Thus, by induction Gf−1xn ∈ B(Gf−1x0, r) for n ∈ {0, 1, 2, · · · } and

d(Gf−1xn, Gf−1xn+1) ≤ φ(d(Gf−1xn−1, Gf−1xn)) (2.4)

for n ∈ {1, 2, · · · }. This implies that

d(Gf−1xn, Gf−1xn+1) ≤ φn(d(Gf−1x0, Gf−1x1))

for n ∈ {1, 2, · · · }. We now claim

{Gf−1xn} is a Cauchy sequence. (2.5)

Suppose not. Then we can find a δ > 0 and two sequences of integers {m(k)},
{n(k)}, m(k) > n(k) ≥ k with

rk = d(Gf−1xn(k), Gf−1xm(k)) ≥ δ (2.6)

for k ∈ {1, 2, · · · }. Choose m(k) to be the smallest number exceeding n(k) for
which (2.6) holds. Then we may assume

d(Gf−1xm(k)−1, Gf−1xn(k)) < δ. (2.7)
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In view of (2.4), (2.6) and (2.7), we have
δ ≤ rk

≤ d(Gf−1xm(k), Gf−1xm(k)−1) + d(Gf−1xm(k)−1, Gf−1xn(k))

≤ φm(k)−1(d(Gf−1x1, Gf−1x0)) + δ.

Therefore,
lim

n→∞ rk = δ

(Note limn→∞ φn(a) = 0 for any a > 0 since if we take a > 0 and an = φn(a),
then an = φ(an−1) ≤ an−1. Thus an ↓ c (say). Since c = φ(c), we have c = 0).
From (2.4) we have

δ ≤ rk

≤ d(Gf−1xn(k), Gf−1xn(k)+1) + d(Gf−1xm(k)+1, Gf−1xm(k))

+d(Gf−1xn(k)+1, Gf−1xm(k)+1)

≤ φn(k)(d(Gf−1x0, Gf−1x1))

+φm(k)(d(Gf−1x0, Gf−1x1)) + d(Ff−1xn(k), Ff−1xm(k)).

Notice
d(Ff−1xn(k), Ff−1xm(k))

≤ φ(max{d(Gf−1xn(k), Gf−1xm(k)), d(Gf−1xn(k), Gf−1xn(k)+1),

d(Gf−1xm(k), Gf−1xm(k)+1),
1
2
[d(Gf−1xn(k), Gf−1xm(k)+1)

+ d(Gf−1xm(k), Gf−1xn(k)+1)]})
≤ φ(max{rk, φ

n(k)(d(Gf−1x0, Gf−1x1)), φm(k)(d(Gf−1x0, Gf−1x1)),
1
2
[2rk + d(Gf−1xn(k), Gf−1xn(k)+1) + d(Gf−1xm(k), Gf−1xm(k)+1)]})

≤ φ(max{rk, φ
n(k)(d(Gf−1x0, Gf−1x1)), φm(k)(d(Gf−1x0, Gf−1x1)),

rk +
1
2
[φn(k)(d(Gf−1x0, Gf−1x1)) + φm(k)d(Gf−1x0, Gf−1x1)]})

≤ φ(rk + φn(k)(d(Gf−1x0, Gf−1x1)) + φm(k)(d(Gf−1x0, Gf−1x1))).

Therefore,
δ ≤ rk

≤ φn(k)(d(Gf−1x0, Gf−1x1)) + φm(k)(d(Gf−1x0, Gf−1x1))

φ(rk + φn(k)(d(Gf−1x0, Gf−1x1)) + φm(k)(d(Gf−1x0, Gf−1x1))).

Taking the limit as k → ∞ yields δ ≤ φ(δ) since limk→∞ rk = δ and limn→∞
φn(a) = 0 for any a > 0. This is a contradiction. Hence {Gf−1xn} is a
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Cauchy sequence and (2.5) holds. Since (X, d) is complete, there exists x ∈
B(Gf−1x0, r) with Gf−1xn −→ x as n →∞. Also Ff−1xn = Gf−1xn+1 −→
x as n → ∞. Since limn Ff−1xn = x = limn Gf−1xn and Ff−1xn =
Gf−1xn+1 ∈ B(Gf−1x0, r) for n ∈ {1, 2, · · · }, the continuity of f−1 and G
and f -hybrid compatibility of F and G imply that

lim
n→∞ d(Ff−1Gf−1xn, Gf−1x) = lim

n→∞ d(Ff−1Gf−1xn, Gf−1Ff−1xn) = 0

since

d(Ff−1Gf−1xn, Gf−1x) ≤ d(Ff−1Gf−1xn, Gf−1Ff−1xn)

+ d(Gf−1Ff−1xn, Gf−1x).

Thus Ff−1Gf−1xn → Gf−1x as n →∞. Now Ff−1x = Gf−1x since

d(Ff−1x,Gf−1x)

≤ d(Ff−1x, Ff−1Gf−1xn) + d(Ff−1Gf−1xn, Gf−1x)

≤ φ(max{d(Gf−1x,Gf−1Gf−1xn), d(Gf−1x, Ff−1x),

d(Gf−1Gf−1xn, Ff−1Gf−1xn),
1
2
[d(Gf−1x, Ff−1Gf−1xn)

+ d(Gf−1Gf−1xn, Ff−1x)]}) + d(Ff−1Gf−1xn, Gf−1x).

Taking the limit as n → ∞, we have (from above we know Ff−1Gf−1xn →
Gf−1x and Gf−1xn → x)

d(Ff−1x,Gf−1x) ≤ φ(max{0, d(Gf−1x, Ff−1x), 0,
1
2
d(Gf−1x, Ff−1x)})

= φ(d(Gf−1x, Ff−1x)).

We claim that x = Gf−1x. Suppose that d(x,Gf−1x) = s for some s > 0.
Since

d(Ff−1xn, Ff−1Gf−1xn)

≤ φ(max{d(Gf−1xn, Gf−1Gf−1xn),

d(Gf−1xn, Ff−1xn), d(Gf−1Gf−1xn, Ff−1Gf−1xn),
1
2
[d(Gf−1xn, Ff−1Gf−1xn) + d(Gf−1Gf−1xn, Ff−1xn)]}),

which on letting n →∞ gives (recall from above that Ff−1Gf−1xn → Gf−1x
and Ff−1xn → x)

s = d(x,Gf−1x) ≤ φ(max{d(x,Gf−1x), 0, 0,
1
2
[d(x, Gf−1x) + d(Gf−1x, x)]})

= φ(d(x,Gf−1x)) = φ(s) < s,



96 H. K. Pathak, M. S. Khan and J. K. Kim

a contradiction. Hence x = Gf−1x = Ff−1x. Uniqueness of common fixed
point of Gf−1 and Ff−1 follows easily from (2.1). Indeed, if x′ = Gx′ = Fx′
with x 6= x′, then

d(x, x′) = d(Ff−1x, Ff−1y) ≤ φ(M(x, x′; f−1))

= φ(max{d(x, x′), 0, 0,
1
2
[d(x, x′) + d(x′, x)]}) = φ(d(x, x′)),

which gives a contradiction. Further, let f−1x = y then since f is a surjective
map we have a unique y ∈ f−1

(
B(Gf−1x0, r)

)
with fy = Fy = Gy. ¤

If Y = X and f is the identity map on X then our theorem 2.1 reduces to
the following result of O’Regan et al. [18, Theorem 2.1].

Corollary 2.2. Let (X, d) be a complete metric space, x0 ∈ X , r > 0
with F : B(Gx0, r)) ∪G−1(B(Gx0, r))

)
→ X and G : X → X be compatible

maps on B(Gx0, r) and FG−1(B(Gx0, r)) ⊆ G(X). Suppose G is continuous
and there exists a continuous, nondecreasing function φ : [0,∞) → [0,∞)
satisfying φ(z) < z for z > 0 such that for x, y ∈ B(Gx0, r)∪G−1(B(Gx0, r))
we have

d(Fx, Fy) ≤ φ(M(x, y)),
where

M(x, y) = max{d(Gx,Gy), d(Gx,Fx), d(Gy, Fy),
1
2
[d(Gx,Fy) + d(Gy, Fx)]}.

Also suppose
d(Gx0, Fx0) < r − φ(r).

Then there exists a unique x ∈ B(Gx0, r)
)

with x = Fx = Gx .

Corollary 2.3. Let Y be an arbitrary space, (X, d) be a complete met-
ric space, f : Y → X be a bijection map, x0 ∈ X , r > 0 and F :
f−1

(
B(x0, r)

)
→ X . Suppose f−1 is continuous and there exists a continu-

ous, nondecreasing function φ : [0,∞) → [0,∞) satisfying φ(z) < z for z > 0
such that for x, y ∈ B(x0, r) we have

d(Ff−1x, Ff−1y) ≤ φ(M(x, y; f−1)),

where

M(x, y; f−1) = max{d(f−1x, f−1y), d(f−1x, Ff−1x), d(f−1y, Ff−1y),

1
2
[d(f−1x, Ff−1y) + d(f−1y, Ff−1x)]}.
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Also suppose
d(f−1x0, Ff−1x0) < r − φ(r).

Then there exists a unique y ∈ f−1
(
B(x0, r)

)
with fy = Fy .

If Y = X and f is the identity map on X then our corollary 2.3 reduces to
the following result of O’Regan et al. [18, Corollary 2.2].

Corollary 2.4. Let (X, d) be a complete metric space, x0 ∈ X , r > 0 and
F : B(x0, r) → X . Suppose there exists a continuous, nondecreasing function
φ : [0,∞) → [0,∞) satisfying φ(z) < z for z > 0 such that for x, y ∈ B(x0, r)
we have

d(Fx, Fy) ≤ φ(M(x, y)),

where

M(x, y) = max{d(x, y), d(x, Fx), d(y, Fy),
1
2
[d(x, Fy) + d(y, Fx)]}.

Also suppose
d(x0, Fx0) < r − φ(r).

Then there exists a unique x ∈ B(x0, r) with x = Fx .

We now state the global result corresponding to Theorem 2.1.

Theorem 2.5. Let Y be an arbitrary space, (X, d) be a complete metric
space, f : Y → X be a bijection map,F : Y → X and G : Y → X be f-
hybrid compatible maps and Ff−1(X) ⊆ Gf−1(X). Suppose f−1 and G are
continuous and there exists a continuous, nondecreasing function φ : [0,∞) →
[0,∞) satisfying φ(z) < z for z > 0 such that for x, y ∈ X we have

d(Ff−1x, Ff−1y) ≤ φ(M(x, y; f−1)),

where

M(x, y; f−1) = max{d(Gf−1x,Gf−1y), d(Gf−1x, Ff−1x), d(Gf−1y, Ff−1y),

1
2
[d(Gf−1x, Ff−1y) + d(Gf−1y, Ff−1x)]}.

Then there exists a unique y ∈ f−1
(
B(Gf−1x0, r)

)
with fy = Fy = Gy .

If Y = X and f is the identity map on X then our Theorem 2.5 reduces to
the following result of O’Regan et al. [18, Theorem 2.3].

Corollary 2.6. Let (X, d) be a complete metric space with F : X → X and
G : X → X compatible maps and F (X) ⊆ G(X). Suppose G is continuous
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and there exists a continuous, nondecreasing function φ : [0,∞) → [0,∞)
satisfying φ(z) < z for z > 0 such that for x, y ∈ X we have

d(Fx, Fy) ≤ φ(M(x, y)),

where

M(x, y) = max{d(Gx,Gy), d(Gx,Fx), d(Gy, Fy),
1
2
[d(Gx,Fy) + d(Gy, Fx)]}.

Then there exists a unique x ∈ X with x = Fx = Gx .

Next we present a homotopy result for f -hybrid compatible maps.

Theorem 2.7. Let Y be an arbitrary space, (X, d) be a complete metric
space, f : Y → X be a bijection map, and U an open subset of X with H :
(f−1(U) ∪G−1(U))× [0, 1] → X and G : Y → X and for each λ ∈ [0, 1], Hλ

and G are f-hybrid compatible on U , and Hλ(G−1(U)) ⊆ Gf−1(X). Assume
the following conditions hold:

(i) for λ ∈ [0, 1], f(y) = G(y) = H(y, λ) cannot occur for y ∈ f−1(∂(U))
(where ∂(U) denotes the boundary of U in X);

(ii) f−1 and G are continuous;
(iii) there exists a continuous, nondecreasing function φ : [0,∞) → [0,∞)

satisfying φ(z) < z for z > 0 such that for all λ ∈ [0, 1] and x, y ∈
U ∪ fG−1(U) we have

d(Hf−1(x, λ),Hf−1(y, λ)) ≤ φ(M(x, y, λ; f−1),

where
M(x, y, λ; f−1) = max{d(Gf−1(x), Gf−1(y)), d(Gf−1(x),H(f−1x, λ)),

d(Gf−1(y), H(f−1y, λ)),
1
2
[d(Gf−1(x),H(f−1y, λ))

+ d(Gf−1(y), H(f−1x, λ))]};
(iv) H(f−1x, λ) is continuous in λ uniformly for x ∈ U ;
(v) φ(a + b) ≤ φ(a) + φ(b) for a ≥ 0, b ≥ 0;
(vi) H(f−1(U)× [0, 1]) is bounded.

In addition assume H0f
−1 and Gf−1 have a coincident point (i.e. there exists

x ∈ U ∪ fG−1(U) with H0f
−1(x) = Gf−1(x))). Then for each λ ∈ [0, 1], we

have that f , Hλ and G have a unique coincidence point yλ ∈ G−1(U) (here
Hλf−1(·) = Hf−1(·, λ)). Moreover, for each λ ∈ [0, 1], Hλf−1 and Gf−1

have a unique common fixed point xλ ∈ fG−1(U) (i.e. xλ = Hf−1(xλ, λ) =
Gf−1(xλ)).

Remark 2.2. In Theorem 2.7, we assume there exists x ∈ U ∪ fG−1(U) with

H0f
−1(x) = Gf−1(x).
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In fact H0f
−1 and Gf−1 have a common fixed point Gf−1(x). To see this,

notice

Gf−1(Gf−1(x)) = Gf−1(H0f
−1(x)) = H0f

−1(Gf−1(x)) = Hf−1(Gf−1(x), 0)

(since H0f
−1 and Gf−1 commute at the coincidence point x). Now

d(Gf−1(x), Gf−1(Gf−1(x)))

= d(Hf−1(x, 0),Hf−1(Gf−1(x), 0))

≤ φ(max{d(Gf−1(x), Gf−1(Gf−1(x))), d(Gf−1(x),Hf−1(x, 0)),

d(Gf−1(Gf−1(x)),Hf−1(Gf−1(x), 0)),
1
2
[d(Gf−1(x), Hf−1(Gf−1(x), 0))

+ d(Gf−1(Gf−1(x)),Hf−1(x, 0))]})
≤ φ(max{d(Gf−1(x), Gf−1(Gf−1(x))), 0, 0,

1
2
[d(Gf−1(x), Gf−1(Gf−1(x))) + d(Gf−1(Gf−1(x)), Gf−1(x))]})

= φ(d(Gf−1(x), Gf−1(Gf−1(x))),

which gives Gf−1(x) = Gf−1(Gf−1(x))). Hence, we have

Gf−1(x) = Gf−1(Gf−1(x)) = H0f
−1(Gf−1(x)).

We also use the fact in the proof of Theorem 2.7 that a topological space X
is connected iff the only open and subsets of X are X and ∅.
Proof. First, we shall prove that for each λ ∈ [0, 1], Hλf−1 and Gf−1 have a
common fixed point xλ. To see this, let

A = {λ ∈ [0, 1] : Hf−1(x, λ) = Gf−1(x) for some x ∈ U ∪ fG−1(U)}.
Since H0f

−1 and Gf−1 have a coincidence point, 0 ∈ A and so A is nonempty.
We now show that A is both open and closed in [0, 1] and so by the connect-
edness of [0, 1], we have A = [0, 1].

First we show A is open in [0, 1]. Let λ0 ∈ A. Then there exists x0 ∈
fG−1(U) with

Hf−1(x0, λ0) = Gf−1(x0).
Then Gf−1x0 ∈ U and since U is open, there exists a ball B(Gf−1(x0), δ),
δ > 0, with

B(Gf−1(x0), δ) ⊆ U.

Now, by (iv), there exists η(δ) > 0 with

d(Gf−1(x0),Hf−1(x0, λ) = d(Hf−1(x0, λ0),Hf−1(x0, λ))

< δ − φ(δ)



100 H. K. Pathak, M. S. Khan and J. K. Kim

for λ ∈ [0, 1] and |λ−λ0| < η. Now (iii) with Theorem 2.1 (here r = δ, F = Hλ

and G = G) guarantees that there exists xλ ∈ B(Gf−1(x0), δ) ⊆ U with

xλ = Hλf−1(xλ) = Gf−1(xλ)

for λ ∈ [0, 1] and |λ − λ0| < η (note if yλ = f−1(xλ) ∈ f−1(U) then f(yλ) =
Hλ(yλ) = G(yλ) ∈ U and f(yλ) = G(yλ) implies yλ = f−1(xλ) ∈ G−1(U), i.e.,
xλ ∈ fG−1(U)). As a result A is open in [0, 1].

Next we show A is closed in [0, 1]. Let {λk} ⊆ A be such that λk → λ ∈ [0, 1]
as k →∞. Then for each k, there exists xk ∈ fG−1(U) with

Hf−1(xk, λk) = Gf−1(xk).

We claim {Gf−1(xk)} ⊂ U is a Cauchy sequence. Suppose not. Then we
can find a δ > 0 and two subsequences of integers {m(k)}, {n(k)} such that
m(k) > n(k) ≥ k with

rk = d(Gf−1(xn(k)), Gf−1(xm(k))) ≥ δ (2.8)

for k ∈ {1, 2, · · · }. Notice

δ ≤ rk ≤ d(Gf−1(xn(k)),Hf−1(xn(k), λ))

+d(Hf−1(xn(k), λ),Hf−1(xm(k)), λ))

+d(Hf−1(xm(k), λ), Gf−1(xm(k)))

≤ d(Hf−1(xn(k), λn(k)), Hf−1(xn(k), λ))

+d(Hf−1(xn(k), λ),Hf−1(xm(k), λ))

+d(Hf−1(xm(k), λ),Hf−1(xm(k), λm(k))).

Also
d(Hf−1(xn(k), λ),Hf−1(xm(k), λ))

≤ φ(max{d(Gf−1(xn(k)), Gf−1(xm(k))),

d(Gf−1(xn(k)),Hf−1(xn(k), λ)), d(Gf−1(xm(k)),Hf−1(xm(k), λ)),
1
2
[d(Gf−1(xn(k)),Hf−1(xm(k), λ)) + d(Gf−1(xm(k)),Hf−1(xn(k), λ))]})

≤ φ(max{d(Gf−1(xn(k)), Gf−1(xm(k))), d(Gf−1(xn(k)),Hf−1(xn(k), λ)),

d(Gf−1(xm(k)), Hf−1(xm(k), λ)), d(Gf−1(xn(k)), Gf−1(xm(k)))

+
1
2
[d(Gf−1(xm(k)),Hf−1(xm(k), λ)) + d(Gf−1(xn(k)),Hf−1(xn(k), λ))]})

≤ φ(max{rk, d(Gf−1(xn(k)), Hf−1(xn(k), λ)), d(Gf−1(xm(k), λ),

Hf−1(xm(k), λ)), rk +
1
2
[d(Gf−1(xm(k)),Hf−1(xm(k), λ)) + d(Gf−1(xn(k)),

Hf−1(xn(k), λ))]}).
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From (iv) we may find k large enough (i.e., k ≥ k0) such that

d(Hf−1(xn(k), λn(k)),Hf−1(xn(k), λ)) ≤ δ

and
d(Hf−1(xm(k), λm(k)),Hf−1(xm(k), λ)) ≤ δ.

Now for k ≥ k0, we have

δ ≤ rk ≤ d(Hf−1(xn(k), λn(k)),Hf−1(xn(k), λ))

+d(Hf−1(xm(k), λ),Hf−1(xm(k), λm(k)))

+φ(rk +
1
2
[d(Gf−1(xm(k)),Hf−1(xm(k), λ))

+d(Gf−1(xn(k)), Hf−1(xn(k), λ))]).

Therefore, for k ≥ k0, we have using (v) that

0 < Φ(rk) = rk − φ(rk) ≤ d(Hf−1(xn(k), λn(k)),Hf−1(xn(k), λ))

+d(Hf−1(xm(k), λ), Hf−1(xm(k), λm(k)))

+φ(
1
2
[d(Gf−1(xm(k)),Hf−1(xm(k), λ))

+d(Gf−1(xn(k)),Hf−1(xn(k), λ))]).

In view of (iv), we obtain

lim
k→∞

d(Gf−1xn(k)),Hf−1(xn(k), λ))

= lim
k→∞

d(Hf−1(xn(k), λ),Hf−1(xn(k), λn(k)))

= 0.

Similarly, we have

lim
k→∞

d(Gf−1(xm(k)),Hf−1(xm(k), λ))

= lim
k→∞

d(Hf−1(xm(k), λ),Hf−1(xm(k), λm(k)))

= 0.

Letting k →∞, we have
lim

n→∞Φ(rk) = 0. (2.9)

Now (vi) implies that there exists M > 0 with rk ≤ M for k ∈ {1, 2, · · · }.
Consequently, for k ∈ {1, 2, · · · } we obtain

Φ(rk) ≥ min
x∈[δ,M ]

Φ(x) = Φ(r0) for some r0 ∈ [δ,M ],
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which contradicts (2.9). Hence (2.8) holds. Since (X, d) is complete there
exists x ∈ U with d(Gf−1(xk), x) → 0 as k →∞. Now

d(x,Hλf−1(xk)) ≤ d(x, Gf−1(xk)) + d(Gf−1(xk),Hλf−1(xk))
= d(x, Gf−1(xk)) + d(Hf−1(xk, λk),Hf−1(xk, λ))

which on letting k →∞ yields limk→∞Hλf−1(xk) = x. Using the continuity
of G, f−1 and f -hybrid compatibility of Hλf−1 and Gf−1, we obtain

lim
k→∞

d(Hλf−1(Gf−1(xk)), Gf−1(x))

= lim
k→∞

d(Hλf−1(G(xk)), Gf−1(Hλf−1(xk)))

= 0

since
d(Hλf−1(Gf−1(xk)), Gf−1(x)) ≤ d(Hλf−1(Gf−1(xk)), Gf−1(Hλf−1(xk)))

+ d(Gf−1(Hλf−1(xk)), Gf−1(x)).

Thus Hλf−1(Gf−1(xk)) → Gf−1x as k →∞. Next we show

Hf−1(x, λ) = Gf−1(x).

Notice

d(Hf−1(x, λ), Gf−1(x)) ≤ d(Hf−1(x, λ),Hf−1(Gf−1(xk), λ))
+d(Hf−1(Gf−1(xk), λ), Gf−1(x))

≤ d(Hf−1(Gf−1(xk), λ), Gf−1(x))
+φ(max{d(Gf−1(x), Gf−1(Gf−1(xk))),
d(Gf−1(x),Hf−1(x, λ)),
d(Gf−1(Gf−1(xk)),Hf−1(Gf−1(xk), λ)),
1
2
[d(Gf−1(x),Hf−1(Gf−1(xk), λ))

+d(Gf−1(Gf−1(xk)),Hf−1(x, λ))]}).
Taking the limit as k → ∞ yields (here we use Hλf−1(Gf−1(xk)) → Gf−1x
and Gf−1xk → x)

d(Hf−1(x, λ), Gf−1(x)) ≤ φ(max{0, d(Gf−1(x),Hf−1(x, λ)), 0,

1
2
[d(Gf−1(x), Hf−1(x, λ))]})

= φ(d(Hf−1(x, λ), Gf−1(x))).

This implies that Hf−1(x, λ) = Gf−1(x) and so

Hf−1(x, λ) = Gf−1(x).
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We claim that x = Gf−1x. Suppose that d(x,Gf−1x) = s for some s > 0.
Since
d(Hf−1(xk, λ),Hf−1(Gf−1(xk), λ)) ≤ φ(max{d(Gf−1(xk), Gf−1(Gf−1(xk))),

d(Gf−1(xk),Hλf−1(xk)),

d(Gf−1(Gf−1(xk)),Hλf−1(Gf−1(xk))),
1
2
[d(Gf−1(xk),Hλf−1(Gf−1(xk)))

+ d(Gf−1(Gf−1(xk)),Hλf−1(xk))]}),
which on letting k → ∞ gives (recall from above that Hλf−1(Gf−1(xk)) →
Gf−1(x) and Hλf−1(xk) → x)

s = d(x,Gf−1x) ≤ φ(max{d(x,Gf−1x), 0, 0,

1
2
[d(x,Gf−1x) + d(Gf−1x, x)]})

= φ(d(x,Gf−1x)) = φ(s) < s,

a contradiction. Hence

x = Gf−1(x) = Hf−1(x, λ).

From (i), x ∈ U and so x = Gf−1(x) implies x ∈ fG−1(U). Consequently,
λ ∈ A. Hence A is closed in [0, 1]. Thus we can deduce that A = [0, 1] and so
for each λ ∈ [0, 1], Hλf−1 and Gf−1 have a common fixed point xλ ∈ fG−1(U)
(i.e. xλ = Hf−1(xλ, λ) = Gf−1(xλ)). Now fix λ ∈ [0, 1]. It remains to show
the uniqueness. If yλ = Gf−1(yλ) = Hλf−1(yλ) with xλ 6= x′λ, then

d(xλ, x′λ) = d(Hf−1(xλ, λ),Hf−1(x′λ, λ))

≤ φ(max{d(xλ, yλ), 0, 0,
1
2
[d(xλ, x′λ) + d(x′λ, xλ)]})

= φ(d(xλ, x′λ)),

which gives a contradiction. Further, let f−1xλ = yλ then since f is a surjective
map we have a unique yλ ∈ G−1(U) with fyλ = Hλyλ = Gyλ. ¤

If Y = X and f is the identity map on X then our Theorem 2.7 reduces to
the following result of O’Regan et al. [18, Theorem 2.4].

Corollary 2.8. Let (X, d) be a complete metric space and U an open subset
of X with H : (U ∪ G−1(U)) × [0, 1] → X and G : X → X and for each
λ ∈ [0, 1], Hλ and G are compatible on U , and Hλ(G−1(U)) ⊆ G(X). Assume
the following conditions hold:

(i) for λ ∈ [0, 1], x = G(x) = H(x, λ) cannot occur for x ∈ ∂U (the
boundary of U in X);
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(ii) G is continuous;
(iii) there exists a continuous, nondecreasing function φ : [0,∞) → [0,∞)

satisfying φ(z) < z for z > 0 such that for all λ ∈ [0, 1] and x, y ∈
U ∪G−1(U) we have

d(H(x, λ),H(y, λ)) ≤ φ(M(x, y, λ)),

where

M(x, y, λ) = max{d(G(x), G(y)), d(G(x),H(x, λ)),

d(G(y),H(y, λ)),
1
2
[d(G(x),H(y, λ)) + d(G(y),H(x, λ))]};

(iv) H(x, λ) is continuous in λ uniformly for x ∈ U ;
(v) φ(a + b) ≤ φ(a) + φ(b) for a ≥ 0, b ≥ 0;
(vi) H(U × [0, 1]) is bounded.

In addition assume H0 and G have a coincidence point (i.e. there exists x ∈
G−1(U) with H0(x) = G(x)). Then for each λ ∈ [0, 1], we have that Hλ and
G have a coincidence point xλ ∈ G−1(U) (here Hλ(·) = H(·, λ)). Moreover,
for each λ ∈ [0, 1], Hλ and G have a unique common fixed point G(xλ).

Corollary 2.9. Let (X, d) be a complete metric space with U an open subset
of X with H : U × [0, 1] → X . Assume the following conditions hold:

(i) x 6= H(x, λ) for x ∈ ∂U (the boundary of U in X) and λ ∈ [0, 1];
(ii) There exists a continuous, nondecreasing function φ : [0,∞) → [0,∞)

satisfying φ(z) < z for z > 0 such that for all λ ∈ [0, 1] and x, y ∈ U
we have

d(H(x, λ),H(y, λ)) ≤ φ(M(x, y, λ)),

where

M(x, y, λ) = max{d(x, y), d(x,H(x, λ)), d(y,H(y, λ)),
1
2
[d(x,H(y, λ)) + d(y, H(x, λ))]};

(iii) H(x, λ) is continuous in λ uniformly for x ∈ U ;
(iv) φ(a + b) ≤ φ(a) + φ(b) for a ≥ 0, b ≥ 0;
(v) H(U × [0, 1]) is bounded.

In addition assume H0 has a fixed point. Then for each λ ∈ [0, 1], we have
that Hλ has a fixed point xλ ∈ U (here Hλ(·) = H(·, λ)).
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3. Fixed point theory for single valued maps in gauge spaces

In this section, we present some local and global common fixed point results
for f -hybrid compatible maps. Let Y be an arbitrary space, E = (E, {dα}α∈Λ)
be a gauge space endowed with a complete gauge structure {dα : α ∈ Λ}; here
Λ is a directed set (see [11, pp. 198, 308]). Let f : Y → E be a bijection
map,G : Y → E. For r = {rα}α∈Λ ∈ (0,∞)Λ and x0 ∈ E, we define

B(Gf−1x0, r) = {y ∈ E : dα(Gf−1x0, y) < rα for all α ∈ Λ}
and

B(Gf−1x0, r) = {y ∈ E : dα(Gf−1x0, y) ≤ rα for all α ∈ Λ} .

Let F : f−1(B(Gf−1x0, r)) ∪G−1(B(Gf−1x0, r))) → E with

FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E).

Then F and G are called f -hybrid compatible on B(Gf−1 x0, r) if for each
α ∈ Λ,

lim
n→∞ dα(Ff−1Gf−1xn, Gf−1Ff−1xn) = 0

whenever {xn} is a sequence in fG−1(B(Gf−1x0, r)) such that for each α ∈ Λ,

lim
n→∞ dα(Ff−1xn, t) = lim

n→∞ dα(Gf−1xn, t) = 0

for some t ∈ B(Gf−1x0, r).

Remark 3.1. If F and G are f -hybrid compatible and Ff−1x = Gf−1x for
some x ∈ fG−1(B(Gf−1x0, r)), then

Ff−1Gf−1x = Gf−1Ff−1x

(i.e. Ff−1 and Gf−1 commute at coincidence point). This is clear if we let
xn = x for each n

A subset Ω of E is bounded if for each α ∈ Λ, there exists Mα > 0 with
dα(x, y) ≤ Mα for all x, y ∈ Ω.

Theorem 3.1. Let Y be an arbitrary space, E be a complete gauge space,
f : Y → E be a bijection map, x0 ∈ E , r = {rα}α∈Λ ∈ (0,∞)Λ with
F : f−1((B(Gf−1x0, r)) ∪ G−1(B(Gf−1x0, r))) → E and G : Y → E, f-
hybrid compatible on B(Gf−1x0, r) and

FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E).

Suppose f−1 and G are continuous and for each α ∈ λ, there exists a con-
tinuous, nondecreasing function φα : [0,∞) → [0,∞) satisfying φα(z) < z for
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z > 0 such that for x, y ∈ B(Gf−1x0, r) ∪ fG−1(B(Gf−1x0, r)) we have

dα(Ff−1x, Ff−1y) ≤ φα(Mα(x, y; f−1)), (3.1)

where
Mα(x, y; f−1)

= max{dα(Gf−1x,Gf−1y), dα(Gf−1x, Ff−1x), dα(Gf−1y, Ff−1y),
1
2
[dα(Gf−1x, Ff−1y) + dα(Gf−1y, Ff−1x)]}.

Also suppose

for each α ∈ Λ, we have dα(Gf−1x0, Ff−1x0) < rα − φα(rα). (3.2)

Then there exists a unique x ∈ B(Gf−1x0, r) with x = Ff−1x = Gf−1x .
Moreover, there exists a unique y ∈ f−1

(
B(Gf−1x0, r)

)
with fy = Fy = Gy .

Proof. Let Gf−1x1 = Ff−1x0 for some x1 ∈ X (This is possible since
Gf−1x0 ∈ B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E)). Then, by
(3.2),

dα(Gf−1x1, Gf−1x0) < rα

for each α ∈ Λ and so

Gf−1x1 ∈ B(Gf−1x0, r).

Now let Gf−1x2 = Ff−1x1 (this is possible since Gf−1x1 ∈ B(Gf−1x0, r)
and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E)). Fix α ∈ Λ. For n ∈ {2, 3, · · · }, we let
Gf−1xn+1 = Ff−1xn . This is possible if we have

Gf−1xn ∈ B(Gf−1x0, r)

since FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E). Essentially the same reasoning as in
Theorem 2.1 guarantees that

Gf−1xn ∈ Bα(Gf−1x0, rα) = {y : dα(Gx0, y) < rα}
and {Gf−1xn} is a Cauchy sequence with respect to dα. Since we can do this
for any α ∈ Λ, we have

Gf−1xn ∈ B(Gf−1x0, r)

and the sequence {Gf−1xn} is Cauchy. Hence, there exists x ∈ B(Gf−1x0, r)
such that Gf−1xn → x. Also, Ff−1xn = Gf−1xn+1 −→ x as n → ∞. Since
limn Ff−1xn = x = limn Gf−1xn and Ff−1xn = Gf−1xn+1 ∈ B(Gf−1x0, r)
for n ∈ {1, 2, · · · }, the continuity of f−1 and G and f -hybrid compatibility of
F and G imply that

lim
n→∞ dα(Ff−1Gf−1xn, Gf−1x) = lim

n→∞ dα(Ff−1Gf−1xn, Gf−1Ff−1xn) = 0
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for each α ∈ Λ since
dα(Ff−1Gf−1xn, Gf−1x) ≤ dα(Ff−1Gf−1xn, Gf−1Ff−1xn)

+ dα(Gf−1Ff−1xn, Gx).

Thus Ff−1Gf−1xn → Gf−1x as n →∞. Now fix α ∈ Λ. Then

dα(Ff−1x,Gf−1x)

≤ dα(Ff−1x, Ff−1Gf−1xn) + dα(Ff−1Gf−1xn, Gf−1x)

≤ φα(max{dα(Gf−1x,Gf−1Gf−1xn),

dα(Gf−1x, Ff−1x), dα(Gf−1Gf−1xn, Ff−1Gf−1xn),
1
2
[dα(Gf−1x, Ff−1Gf−1xn) + dα(Gf−1Gf−1xn, Ff−1x)]})

+ dα(Ff−1Gf−1xn, Gf−1x).

Taking the limit as n → ∞, we have (from above we know Ff−1Gf−1xn →
Gf−1x and Ff−1xn → x)

dα(Ff−1x,Gf−1x) ≤ φα(max{0, dα(Gf−1x, Ff−1x), 0,

1
2
dα(Gf−1x, Ff−1x)})

= φα(dα(Gf−1x, Ff−1x)).

This implies that
dα(Ff−1x,Gf−1x) = 0

for each α ∈ Λ. As a result, Fx = Gx. Also (as in Theorem 2.1) one can
show that dα(x,Gf−1x) = 0 for each α ∈ Λ and so x = Gf−1x = Ff−1x.
The uniqueness is easy to establish. Further, let f−1x = y then since f is a
surjective map we have a unique y ∈ G−1(U) with fy = Fy = Gy. ¤

If Y = E and f is the identity map on E then our Theorem 3.1 reduces to
the following result of O’Regan et al. [18, Theorem 3.1].

Corollary 3.2. Let E be a complete gauge space, x0 ∈ E , r = {rα}α∈Λ ∈
(0,∞)Λ with F : (B(Gx0, r) ∪ G−1(B(Gx0, r))) → E and G : E → E

compatible on B(Gx0, r) and FG−1(B(Gx0, r)) ⊆ G(E). Suppose G is con-
tinuous and for each α ∈ λ, there exists a continuous, nondecreasing func-
tion φα : [0,∞) → [0,∞) satisfying φα(z) < z for z > 0 such that for
x, y ∈ B(Gx0, r) ∪G−1(B(Gx0, r)) we have

dα(Fx, Fy) ≤ φα(Mα(x, y)),

where
Mα(x, y) = max{dα(Gx,Gy), dα(Gx,Fx), dα(Gy, Fy),
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1
2
[dα(Gx,Fy) + dα(Gy, Fx)]}.

Also suppose

for each α ∈ Λ, we have dα(Gx0, Fx0) < rα − φα(rα).

Then there exists a unique x ∈ B(Gx0, r) with x = Fx = Gx .

If Y = E, f and G are the identity maps on E then our Theorem 3.1 reduces
to the following result of O’Regan et al. [18, Corollary 3.2].

Corollary 3.3. Let E be a complete gauge space, x0 ∈ E , r ∈ (0,∞)Λ with
F : E → E and G : E → E compatible maps and F (E) ⊆ G(E). Suppose
G is continuous and for each α ∈ λ, there exists a continuous, nondecreasing
function φα : [0,∞) → [0,∞) satisfying φα(z) < z for z > 0 such that for
x, y ∈ E we have

dα(Fx, Fy) ≤ φα(Mα(x, y)),

where
Mα(x, y) = max{dα(Gx,Gy), dα(Gx,Fx), dα(Gy, Fy),

1
2
[dα(Gx,Fy) + dα(Gy, Fx)]}.

Then there exists a unique x ∈ E with x = Fx = Gx .

Theorem 3.4. Let Y be an arbitrary space, E be a complete gauge space,
f : Y → E be a bijection map, and U an open subset of E with H : (f−1(U)∪
G−1(U)) × [0, 1] → E and G : Y → E and for each λ ∈ [0, 1], Hλ and
G are f-hybrid compatible on U , and Hλ(G−1(U)) ⊆ Gf−1(E). Assume the
following conditions hold:

(i) for λ ∈ [0, 1], f(y) = G(y) = H(y, λ) cannot occur for y ∈ f−1(∂U)
(∂U denotes the boundary of U in E);

(ii) f−1 and G are continuous;
(iii) for each α ∈ Λ, there exists a continuous, nondecreasing function φα :

[0,∞) → [0,∞) satisfying φα(z) < z for z > 0 such that for all λ ∈
[0, 1] and x, y ∈ U ∪G−1(U) we have

dα(Hf−1(x, λ),Hf−1(y, λ)) ≤ φα(Mα(x, y, λ; f−1)),

where

Mα(x, y, λ; f−1) = max{dα(Gf−1(x), Gf−1(y)), dα(Gf−1(x),Hf−1(x, λ)),

dα(Gf−1(y),Hf−1(y, λ)),
1
2
[dα(Gf−1(x),Hf−1(y, λ))

+ dα(Gf−1(y),Hf−1(x, λ))]};
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(iv) for every ε = {εα}α∈Λ ∈ (0,∞)Λ, there exists δ = δ(ε) > 0 (which does
not depend on α) such that t, s ∈ [0, 1] with |s− t| < δ and α ∈ Λ, we
have

dα(Hf−1(x, t),Hf−1(x, s)) < εα

for x ∈ U ;
(v) for each α ∈ Λ, φα(a + b) ≤ φα(a) + φα(b) for a ≥ 0, b ≥ 0;
(vi) H(f−1(U)× [0, 1]) is bounded.

In addition assume H0f
−1 and Gf−1 have a coincidence point (i.e. there

exists x ∈ U ∪ fG−1(U) with H0f
−1(x) = Gf−1(x)). Then for each λ ∈ [0, 1],

we have that f , Hλ and G have a unique coincidence point yλ ∈ G−1(U) (here
Hλf−1(.) = Hf−1(., λ)). Moreover, for each λ ∈ [0, 1], Hλf−1 and Gf−1

have a unique common fixed point xλ ∈ fG−1(U) (i.e. xλ = Hf−1(xλ, λ) =
Gf−1(xλ)).

Proof. Let

A = {λ ∈ [0, 1] : Hf−1(x, λ) = Gf−1(x) for some x ∈ U ∪ fG−1(U)}.
Clearly A is nonempty. We will show that A is both open and closed in [0, 1]
and so by the connectedness of [0, 1], for each λ ∈ [0, 1], Hλf−1 and Gf−1

have a coincidence point xλ since A = [0, 1].
First we show A is open in [0, 1]. Let λ0 ∈ A. Then there exists x0 ∈

fG−1(U) with
Hf−1(x0, λ0) = Gf−1(x0).

Then Gf−1(x0) ∈ U . Since U is open, there exists δ1, ..., δm in (0,∞) with

U(Gf−1(x0), δ1) ∩ · · · ∩ U(Gf−1(x0), δm) ⊆ U ;

here U(Gf−1(x0), δi) = {x : dαi(x,Gf−1(x0)) ≤ δi} for i ∈ {1, 2, · · · ,m} (with
αi ∈ Λ for i ∈ {1, 2, · · · , }). Consequently, there exists δ = {δα}α∈Λ ∈ (0,∞)
with

B(Gf−1(x0), δ) ⊆ U.

Now, fix α ∈ Λ. Then, by (iv), there exists η = η(δ) > 0 with

dα(Gf−1(x0),Hf−1(x0, λ) =dα(Hf−1(x0, λ0),Hf−1(x0, λ))

< δα − φα(δα)

for λ ∈ [0, 1] and |λ− λ0| < η. Theorem 3.1 (here r = δ, F = Hλ and G = G)
guarantees that there exists xλ ∈ B(Gf−1(x0), δ) ⊆ U with

xλ = Hλf−1(xλ) = Gf−1(xλ)

for λ ∈ [0, 1] and |λ− λ0| < η. (note if yλ = f−1(xλ) ∈ f−1(U) then

f(yλ) = Hλ(yλ) = G(yλ) ∈ U
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and f(yλ) = G(yλ) implies yλ = f−1(xλ) ∈ G−1(U),i.e., xλ ∈ fG−1(U)).
Since xλ = G(xλ) implies

xλ ∈ fG−1(U),
it follows that A is open in [0, 1].

Next we show A is closed in [0, 1]. Let {λk} be a sequence in A such that
λk → λ ∈ [0, 1] as k →∞. Then for each k, there exists xk ∈ fG−1(U) with

Hf−1(xk, λk) = Gf−1(xk).

Fix α ∈ Λ. Essentially the same reasoning as in Theorem 2.7 guarantees that
{Gf−1(xk)} ⊆ U is a Cauchy sequence with respect to dα and so there exists
x ∈ U with Gf−1(xk) → x as k →∞. Also as in Theorem 2.7 we have that

dα(Gf−1(x), Hf−1(x, λ)) = 0

and
dα(x,Gf−1(x)) = 0

for every α ∈ Λ. Thus

x = Gf−1(x) = Hf−1(x, λ).

From (i), x ∈ U and so x = Gf−1(x) implies x ∈ fG−1(U). It follows that λ ∈
A. Hence A is closed in [0, 1]. Thus, for each λ ∈ [0, 1], Hλf−1 and Gf−1 have
a coincidence point xλ (i.e. Hf−1(xλ, λ) = Gf−1(xλ)). Now fix α ∈ Λ and
λ ∈ [0, 1]. It remains to show the uniqueness. If yλ = Gf−1(yλ) = Hλf−1(yλ)
with xλ 6= x′λ, then

dα(xλ, x′λ) = dα(Hf−1(xλ, λ),Hf−1(x′λ, λ))

≤ φ(max{dα(xλ, yλ), 0, 0,
1
2
[dα(xλ, x′λ) + dα(x′λ, xλ)]})

= φ(dα(xλ, x′λ)),

which gives a contradiction. Further, let f−1xλ = yλ then since f is a surjective
map we have a unique yλ ∈ G−1(U) with fyλ = Hλyλ = Gyλ. ¤

If Y = E and f is the identity maps on E then our Theorem 3.4 reduces to
the following result of O’Regan et al. [18, Theorem 3.3].

Corollary 3.5. Let E be a complete gauge space and U an open subset of E
with H : (U∪G−1(U))×[0, 1] → E and G : E → E and for each λ ∈ [0, 1], Hλ

and G are compatible on U , and Hλ(G−1(U)) ⊆ G(E). Assume the following
conditions hold:

(i) for λ ∈ [0, 1], x = G(x) = H(x, λ) cannot occur for x ∈ ∂U (the
boundary of U in E);

(ii) G is continuous;
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(iii) for each α ∈ Λ, there exists a continuous, nondecreasing function φα :
[0,∞) → [0,∞) satisfying φα(z) < z for z > 0 such that for all λ ∈
[0, 1] and x, y ∈ U ∪G−1(U) we have

dα(H(x, λ),H(y, λ)) ≤ φα(Mα(x, y, λ)),

where
Mα(x, y, λ) = max{dα(G(x), G(y)), dα(G(x),H(x, λ)), dα(G(y),H(y, λ)),

1
2
[dα(G(x),H(y, λ)) + dα(G(y),H(x, λ))]};

(iv) for every ε = {εα}α∈Λ ∈ (0,∞)Λ, there exists δ = δ(ε) > 0 (which does
not depend on α) such that t, s ∈ [0, 1] with |s− t| < δ and α ∈ Λ, we
have

dα(H(x, t),H(x, s)) < εα

for x ∈ U ;
(v) for each α ∈ Λ, φα(a + b) ≤ φα(a) + φα(b) for a ≥ 0, b ≥ 0;
(vi) H(U × [0, 1]) is bounded.

In addition assume H0 and G have a coincidence point (i.e. there exists x ∈
G−1(U) with H0(x) = G(x)). Then for each λ ∈ [0, 1], we have that Hλ and
G have a coincidence point xλ ∈ G−1(U) (here Hλ(.) = H(., λ)). Moreover,
for each λ ∈ [0, 1], Hλ and G have a unique common fixed point G(xλ).

If Y = E, f and G are the identity maps on E then our Theorem 3.4 reduces
to the following result of O’Regan et al. [18, Corollary 3.4].

Corollary 3.6. Let E be a complete gauge space and U an open subset of E
with H : U × [0, 1] → E . Assume the following conditions hold:

(i) x 6= H(x, λ) for x ∈ ∂U (the boundary of U in E) and λ ∈ [0, 1];
(ii) for each α ∈ Λ, there exists a continuous, nondecreasing function φα :

[0,∞) → [0,∞) satisfying φα(z) < z for z > 0 such that for all λ ∈
[0, 1] and x, y ∈ U we have

dα(H(x, λ),H(y, λ)) ≤ φα(Mα(x, y, λ)),

where
Mα(x, y, λ) = max{dα(x, y), dα(x,H(x, λ)), dα(y, H(y, λ)),

1
2
[dα(x,H(y, λ)) + dα(y,H(x, λ))]};

(iii) for every ε = {εα}α∈Λ ∈ (0,∞)Λ, there exists δ = δ(ε) > 0 (which does
not depend on α) such that t, s ∈ [0, 1] with |s− t| < δ and α ∈ Λ, we
have

dα(H(x, t),H(x, s)) < εα
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for x ∈ U ;
(iv) for each α ∈ Λ, φα(a + b) ≤ φα(a) + φα(b) for a ≥ 0, b ≥ 0;
(v) H(U × [0, 1]) is bounded.

In addition assume H0 has a fixed point. Then for each λ ∈ [0, 1], we have
that Hλ has a unique fixed point xλ ∈ U (here Hλ(·) = H(·, λ)).

We end this section with a result motivated from ideas in [13, 17, 18].

Theorem 3.7. Let Y be an arbitrary space, E be a complete gauge space,
f : Y → E be a bijection map, x0 ∈ E , r = {rα}α∈Λ ∈ (0,∞)Λ with
F : f−1(B(Gf−1x0, r))∪G−1(B(Gf−1x0, r))) → E and G : Y → E, f -hybrid
compatible on B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E). Suppose
f−1 and G are continuous and for each α ∈ Λ, there exists a continuous,
nondecreasing function φα : [0,∞) → [0,∞) satisfying φα(z) < z for z > 0.
Also assume there exists functions β : Λ → Λ and γ : Λ → Λ such that for
each α ∈ Λ and x, y ∈ B(Gf−1x0, r) ∪ fG−1(B(Gf−1x0, r)) we have

dα(Ff−1x, Ff−1y) ≤ φβ(α)(dγ(α)(Gf−1x,Gf−1y)). (3.3)

Further suppose for each α ∈ Λ that
∞∑

n=1

φβ(α)φβ(γ(α))...φβ(γn−1(α)) (dγn(α)(Gf−1x0, Ff−1x0)) (3.4)

+dα(Gf−1x0, Ff−1x0) < rα

holds; here γ0(α) = α and γn(α) = γ(γn−1(α)) for n ∈ {1, 2, · · · }. Then there
exists x ∈ B(Gf−1x0, r) with x = Ff−1x = Gf−1x .

Remark 3.2. Suppose for each α ∈ Λ the following conditions hold:

dα(Gf−1x0, Ff−1x0) < rα − φβ(α)(rα). (3.5)

and
∞∑

n=1

φβ(α)φβ(γ(α))...φβ(γn−1(α)) (rγn(α) − φβ(γn(α))(rγn(α))) ≤ φβ(α)(rα). (3.6)

Then (3.4) also holds.

Proof. Let Gf−1x1 = Ff−1x0 for some x1 ∈ E (this is possible since Gf−1x0 ∈
B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E)). Then, by (3.4),

dα(Gf−1x1, Gf−1x0) < rα

for each α ∈ Λ and so Gf−1x1 ∈ B(Gf−1x0, r). Now let Gf−1x2 = Ff−1x1

(this is possible since Gf−1x1 ∈ B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆
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Gf−1(E)). For n ∈ {2, 3, ·}, we let

Gf−1xn+1 = Ff−1xn.

This is possible if we show Gf−1xn ∈ B(Gf−1x0, r) since FG−1(B (Gf−1x0, r)) ⊆
Gf−1(E). Fix α ∈ Λ. Notice for n ∈ {1, 2, · · · } that

dα(Gf−1xn+1, Gf−1xn) = dα(Ff−1xn, Ff−1xn−1)

≤ φβ(α)(dγ(α)(Gf−1xn, Gf−1xn−1))

and so
dα(Gf−1xn+1, Gf−1xn)

≤ φβ(α)φβ(γ(α))...φβ(γn−1(α))(dγn(α)(Gf−1x1, Gf−1x0))

= φβ(α)φβ(γ(α))...φβ(γn−1(α))(dγn(α)(Gf−1x0, Ff−1x0)).

From (3.4) and the precessing inequality, it follows that

dα(Gf−1xn+1, Gf−1x0) ≤ dα(Gf−1x0, Gf−1x1) + dα(Gf−1x1, Gf−1x2)

+ · · ·+ dα(Gf−1xn, Gf−1xn+1)

≤
∞∑

k=1

φβ(α)φβ(γ(α)) · · ·φβ(γk−1(α))(dγk(α)(Gf−1x0,

Ff−1x0)) + dα(Gf−1x0, Ff−1x0)
< rα.

This implies that

Gf−1xn ∈ Bα(Gf−1x0, rα) = {y : dα(Gf−1x0, y) < rα}
for each α ∈ Λ and so

Gf−1xn ∈ B(Gf−1x0, r).

Again fix α ∈ Λ. We claim

{Gf−1xn} is a Cauchy sequence with respect to dα. (3.7)

Let n, p ∈ {0, 1, · · · }. Then we have

dα(Gf−1xn+p, Gf−1xn)

≤ dα(Gf−1xn+p, Gf−1xn+p−1) + · · ·+ dα(Gf−1xn, Gf−1xn+1)

≤
∞∑

k=n

φβ(α)φβ(γ(α)) · · ·φβ(γk−1(α))(dγk(α)(Gf−1x0, Ff−1x0)).

This together with (3.4) guarantees that {Gf−1xn} is a Cauchy sequence with
respect to dα. Thus (3.7) is true for each α ∈ Λ. Consequently, the sequence
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{Gf−1xn} is Cauchy. So there exists x ∈ B(Gf−1x0, r) with Gf−1xn → x.
Also, Ff−1xn = Gf−1xn+1 −→ x as n →∞. Since

lim
n

Ff−1xn = x = lim
n

Gf−1xn

and
Ff−1xn = Gf−1xn+1 ∈ B(Gf−1x0, r)

for n ∈ {1, 2, · · · }, the continuity of f−1 and G and f -hybrid compatibility of
F and G imply that

lim
n→∞ dα(Ff−1Gf−1xn, Gf−1x) = lim

n→∞ dα(Ff−1Gf−1xn, Gf−1Ff−1xn) = 0

for each α ∈ Λ. Thus Ff−1Gf−1xn → Gf−1x as n → ∞. Now fix α ∈ Λ.
Then

dα(Ff−1x,Gf−1x) ≤ dα(Ff−1x, Ff−1Gf−1xn)
+dα(Ff−1Gf−1xn, Gf−1x)

≤ φβ(α)(dγ(α)(Gf−1Gf−1xn, Gf−1x))

+dα(Ff−1Gf−1xn, Gf−1x).

Taking the limit as n → ∞, we obtain (note dδ(Ff−1Gf−1xn, Gf−1x) → 0,
dδ(Gf−1Gf−1xn, Gf−1x) → 0 and φβ(δ)(0) = 0 for all δ ∈ Λ)

dα(Ff−1x,Gf−1x) = 0.

Thus dα(Ff−1x,Gf−1x) = 0 for each α ∈ Λ and so we have

Ff−1x = Gf−1x.

Also, for each α ∈ Λ,

dα(Ff−1xn, Ff−1Gf−1xn) ≤ φβ(α)(dγ(α)(Gf−1xn, Gf−1Gf−1xn)),

which on letting n → ∞ gives dα(x,Gf−1x) = 0 for each α ∈ Λ. As a result
x = Gf−1x = Ff−1x. ¤

If Y = E and f is the identity maps on E then our Theorem 3.7 reduces to
the following result of O’Regan et al. [18, Theorem 3.5].

Corollary 3.8. Let E be a complete gauge space, x0 ∈ E , r = {rα}α∈Λ ∈
(0,∞)Λ with F : (B(Gx0, r) ∪ G−1(B(Gx0, r))) → E and G : E → E

compatible on B(Gx0, r) and FG−1(B(Gx0, r)) ⊆ G(E). Suppose G is con-
tinuous and for each α ∈ Λ, there exists a continuous, nondecreasing function
φα : [0,∞) → [0,∞) satisfying φα(z) < z for z > 0. Also assume there
exists functions β : Λ → Λ and γ : Λ → Λ such that for each α ∈ Λ and
x, y ∈ B(Gx0, r) ∪G−1(B(Gx0, r)) we have

dα(Fx, Fy) ≤ φβ(α)(dγ(α)(Gx,Gy)).
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Further suppose for each α ∈ Λ that
∞∑

n=1

φβ(α)φβ(γ(α))...φβ(γn−1(α)) (dγn(α)(Gx0, Fx0)) + dα(Gx0, Fx0) < rα

holds; here γ0(α) = α and γn(α) = γ(γn−1(α)) for n ∈ {1, 2, · · · }. Then there
exists x ∈ B(Gx0, r) with x = Fx = Gx .

If Y = E, f and G are the identity maps on E then our Theorem 3.7 reduces
to the following result of O’Regan et al. [18, Corollary 3.6].

Corollary 3.9. Let E be a complete gauge space, x0 ∈ E , r = {rα}α∈Λ ∈
(0,∞)Λ with F : B(x0, r) → E . Suppose for each α ∈ Λ, there exists a
continuous, nondecreasing function φα : [0,∞) → [0,∞) satisfying φα(z) < z
for z > 0. Also assume there exists functions β : Λ → Λ and γ : Λ → Λ such
that for each α ∈ Λ and x, y ∈ B(x0, r) we have

dα(Fx, Fy) ≤ φβ(α)(dβ(α)(x, y)).

Further suppose for each α ∈ Λ that
∞∑

n=1

φβ(α)φβ(γ(α))...φβ(γn−1(α)) (dγn(α)(x0, Fx0)) + dα(x0, Fx0) < rα

holds; here γ0(α) = α and γn(α) = γ(γn−1(α)) for n ∈ {1, 2, · · · }. Then there
exists x ∈ B(x0, r) with x = Fx .

4. Fixed point theory for multivalued maps in metric spaces

This section presents fixed point, coincidence point, and homotopy results
for multivalued generalized contractive maps. Let (X, d) be a metric space.
Let CD(X) be the family of all nonempty closed subsets of X. We set

B(C, r) = ∪x∈CB(x, r)

where C is a subset of X and r > 0. For any A,B ∈ CD(X), we define the
generalized Hausdorff distance D to be

D(A,B) = inf{ε > 0 : A ⊆ B(B, ε), B ⊆ B(A, ε)} ∈ [0,∞].

Let Y be an arbitrary space and f : Y → X be a bijection map. Let F :
f−1(B(Gf−1x0, r) ∪ G−1(B(Gf−1x0, r))) → CD(X) and G : Y → X be a
mapping with

FG−1(B(Gf−1x0, r)) ⊆ Gf−1(X).

Then F and G are called f -hybrid compatible on B(Gf−1x0, r) if

lim
n→∞ dist(Gf−1yn, Ff−1Gf−1xn) = 0
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whenever {xn} is a sequence in fG−1(B(Gf−1x0, r)) and {yn} is a sequence
in B(Gf−1x0, r) such that

lim
n→∞Gf−1xn = t = lim

n→∞ yn

for some t ∈ B(Gf−1x0, r), where yn ∈ Ff−1xn for n ∈ {1, 2, · · · }.
Remark 4.1. If F and G are f -hybrid compatible and Gf−1x ∈ Ff−1x for
some x ∈ fG−1(B(Gf−1x0, r)), then

Gf−1Gf−1x ∈ Ff−1Gf−1x.

This is clear if we set xn = x and yn = Gf−1x for all n.

Theorem 4.1. Let Y be an arbitrary space, (X, d) be a complete met-
ric space, f : Y → X be a bijection map, x0 ∈ X , r > 0 with F :
f−1(B(Gf−1x0, r) ∪ G−1(B(Gf−1x0, r))) → CD(X) and G : Y → X com-
patible maps on B(Gx0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(X). Suppose
f−1 and G are continuous and there exists a continuous function φ : [0,∞) →
[0,∞) satisfying φ(z) < z for z > 0 and φ nondecreasing on (0, r] such that
for x, y ∈ B(Gf−1x0, r) ∪ fG−1(B(Gf−1x0, r)) we have

D(Ff−1x, Ff−1y) ≤ φ(M(x, y; f−1)), (4.1)

with strict inequality if M(x, y; f−1) 6= 0; here

M(x, y; f−1) = max{d(Gf−1x,Gf−1y), dist(Gf−1x, Ff−1x),

dist(Gf−1y, Ff−1y),
1
2
[dist(Gf−1x, Ff−1y)

+ dist(Gf−1y, Ff−1x)]}.
Also suppose

dist(Gf−1x0, Ff−1x0) < r − φ(r) (4.2)
∞∑

i=0

φi(t) < ∞ for t ∈ (0, r − φ(r)] (4.3)

and
∞∑

i=0

φi(r − φ(r)) ≤ φ(r). (4.4)

Then there exists x ∈ B(Gf−1x0, r) with Gf−1x ∈ Ff−1x and Ff−1 and
Gf−1 have a common fixed point Gf−1x provided Gf−1Gf−1x = Gf−1x
and Gf−1x ∈ B(Gf−1x0, r) ∪ fG−1(B(Gf−1x0, r)). Moreover, there exists
a unique y ∈ f−1

(
B(Gf−1x0, r)

)
with fy = Gy ∈ Fy .
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Proof. First we show there exists x ∈ B(Gf−1x0, r) with

Gf−1x ∈ Ff−1x .

We are finished if M(x, yf−1) = 0 for some x, y ∈ B(Gf−1x0, r) since dist(G
f−1x, Ff−1x) ≤ M(x, y; f−1) and so

Gf−1x ∈ Ff−1x = Ff−1x

(also we obtain Gf−1y ∈ Ff−1y). By (4.2), there exists z ∈ Ff−1x0 with

d(Gf−1x0, z) < r.

Since Gf−1x0 ∈ B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(X) and so
Ff−1x0 ⊆ Gf−1(X), we have z ∈ Gf−1(X). Thus there exists x1 ∈ X with
z = Gf−1x1. As a result, we have

Gf−1x1 ∈ Ff−1x0

and
d(Gf−1x1, Gf−1x0) < r.

Notice Gf−1x1 ∈ B(Gf−1x0, r). We may assume M(x0, x1; f−1) 6= 0 since
otherwise we are finished. Since, from (4.1), we have that

D(Ff−1x0, Ff−1x1) < φ(M(x0, x1; f−1)),

we may choose ε > 0 with

D(Ff−1x0, Ff−1x1) + ε ≤ φ(M(x0, x1; f−1)).

Thus we can choose w ∈ Ff−1x1 so that

d(Gf−1x1, w) ≤ D(Ff−1x0, Ff−1x1) + ε.

Since Gf−1x1 ∈ B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(X) and so
Ff−1x1 ⊆ Gf−1(X), we have

w ∈ Gf−1(X).

Therefore, there exists x2 ∈ X with w = Gf−1x2. Consequently, we have

Gf−1x2 ∈ Ff−1x1

and
d(Gf−1x1, Gf−1x2) ≤ D(Ff−1x0, Ff−1x1) + ε

and so
d(Gf−1x1, Gf−1x2) ≤ φ(M(x0, x1; f−1)).

Now we show

d(Gf−1x1, Gf−1x2) ≤ φ(d(Gf−1x0, Gf−1x1)). (4.5)
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Notice

d(Gf−1x1, Gf−1x2) ≤ φ(max{d(Gf−1x0, Gf−1x1),

dist(Gf−1x0, Ff−1x0), dist(Gf−1x1, Ff−1x1),
1
2
[dist(Gf−1x0, Ff−1x1) + dist(Gf−1x1, Ff−1x0)]}).

Let
β1 = max{d(Gf−1x0, Gf−1x1), dist(Gf−1x0, Ff−1x0),

dist(Gf−1x1, Ff−1x1),
1
2
[dist(Gf−1x0, Ff−1x1)

+ dist(Gf−1x1, Ff−1x0)]}.
If β1 = d(Gf−1x0, Gf−1x1), then we immediately have (4.5). If β1 = dist(G
f−1x0, Ff−1x0), then again (4.5) holds since dist(Gf−1x0, Ff−1x0) ≤ d(Gf−1

x0, Gf−1x1). Now assume β1 = dist(Gf−1x1, Ff−1x1). If β1 6= 0, then

d(Gf−1x1, Gf−1x2) ≤ φ(dist(Gf−1x1, Ff−1x1))

< dist(Gf−1x1, Ff−1x1))

≤ d(Gf−1x1, Gf−1x2),

a contradiction. Thus β1 = dist(Gf−1x1, Ff−1x1) = 0 and (4.5) is true since

d(Gf−1x1, Gf−1x2) ≤ φ(β1) = φ(0) = 0.

Finally assume

β1 =
1
2
[dist(Gf−1x0, Ff−1x1) + dist(Gf−1x1, Ff−1x0)].

Then (4.5) is trivial if β1 = 0. If β1 6= 0, then

d(Gf−1x1, Gf−1x2) ≤ φ(β1) < β1

=
1
2
[dist(Gf−1x0, Ff−1x1) + dist(Gf−1x1, Ff−1x0)]

≤ 1
2
d(Gf−1x0, Gf−1x2)

≤ 1
2
[d(Gf−1x0, Gf−1x1) + d(Gf−1x1, Gf−1x2).

This implies that

1
2
d(Gf−1x1, Gf−1x2) <

1
2
d(Gf−1x0, Gf−1x1)
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and so

β1 =
1
2
[dist(Gf−1x0, Ff−1x1) + dist(Gf−1x1, Ff−1x0)]

≤ 1
2
d(Gf−1x0, Gf−1x2)

≤ 1
2
[d(Gf−1x0, Gf−1x1) + d(Gf−1x1, Gf−1x2)]

< d(Gf−1x0, Gf−1x1),

which contradicts the definition of β1. As a result (4.5) is true. Also

d(Gf−1x0, Gf−1x2) ≤ d(Gf−1x0, Gf−1x1) + d(Gf−1x1, Gf−1x2)

≤ d(Gf−1x0, Gf−1x1) + φ(d(Gf−1x0, Gf−1x1))

< [r − φ(r)] + φ(r − φ(r))

≤ [r − φ(r)] + φ(r)
= r

and hence Gf−1x2 ∈ B(Gf−1x0, r). If M(x1, x2; f−1) = 0, then, as before, we
are finished. So we assume M(x1, x2; f−1) 6= 0. Choose δ > 0 with

D(Ff−1x1, Ff−1x2) + δ ≤ φ(M(x1, x2; f−1)).

As above we can choose x3 ∈ X with Gf−1x3 ∈ Ff−1x2 and

d(Gf−1x2, Gf−1x3) ≤ φ(M(x1, x2; f−1)).

We now show that

d(Gf−1x2, Gf−1x3) ≤ φ(d(Gf−1x1, Gf−1x2)). (4.6)

To see this notice

d(Gf−1x2, Gf−1x3) ≤ φ(max{d(Gf−1x1, Gf−1x2),

dist(Gf−1x1, Ff−1x1), dist(Gf−1x2, Ff−1x2),
1
2
[dist(Gf−1x1, Ff−1x2) + dist(Gf−1x2, Ff−1x1)]}).

Let

β2 = max{d(Gf−1x1, Gf−1x2), dist(Gf−1x1, Ff−1x1), dist(Gf−1x2, Ff−1x2),

1
2
[dist(Gf−1x1, Ff−1x2) + dist(Gf−1x2, Ff−1x1)]}.

If β2 = d(Gf−1x1, Gf−1x2), then clearly (4.6) holds. If β2 = dist(Gf−1x1, F
f−1x1), then (4.6) is true since dist(Gf−1x1, Ff−1x1) ≤ d(Gf−1x1, Gf−1x2).
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If β2 = dist(Gf−1x2, Ff−1x2), then if β2 6= 0 we have

d(Gf−1x2, Gf−1x3) ≤ φ(β2) < β2

= dist(Gf−1x2, Ff−1x2)

≤ d(Gf−1x2, Gf−1x3),

which is a contradiction. Thus β2 = dist(Gf−1x2, Ff−1x2) = 0, so

d(Gf−1x2, Gf−1x3) ≤ φ(β2) = φ(0) = 0

and (4.6) is true. Finally assume

β2 =
1
2
[dist(Gf−1x1, Ff−1x2) + dist(Gf−1x2, Ff−1x1)].

If β2 = 0, then d(Gf−1x2, Gf−1x3) ≤ φ(β2) = φ(0) = 0, so (4.6) is immediate.
If β2 6= 0, then

d(Gf−1x2, Gf−1x3) ≤ φ(β2) < β2

=
1
2
[dist(Gf−1x1, Ff−1x2) + dist(Gf−1x2, Ff−1x1)]

≤ 1
2
d(Gf−1x1, Gf−1x3)

≤ 1
2
[d(Gf−1x1, Gf−1x2) + d(Gf−1x2, Gf−1x3),

so
1
2
d(Gf−1x2, Gf−1x3) <

1
2
d(Gf−1x1, Gf−1x2).

Consequently

β2 =
1
2
[dist(Gf−1x1, Ff−1x2) + dist(Gf−1x2, Ff−1x1)]

≤ 1
2
d(Gf−1x1, Gf−1x3)

≤ 1
2
[d(Gf−1x1, Gf−1x2) + d(Gf−1x2, Gf−1x3)]

< d(Gf−1x1, Gf−1x2),

which contradicts the definition of β2. As a result (4.6) holds. and so

d(Gf−1x2, Gf−1x3) ≤ φ(d(Gf−1x1, Gf−1x2))

≤ φ2(d(Gf−1x0, Gf−1x1)).
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From (4.4), we obtain

d(Gf−1x0, Gf−1x3) ≤ d(Gf−1x0, Gf−1x1) + d(Gf−1x1, Gf−1x2)

+ d(Gf−1x2, Gf−1x3)

≤ [r − φ(r)] + φ(d(Gf−1x0, Gf−1x1))

+ φ2(d(Gf−1x0, Gf−1x1))

< [r − φ(r)] + φ(r − φ(r)) + φ2(r − φ(r))

≤ r + [
∞∑

j=1

φj(r − φ(r))− φ(r)]

≤ r.

As a result Gf−1x3 ∈ B(Gf−1x0, r). Continuing inductively we can construct
a sequence {xn} in X with

Gf−1xn+1 ∈ Ff−1xn

for n ∈ {3, 4, · · · } and

d(Gf−1xn+1, Gf−1xn) ≤ φ(M(xn−1, xn; f−1))

(here we assumed without loss of generality that M(xn−1, xn; f−1) 6= 0). Es-
sentially the same argument as above guarantees that

d(Gf−1xn, Gf−1xn+1) ≤ φ(d(Gf−1xn−1, Gf−1xn))
· · ·

≤ φn(d(Gf−1x0, Gf−1x1))

(4.7)

and
Gf−1xn+1 ∈ B(Gf−1x0, r) for n ∈ {3, 4, · · · }.

The sequence {Gf−1xn} is Cauchy. To see this, notice for n ∈ {1, 2, · · · } and
p ∈ {1, 2, · · · } that (4.7) gives

d(Gf−1xn+p, Gf−1xn) ≤ d(Gf−1xn+p, Gf−1xn+p−1)
+ · · ·
+ d(Gf−1xn+1, Gf−1xn)

≤ φn+p−1(d(Gf−1x0, Gf−1x1))
+ · · ·
+ φn(d(Gf−1x0, Gf−1x1)

≤
∞∑

j=n

φj(d(Gf−1x0, Gf−1x1)).
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The preceeding inequality together with (4.3) guarantees that {Gf−1xn} is a
Cauchy sequence. Since (X, d) is complete, there exists x ∈ B(Gf−1x0, r)
with Gf−1xn −→ x as n → ∞. Now since Gf−1xn+1 ∈ Ff−1xn for n ∈
{1, 2, · · · }, it follows that

dist(x, Ff−1xn) ≤ d(x,Gf−1xn+1) → 0

as n →∞. The continuity of f−1 and G and f -hybrid compatibility of F and
G imply that

lim
n→∞ dist(Gf−1x, Ff−1Gf−1xn) = 0

since

dist(Gf−1x, Ff−1Gf−1xn) ≤ d(Gf−1x,Gf−1Gf−1xn+1)

+ dist(Gf−1Gf−1xn+1, Ff−1Gf−1xn).

We claim that Gf−1x ∈ Ff−1x. Notice (here we use the inequality:
|dist(w, A)− dist(w, B)| ≤ D(A, B) for w ∈ X and A,B ∈ CD(X))

dist(Gf−1x, Ff−1x) ≤ dist(Gf−1x, Ff−1Gf−1xn)

+ D(Ff−1Gf−1xn, Ff−1x)

≤ dist(Gf−1x, Ff−1Gf−1xn)

+ φ(max{d(Gf−1x,Gf−1Gf−1xn),

dist(Gf−1x, Ff−1x),

dist(Gf−1Gf−1xn, Ff−1Gf−1xn),
1
2
[dist(Gf−1x, Ff−1Gf−1xn)

+ dist(Gf−1Gf−1xn, Ff−1x)]}).
Taking the limit as n →∞, we have (notice that dist(Gf−1x, Ff−1Gf−1xn)
→ 0, and also that dist(Gf−1Gf−1xn, Ff−1Gf−1xn) ≤ d(Gf−1Gf−1xn,
Gf−1Gf−1xn+1) + dist(Gf−1Gf−1xn+1, Ff−1Gf−1xn) → 0 and
|dist(Gf−1Gf−1xn, Ff−1x)− dist(Gf−1x, Ff−1x)| ≤ d(Gf−1Gf−1xn,
Gf−1x) → 0),

dist(Ff−1x,Gf−1x) ≤ φ(max{0, dist(Gf−1x, Ff−1x), 0,

1
2
dist(Gf−1x, Ff−1x)})

= φ(dist(Gf−1x, Ff−1x)).

Thus dist(Gf−1x, Ff−1x) = 0 and so

Gf−1x ∈ Ff−1x = Ff−1x.
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Finally, we show that F and G have a common fixed point provided Gf−1x =
Gf−1Gf−1x and Gf−1x ∈ B(Gf−1x0, r) ∪ G−1(B(Gf−1x0, r)). To see this,
let z = Gf−1x = Gf−1Gf−1x. Now z = Gf−1z and z ∈ B(Gf−1x0, r) ∪
fG−1(B(Gf−1x0, r)). We now consider two cases, namely when z ∈ fG−1(
B(Gf−1x0, r)) and when z ∈ B(Gf−1x0, r). Suppose first z ∈ fG−1(B(Gf−1

x0, r)). Then
Gf−1z ∈ B(Gf−1x0, r)

and so
z ∈ B(Gf−1x0, r).

This implies that
x ∈ fG−1(B(Gf−1x0, r))

Notice z = Gf−1x = Gf−1z = Gf−1Gf−1x. By Remark 4.1, we have

Gf−1Gf−1x ∈ Ff−1Gf−1x

and so
z = Gf−1z ∈ Ff−1z.

Now suppose z ∈ B(Gf−1x0, r). Then

dist(Gf−1Gf−1xn+1, Ff−1z)

≤ dist(Gf−1Gf−1xn+1, Ff−1Gf−1xn) + D(Ff−1Gf−1xn, Ff−1z)

≤ dist(Gf−1Gf−1xn+1, Ff−1Gf−1xn) + φ(max{d(Gf−1Gf−1xn, Gf−1z),

dist(Gf−1Gf−1xn, Ff−1Gf−1xn), dist(Gf−1z, Ff−1z),
1
2
[dist(Gf−1z, Ff−1Gf−1xn) + dist(Gf−1Gf−1xn, Ff−1z)]})

≤ dist(Gf−1Gf−1xn+1, Ff−1Gf−1xn) + φ(max{d(Gf−1Gf−1xn, z),

dist(Gf−1Gf−1xn, Ff−1Gf−1xn), dist(z, Ff−1z),
1
2
[dist(z, Ff−1Gf−1xn) + dist(Gf−1Gf−1xn, Ff−1z)]}).

Letting n →∞, we obtain, as before,

dist(z, Ff−1z) ≤ φ(max{0, 0, dist(z, Ff−1z),
1
2
[dist(z, Ff−1z)]}).

This implies that
dist(z, Ff−1z) = 0.

Hence z is a common fixed point of Gf−1 and Ff−1. Further, let f−1z = y

then since f is a surjective map we have a unique y ∈ f−1
(
B(Gf−1x0, r)

)

with fy = Gy ∈ Fy. ¤
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Remark 4.2. Let f , G and F be as in Theorem 4.1. Also suppose

Gf−1(C(Gf−1, Ff−1)) ⊆ B(Gf−1x0, r);

here C(Gf−1, Ff−1) = {x ∈ B(Gf−1x0, r) : Gf−1x ∈ Ff−1x,Gf−1Gf−1x =
Gf−1x}. Then there exists x ∈ B(Gf−1x0, r) with

Gf−1x ∈ Ff−1x.

Moreover, Ff−1 and Gf−1 have a common fixed point Gf−1x provided Gf−1Gf−1x =
Gf−1x.

Remark 4.3. Let f , G and F be as in Theorem 4.1. In addition, assume
that

d(Gf−1x,Gf−1Gf−1x) ≤ dist(Gf−1Gf−1x, Ff−1Gf−1x)

+ dist(Gf−1x, Ff−1x)

+ D(Ff−1x, Ff−1Gf−1x)

for all x ∈ fG−1(B(Gf−1x0, r)). Then Gf−1 and Ff−1 have a common fixed
point.

As in Theorem 4.1, there exists x ∈ B(Gf−1x0, r) such that

Gf−1x ∈ Ff−1x.

We claim x = Gf−1x. Suppose that d(x,Gf−1x) = s for some s > 0. Since

d(Gf−1xn, Gf−1Gf−1xn) ≤ dist(Gf−1Gf−1xn, Ff−1Gf−1xn)

+ dist(Gf−1xn, Ff−1xn)

+ D(Ff−1xn, Ff−1Gf−1xn)

≤ dist(Gf−1Gf−1xn, Ff−1Gf−1xn)

+ dist(Gf−1xn, Ff−1xn)

+ φ(max{d(Gf−1xn, Gf−1Gf−1xn),

dist(Gf−1xn, Ff−1xn),

dist(Gf−1Gf−1xn, Ff−1Gf−1xn),
1
2
[dist(Gf−1xn, Ff−1Gf−1xn)

+ dist(Gf−1Gf−1xn, Ff−1xn)]}),
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≤ dist(Gf−1Gf−1xn, Ff−1Gf−1xn)

+ d(Gf−1xn, Gf−1xn+1)

+ φ(max{d(Gf−1xn, Gf−1Gf−1xn),

d(Gf−1xn, Gf−1xn+1),

dist(Gf−1Gf−1xn, Ff−1Gf−1xn),
1
2
[d(Gf−1xn, Gf−1Gf−1xn+1)

+ dist(Gf−1Gf−1xn+1, Ff−1Gf−1xn)

+ d(Gf−1Gf−1xn, Gf−1xn+1)]}),
which on letting n → ∞ gives (recall from Theorem 5.1 that Gf−1xn → x,
dist(Gf−1Gf−1xn+1, Ff−1Gf−1xn) → 0 and dist(Gf−1Gf−1xn, Ff−1Gf−1

xn) ≤ d(Gf−1Gf−1xn, Gf−1Gf−1xn+1) + dist(Gf−1Gf−1xn+1, Ff−1Gf−1

xn) → 0)

s = d(x, Gf−1x) ≤ φ(max{d(x,Gf−1x), 0, 0,

1
2
[d(x,Gf−1x) + d(Gf−1x, x)]})

= φ(d(x,Gf−1x)) = φ(s) < s,

a contradiction. Hence x = Gf−1x ∈ Ff−1x and so x is a common fixed point
of Gf−1 and Ff−1.

Remark 4.4. Let F : f−1(B(Gf−1x0, r) ∪ G−1(B(Gf−1x0, r))) → CD(X)
and G : Y → X with FG−1(B(Gf−1x0, r)) ⊆ Gf−1(X). Theorem 4.1 remains
valid if we use the following notion of compatibility which is slightly different
from the above definition. F and G are said to be f -hybrid compatible on
B(Gf−1x0, r) if for all x ∈ fG−1(B(Gf−1x0, r)),

Gf−1Ff−1x ∈ CD(X)

and
lim

n→∞D(Gf−1Ff−1xn, Ff−1Gf−1xn) = 0,

whenever {xn} is a sequence in fG−1(B(Gf−1x0, r)) such that

lim
n→∞Gf−1xn = t ∈ M = lim

n→∞Ff−1xn

for some t ∈ B(Gf−1x0, r) and M ∈ CD(X). Here we must mention that
if F and G are f -hybrid compatible and Gf−1x ∈ Ff−1x for some x ∈
fG−1(B(Gf−1x0, r)), then Ff−1 and Gf−1 commute at coincidence points.
To see this, let xn = x for each n. Then

Gf−1xn = Gf−1x → Gf−1x
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and Ff−1xn → Fx. Put M = Ff−1x. Then M ∈ CD(X) and Gf−1x ∈ M .
From the f -hybrid compatibility of G and F it follows that

D(Gf−1Ff−1x, Ff−1Gf−1x) = D(Gf−1Ff−1xn, Ff−1Gf−1xn) → 0,

that is,
D(Gf−1Ff−1x, Ff−1Gf−1x) = 0.

This implies that
Gf−1Ff−1x = Ff−1Gf−1x.

We now sketch the proof of Theorem 4.1 with this notion. As in the proof of
Theorem 4.1, we may obtain that Gf−1xn+1 ∈ Ff−1xn with

d(Gf−1xn, Gf−1xn+1) ≤ φ(d(Gf−1xn−1, Gf−1xn))

(≤ φn(d(Gf−1x0, Gf−1x1)))

and that {Gf−1xn} is a Cauchy sequence. Since (X, d) is complete, there exists
x ∈ B(Gf−1x0, r) with Gf−1xn −→ x as n → ∞. We claim the sequence
{Ff−1xn} is Cauchy in the space (CD(X), D). Using (4.1), we obtain

D(Ff−1xn−1, Ff−1xn) ≤ φ(max{d(Gf−1xn−1, Gf−1xn),

dist(Gf−1xn−1, Ff−1xn−1),

dist(Gf−1xn, Ff−1xn),
1
2
[dist(Gf−1xn−1, Ff−1xn)

+ dist(Gf−1xn, Ff−1xn−1)]})
≤ φ(max{d(Gf−1xn−1, Gf−1xn),

d(Gf−1xn−1, Gf−1xn),

d(Gf−1xn, Gf−1xn+1),
1
2
[d(Gf−1xn−1, Gf−1xn+1)]})

≤ φ(max{d(Gf−1xn−1, Gf−1xn),

d(Gf−1xn, Gf−1xn+1),
1
2
[d(Gf−1xn−1, Gf−1xn)

+ d(Gf−1xn, Gf−1xn+1)]})
≤ φ(max{d(Gf−1xn−1, Gf−1xn),

d(Gf−1xn, Gf−1xn+1)]}).
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If
max{d(Gf−1xn−1, Gf−1xn), d(Gf−1xn, Gf−1xn+1)]}
= d(Gf−1xn−1, Gf−1xn),

then
D(Ff−1xn−1, Ff−1xn) ≤ φ(d(Gf−1xn−1, Gf−1xn))

≤ φn((d(Gf−1x0, Gf−1x1)).

If
max{d(Gf−1xn−1, Gf−1xn), d(Gf−1xn, Gf−1xn+1)]}
= d(Gf−1xn, Gf−1xn+1),

then
D(Ff−1xn−1, Ff−1xn) ≤ φ(d(Gf−1xn, Gf−1xn+1))

≤ φn+1(d(Gf−1x0, Gf−1x1)).

But φn+1(d(Gf−1x0, Gf−1x1)) ≤ φn(d(Gf−1x0, Gf−1x1)) since φ(z) ≤ z and
φ is nondecreasing. Thus

D(Ff−1xn−1, Ff−1xn) ≤ φn(d(Gf−1x0, Gf−1x1))

in all cases. Notice for n ∈ {1, 2, · · · } and p ∈ {1, 2, · · · }, we have

D(Ff−1xn+p, Ff−1xn) ≤ D(Ff−1xn+p, Ff−1xn+p−1)
+ · · ·
+D(Ff−1xn+1, Ff−1xn)

≤ φn+p(d(Gf−1x0, Gf−1x1))
+ · · ·
+φn+1(d(Gf−1x0, Gf−1x1)

≤
∞∑

j=n+1

φj(d(Gf−1x0, Gf−1x1)).

The preceeding inequality together with (4.3) guarantees that {Ff−1xn} is a
Cauchy sequence in the complete metric space (CD(X), D).
Now let Ff−1xn → M . Then

dist(x,M) ≤ d(x,Gf−1xn) + dist(Gf−1xn,M)
≤ d(x,Gf−1xn) + D(Ff−1xn−1,M),

which on taking n → ∞ yields x ∈ M since M is closed. Since {xn} is
a sequence in fG−1(B(Gf−1x0, r)) such that Ff−1xn → M ∈ CD(X) and
Gf−1xn → x ∈ M , the f -hybrid compatibility of F and G implies that

lim
n→∞D(Gf−1Ff−1xn, Ff−1Gf−1xn) = 0.
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Now from the continuity of f−1 and G, we have

lim
n→∞ dist(Gf−1x, Ff−1Gf−1xn) = 0

since

dist(Gf−1x, Ff−1Gf−1xn) ≤ d(Gf−1x,Gf−1Gf−1xn+1)
+dist(Gf−1Gf−1xn+1, Ff−1Gf−1xn)

≤ d(Gf−1x,Gf−1Gf−1xn+1)
+D(Gf−1Ff−1xn, Ff−1Gf−1xn).

Next we show Gf−1x ∈ Ff−1x. Notice

dist(Gf−1x, Ff−1x) ≤ d(Gf−1x,Gf−1Gf−1xn+1)

+ dist(Gf−1Gf−1xn+1, Ff−1x)

≤ d(Gf−1x,Gf−1Gf−1xn+1)

+ D(Gf−1Ff−1xn, Ff−1x)

≤ d(Gf−1x,Gf−1Gf−1xn+1)

+ D(Gf−1Ff−1xn, Ff−1Gf−1xn)

+ D(Ff−1Gf−1xn, Ff−1x)

≤ d(Gf−1x,Gf−1Gf−1xn+1)

+ D(Gf−1Ff−1xn, Ff−1Gf−1xn)

+ φ(max{d(Gf−1Gf−1xn, Gf−1x),

dist(Gf−1Gf−1xn, Ff−1Gf−1xn),

dist(Gf−1x, Ff−1x),
1
2
[dist(Gf−1Gf−1xn, Ff−1x)

+ dist(Gf−1x, Ff−1Gf−1xn)]}).

Taking the limit as n → ∞ and using the continuity of f−1 and G, we have
(notice that dist(Gf−1x, Ff−1Gf−1xn) → 0, dist(Gf−1Gf−1xn+1, Ff−1G
f−1xn) ≤ D(Gf−1Ff−1xn, Ff−1Gf−1xn) → 0, and also that dist(Gf−1G
f−1xn, Ff−1Gf−1xn) ≤ d(Gf−1Gf−1xn, Gf−1Gf−1xn+1) + dist(Gf−1G
f−1xn+1, Ff−1Gf−1xn) → 0 and |dist(Gf−1Gf−1xn, Ff−1x)− dist(Gf−1x,
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Ff−1x)| ≤ d(Gf−1Gf−1xn, Gf−1x) → 0),

dist(Ff−1x, Gf−1x) ≤ φ(max{0, 0, dist(Gf−1x, Ff−1x),
1
2
dist(Gf−1x, Ff−1x)})

= φ(dist(Gf−1x, Ff−1x)).

Thus
dist(Gf−1x, Ff−1x) = 0

and so
Gf−1x ∈ Ff−1x = Ff−1x.

Using a previous argument, it can be seen that Ff−1 and Gf−1 have a
common fixed point x ∈ B(Gf−1x0, r) provided Gf−1x = Gf−1Gf−1x and
Gf−1x ∈ B(Gf−1x0, r) ∪ fG−1(B(Gf−1x0, r)). Further, let f−1x = y then
since f is a surjective map we have a unique y ∈ f−1

(
B(Gf−1x0, r)

)
with

fy = Gy ∈ Fy.

If Y = X and f is the identity map on X then our theorem 4.1 reduces to
the following result of O’Regan et al. [18, Theorem 4.1].

Corollary 4.2. Let (X, d) be a complete metric space, x0 ∈ X , r > 0 with
F : (B(Gx0, r) ∪ G−1(B(Gx0, r))) → CD(X) and G : X → X compatible
maps on B(Gx0, r) and FG−1(B(Gx0, r)) ⊆ G(X). Suppose G is continuous
and there exists a continuous function φ : [0,∞) → [0,∞) satisfying φ(z) < z

for z > 0 and φ nondecreasing on (0, r] such that for x, y ∈ B(Gx0, r) ∪
G−1(B(Gx0, r)) we have

D(Fx, Fy) ≤ φ(M(x, y)),

with strict inequality if M(x, y) 6= 0; here

M(x, y) = max{d(Gx,Gy), dist(Gx,Fx), dist(Gy, Fy),

1
2
[dist(Gx,Fy) + dist(Gy, Fx)]}.

Also suppose
dist(Gx0, Fx0) < r − φ(r)

∞∑

i=0

φi(t) < ∞ for t ∈ (0, r − φ(r)]

and
∞∑

i=0

φi(r − φ(r)) ≤ φ(r).
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Then there exists x ∈ B(Gx0, r) with Gx ∈ Fx . Moreover, F and G

have a common fixed point Gx provided GGx = Gx and Gx ∈ B(Gx0, r) ∪
G−1(B(Gx0, r)).

Corollary 4.3. Let Y be an arbitrary space, (X, d) be a complete met-
ric space, f : Y → X be a bijection map, x0 ∈ X , r > 0 with F :
f−1(B(x0, r), r))) → CD(X) and Ff−1(B(x0, r)) ⊆ f−1(X). Suppose f−1

is continuous and there exists a continuous function φ : [0,∞) → [0,∞)
satisfying φ(z) < z for z > 0 and φ nondecreasing on (0, r] such that for
x, y ∈ f−1

(
B(x0, r)

)
we have

D(Ff−1x, Ff−1y) ≤ φ(M(x, y; f−1)),

with strict inequality if M(x, y; f−1) 6= 0; here

M(x, y; f−1) = max{d(f−1x, f−1y), dist(f−1x, Ff−1x), dist(f−1y, Ff−1y),

1
2
[dist(f−1x, Ff−1y) + dist(f−1y, Ff−1x)]}.

Also suppose
dist(f−1x0, Ff−1x0) < r − φ(r)
∞∑

i=0

φi(t) < ∞ for t ∈ (0, r − φ(r)]

and
∞∑

i=0

φi(r − φ(r)) ≤ φ(r).

Then there exists x ∈ f−1
(
B(x0, r)

)
with f−1x ∈ Ff−1x .

Corollary 4.4. Let (X, d) be a complete metric space, x0 ∈ X , r > 0
with F : B(x0, r) → CD(X) . Suppose there exists a continuous function
φ : [0,∞) → [0,∞) satisfying φ(z) < z for z > 0 and φ nondecreasing on (0, r]
such that for x, y ∈ B(x0, r) we have

D(Fx, Fy) ≤ φ(M(x, y)),

with strict inequality if M(x, y) 6= 0; here

M(x, y) = max{d(x, y), dist(x, Fx), dist(y, Fy),

1
2
[dist(x, Fy) + dist(y, Fx)]}.

Also suppose
dist(x0, Fx0) < r − φ(r)
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∞∑

i=0

φi(t) < ∞ for t ∈ (0, r − φ(r)]

and
∞∑

i=0

φi(r − φ(r)) ≤ φ(r).

Then there exists x ∈ B(x0, r) with x ∈ Fx .

Next we derive a global result.

Theorem 4.5. Let Y be an arbitrary space, (X, d) be a complete metric
space, f : Y → X be a bijection map, F : Y → X and G : Y → X be
f-hybrid compatible maps and Ff−1(X) ⊆ Gf−1(X). Suppose f−1 and G are
continuous and there exists r0 > 0 and a continuous, nondecreasing function
φ : [0,∞) → [0,∞) satisfying φ(z) < z for z > 0 and φ nondecreasing on
(0, r0] such that for x, y ∈ X we have

d(Ff−1x, Ff−1y) ≤ φ(M(x, y; f−1)), (4.8)

with strict inequality if M(x, y; f−1) 6= 0; here

M(x, y; f−1) = max{d(Gf−1x,Gf−1y), d(Gf−1x, Ff−1x), d(Gf−1y, Ff−1y),

1
2
[d(Gf−1x, Ff−1y) + d(Gf−1y, Ff−1x)]}.

Also suppose
∞∑

i=0

φi(t) < ∞ for t ∈ (0, r0]. (4.9)

Then there exists x ∈ X with

Gf−1x ∈ Ff−1x.

Moreover, Ff−1 and Gf−1 have a common fixed point Gf−1x provided

Gf−1Gf−1x = Gf−1x.

Proof. First we claim

inf
x∈X

dist(Gf−1x, Ff−1x) = 0. (4.10)

Suppose
inf
x∈X

dist(Gf−1x, Ff−1x) = δ > 0.

Note φ(δ) < δ. Since φ is continuous, we can find ε > 0 with

φ(t) < δ for t ∈ [δ, δ + ε). (4.11)
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Choose w ∈ X with

δ ≤ dist(Gf−1w, Ff−1w) < δ + ε. (4.12)

Since Ff−1(X) ⊆ Gf−1(X), we have

Ff−1w ⊆ Gf−1(X)

and so there exists z ∈ X so that

Gf−1z ∈ Ff−1w

and
δ ≤ d(Gf−1w, Gf−1z) < δ + ε. (4.13)

Also
dist(Gf−1z, Ff−1z) ≤ D(Ff−1w,Ff−1z)

≤ φ(max{d(Gf−1w,Gf−1z),

dist(Gf−1w, Ff−1w), dist(Gf−1z, Ff−1z),
1
2
[dist(Gf−1w, Ff−1z) + dist(Gf−1z, Ff−1w)]}).

We claim
dist(Gf−1z, Ff−1z) < δ. (4.14)

Let

β = max{d(Gf−1w, Gf−1z), dist(Gf−1w, Ff−1w), dist(Gf−1z, Ff−1z),
1
2
[dist(Gf−1w, Ff−1z) + dist(Gf−1z, Ff−1w)]}).

If β = d(Gf−1w, Gf−1z), then, by (4.11) and (4.13), we have

dist(Gf−1z, Ff−1z) ≤ φ(d(Gf−1w, Gf−1z)) < δ,

so (4.14) holds. If β = dist(Gf−1w,Ff−1w), then, using (4.11) and (4.12),
we obtain

dist(Gf−1z, Ff−1z) ≤ φ(dist(Gf−1w, Gf−1w)) < δ,

so (4.14) holds. If β = dist(Gf−1z, Ff−1z), then β = 0 since if β 6= 0, then

dist(Gf−1z, Ff−1z) ≤ φ(dist(Gf−1z, Ff−1z))

< dist(Gf−1z, Ff−1z),
a contradiction. As a result, (4.14) holds. Finally, assume

β =
1
2
[dist(Gf−1w, Ff−1z) + dist(Gf−1z, Ff−1w)].

If β = 0, then
dist(Gf−1z, Ff−1z) ≤ φ(β) = φ(0) = 0,
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so (4.14) holds. If β 6= 0, then

dist(Gf−1z, Ff−1z) ≤ φ(β) < β

=
1
2
[dist(Gf−1w, Ff−1z) + dist(Gf−1z, Ff−1w)]

≤ 1
2
[d(Gf−1w,Gf−1z) + dist(Gf−1z, Ff−1z)

+ d(Gf−1z,Gf−1z)]

=
1
2
[d(Gf−1w,Gf−1z) + dist(Gf−1z, Ff−1z)].

Therefore,
1
2
dist(Gf−1z, Ff−1z) <

1
2
d(Gf−1w,Gf−1z)

and so
β =

1
2
[dist(Gf−1w,Ff−1z) + dist(Gf−1z, Ff−1w)]

≤ 1
2
[d(Gf−1w, Gf−1z) + dist(Gf−1z, Ff−1z)]

<
1
2
d(Gf−1w, Gf−1z) +

1
2
d(Gf−1w, Gf−1z)

= d(Gf−1w,Gf−1z),
which contradicts the definition of β. Hence, in all cases, (4.14) holds and so
(4.10) holds. As a result, there exists x0 ∈ X with

dist(Gf−1x0, Ff−1x0) < r0

and, therefore, there exists y ∈ Ff−1x0 with

d(Gf−1x0, y) < r0.

Since Ff−1(X) ⊆ Gf−1(X), we have

Ff−1x0 ⊆ Gf−1(X)

so y ∈ Gf−1(X). Consequently, there exists x1 ∈ X with y = Gf−1x1. Thus,

d(Gf−1x0, Gf−1x1) < r0.

As in Theorem 4.1, we can construct a sequence {xn} so that

Gf−1xn+1 ∈ Ff−1xn

for n ∈ {1, 2, · · · } with

d(Gf−1xn, Gf−1xn+1) ≤ φ(M(xn, xn−1; f−1)).

The same reasoning as in Theorem 4.1 guarantees that {Gf−1xn} is a Cauchy
sequence, so there exists x ∈ X with Gf−1xn → x. Essentially the same
reasoning as in Theorem 4.1 guarantees that dist(Gf−1x, Ff−1x) = 0 so
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Gf−1x ∈ Ff−1x. It remains to show Ff−1 and Gf−1 have a common fixed
point provided Gf−1x = Gf−1Gf−1x. Let z = Gf−1x = Gf−1Gf−1x. Then,
by Remark 4.1, we have that

z = Gf−1x ∈ Ff−1Gf−1x = Ff−1x.

Further, let f−1x = y then since f is a surjective map we have a unique
y ∈ f−1

(
B(Gf−1x0, r)

)
with fy = Gy ∈ Fy. ¤

Corollary 4.6. Let (X, d) be a complete metric space with F : X → CD(X) .
Suppose there exists r0 > 0 and a continuous function φ : [0,∞) → [0,∞)
satisfying φ(z) < z for z > 0 and φ nondecreasing on (0, r0] such that for
x, y ∈ X we have

D(Fx, Fy) ≤ φ(M(x, y)),

with strict inequality if M(x, y) 6= 0; here

M(x, y) = max{d(x, y), dist(x, Fx), dist(y, Fy),

1
2
[dist(x, Fy) + dist(y, Fx)]}.

Also suppose
∞∑

i=0

φi(t) < ∞ for t ∈ (0, r0].

Then there exists x ∈ X with x ∈ Fx .

Next we prove a homotopy result.

Theorem 4.7. Let Y be an arbitrary space, (X, d) be a complete metric
space, f : Y → X be a bijection map, and U an open subset of X with H :
(f−1(U) ∪G−1(U))× [0, 1] → X and G : Y → X and for each λ ∈ [0, 1], Hλ

and G are f-hybrid compatible on U , and Hλ(G−1(U)) ⊆ Gf−1(X). Assume
the following conditions hold:

(i) Gf−1(U) ⊆ U (i.e. U is invariant under Gf−1);
(ii) f−1 and G are continuous;
(iii) there exists a continuous nondecreasing function φ : [0,∞) → [0,∞)

satisfying φ(z) < z for z > 0 such that for all λ ∈ [0, 1] and x, y ∈
U ∪ fG−1(U) we have

D(Hf−1(x, λ),Hf−1(y, λ)) ≤ φ(M(x, y, λ; f−1)),
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with strict inequality if M(x, y, λ; f−1) 6= 0; here

M(x, y, λ; f−1) = max{d(Gf−1(x), Gf−1(y)), dist(Gf−1(x),Hf−1(x, λ)),

dist(Gf−1(y),Hf−1(y, λ)),
1
2
[dist(Gf−1(x),Hf−1(y, λ))

+ dist(Gf−1(y),Hf−1(x, λ))]};
(iv) for any ε > 0, there exists δ = δ(ε) > 0 such that when t, s ∈ [0, 1] with

|t− s| < δ then

D(Hf−1(x, t), Hf−1(x, s)) < ε

for x ∈ U ;
(v) there exists r0 > 0 such that

∞∑

i=0

φi(t) < ∞

for t ∈ (0, r0 − φ(r0)];
(vi)

∑∞
i=0 φi(r − φ(r)) ≤ φ(r) for any r ∈ (0, r0];

and
(vii) inf{dist(Gf−1(x),Hλf−1(x)) : x ∈ ∂U, λ ∈ [0, 1]} > 0;

here Hλf−1(·) = Hf−1(·, λ).

In addition assume H0f
−1 and Gf−1 have a coincidence point (i.e. there

exists x ∈ fG−1(U) with Gf−1(x) ∈ H0f
−1(x)). Then for each λ ∈ [0, 1], we

have that Hλf−1 and Gf−1 have a coincidence point xλ ∈ fG−1(U).

Remark 4.5. In Theorem 4.7 notice

for λ ∈ [0, 1], Gf−1(x) 6∈ Hf−1(x, λ) for x ∈ ∂U.

This is implicitly implied by the other assumptions. To see this, suppose there
exist some x0 ∈ ∂U and λ0 ∈ [0, 1] such that

Gf−1(x0) ∈ Hf−1(x0, λ0).

Then
dist(Gf−1(x0),Hf−1(x0, λ0)) = 0.

From condition (vii), we have

0 < inf{dist(Gf−1(x),Hλf−1(x)) : x ∈ ∂U, λ ∈ [0, 1]}
≤ dist(Gf−1(x0),Hf−1(x0, λ0)) = 0.

This is a contradiction. As a result, for λ ∈ [0, 1], Gf−1(x) 6∈ Hf−1(x, λ) for
x ∈ ∂U .
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Proof. First, we shall show that for each λ ∈ [0, 1], Hλf−1 and Gf−1 have a
common fixed point xλ. Let

A = {λ ∈ [0, 1] : Gf−1(x) ∈ Hf−1(x, λ) for some x ∈ U ∪ fG−1(U)}.
Since H0 and G have a coincidence point, 0 ∈ A and so A is nonempty.
It is enough to show that A is both open and closed in [0, 1] since by the
connectedness of [0, 1], we have A = [0, 1].

First we show A is open in [0, 1]. Let λ0 ∈ A. Then there exists x0 ∈
fG−1(U) with

Gf−1(x0) ∈ Hf−1(x0, λ0).
Then Gf−1(x0) ∈ U and since U is open, there exists a ball B(Gf−1(x0), δ),
δ > 0 (choose also δ < r0), with

B(Gf−1(x0), δ) ⊆ U.

Now, by (iv), there exists η(δ) > 0 with

dist(Gf−1(x0),Hf−1(x0, λ) ≤ D(Hf−1(x0, λ0),Hf−1(x0, λ)) < δ − φ(δ)

for λ ∈ [0, 1] and |λ − λ0| < η. Now Theorem 4.1 (here r = δ, F = Hλ and
G = G) guarantees that there exists xλ ∈ B(Gf−1(x0), δ) ⊆ U with

Gf−1(xλ) ∈ Hλf−1(xλ)

for λ ∈ [0, 1] and |λ − λ0| < η (note xλ ∈ U and Gf−1(xλ) ∈ U since
Gf−1(U) ⊆ U , so xλ ∈ fG−1(U) for λ ∈ [0, 1] and |λ − λ0| < η). Conse-
quently A is open in [0, 1].

Next we show A is closed in [0, 1]. Let {λk} be a sequence in A with
λk → λ ∈ [0, 1] as k →∞. Then for each k, there exists xk ∈ fG−1(U) with

Gf−1(xk) ∈ Hf−1(xk, λk).

We claim
inf
k≥1

dist(Gf−1(xk), ∂U) > 0. (4.15)

Suppose it is not true. Fix i ∈ {1, 2, · · · }. Then there exist ni ∈ {1, 2, · · · } and
a yni ∈ ∂U such that

d(Gf−1(xni), yni) <
1

l(ni)
(with l(ni) → ∞ if ni → ∞) and since f−1 and G are continuous, we may
assume

d(Gf−1(Gf−1(xni)), Gf−1(yni)) <
1
i
.

Therefore, there exist a subsequence S of {1, 2, · · · } and a sequence {yi} ⊆ ∂U
(for i ∈ S) such that

d(Gf−1(Gf−1(xi)), Gf−1(yi)) <
1
i

for i ∈ S. (4.16)
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This together with (vii) gives

0 < inf{dist(Gf−1(x),Hλf−1(x)) : x ∈ ∂U, λ ∈ [0, 1]}
≤ lim inf

i→∞ in S
dist(Gf−1(yi), Hλif

−1(yi)).

If
lim inf

i→∞ in S
dist(Gf−1(yi),Hλi

f−1(yi)) = 0 (4.17)

is true, then we obtain a contradiction from the preceeding inequality and so
(4.15) is true. To prove (4.17), notice

lim inf
i→∞ in S

dist(Gf−1(yi),Hλif
−1(yi))

≤ lim inf
i→∞ in S

[d(Gf−1(yi), Gf−1(Gf−1(xi)))

+ dist(Gf−1(Gf−1(xi)),Hλif
−1(yi))]

≤ lim inf
i→∞ in S

[
1
i

+ D(Hλif
−1(Gf−1(xi)),Hλif

−1(yi))]

= lim inf
i→∞ in S

D(Hλi
f−1(Gf−1(xi)), Hλi

f−1(yi))

≤ lim inf
i→∞ in S

φ(max{d(Gf−1(Gf−1(xi)), Gf−1(yi)),

dist(Gf−1(Gf−1(xi)),Hf−1(Gf−1(xi), λi)), dist(Gf−1(yi), Hf−1(yi, λi)),
1
2
[dist(Gf−1(Gf−1(xi)),Hf−1(yi, λi))

+ dist(Gf−1(yi), Hf−1(Gf−1(xi), λi))]})
(here we used the fact that Gf−1(xi) ∈ Hλif

−1(xi) implies Gf−1(Gf−1(xi)) ∈
Hλif

−1(Gf−1(xi)) (see Remark 4.1). Let

η = max{d(Gf−1(Gf−1(xi)), Gf−1(yi)), dist(Gf−1(Gf−1(xi)),

Hf−1(Gf−1(xi), λi)), dist(Gf−1(yi),Hf−1(yi, λi)),
1
2
[dist(Gf−1(Gf−1(xi)),Hf−1(yi, λi))+dist(Gf−1(yi),Hf−1(Gf−1(xi), λi))]}.

] If η = d(Gf−1(Gf−1(xi)), Gf−1(yi)), then

lim inf
i→∞ in S

dist(Gf−1(yi),Hλif
−1(yi))

≤ lim inf
i→∞ in S

φ(d(Gf−1(Gf−1(xi)), Gf−1(yi)))

≤ lim inf
i→∞ in S

d(Gf−1(Gf−1(xi)), Gf−1(yi))

≤ lim inf
i→∞ in S

(
1
i
) = 0,
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so (4.17) is true. If η = dist(Gf−1(Gf−1(xi)),Hf−1(Gf−1(xi), λi)), then
obviously η = 0, so (4.17) is true. If η = dist(Gf−1(yi),Hf−1(yi, λi)), then

lim inf
i→∞ in S

dist(Gf−1(yi),Hλif
−1(yi))

≤ lim inf
i→∞ in S

φ(dist(Gf−1(yi),Hf−1(yi, λi))

≤ φ( lim inf
i→∞ in S

dist(Gf−1(yi)),Hf−1(yi, λi)))

which gives lim infi→∞ in S dist(Gf−1(yi),Hλif
−1(yi)) = 0 since φ(z) < z if

z > 0, so (4.17) is true (here we used the fact that if {tn} is a sequence of
nonnegative real numbers, then lim inf φ(tn) ≤ φ(lim inf tn)). Finally, if η =
1
2 [dist(Gf−1(Gf−1(xi)),H(yi, λi))+dist(Gf−1(yi),Hf−1(Gf−1(xi), λi))]}, then
since φ(η) ≤ η, we have

lim inf
i→∞ in S

dist(Gf−1(yi),Hλif
−1(yi))

≤ lim inf
i→∞ in S

1
2
[dist(Gf−1(Gf−1(xi)),Hf−1(yi, λi))

+ dist(Gf−1(yi),Hf−1(Gf−1(xi), λi))]

≤ lim inf
i→∞ in S

[
1
2
d(Gf−1(Gf−1(xi)), Gf−1(yi))

+
1
2
dist(Gf−1(yi),Hf−1(yi, λi)) +

1
2
d(Gf−1(Gf−1(xi)), Gf−1(yi))

+
1
2
dist(Gf−1(Gf−1(xi)),Hf−1(Gf−1(xi), λi))]

≤ lim inf
i→∞ in S

[
1
i

+
1
2
dist(Gf−1(yi),Hf−1(yi, λi)) + 0],

which implies

lim inf
i→∞ in S

dist(Gf−1(yi),Hλif
−1(yi)) ≤ 1

2
lim inf

i→∞ in S
dist(Gf−1(yi),Hλif

−1(yi)),

so (4.17) is immediate (here we used Remark 4.1). Thus there exists δ > 0
(choose also δ < r0) with

d(Gf−1(xk), z) > δ

for all k ≥ 1 and for all z ∈ ∂U . Since Gf−1(xk) ∈ U for each k, we have

B(Gf−1(xk), δ) ⊆ U for k ≥ 1.

As a result, by (iv) we have

dist(Gf−1(xn0),Hλf−1(xn0)) ≤ D(Hf−1(xn0 , λn0),Hf−1(xn0 , λ))

< δ − φ(δ).
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Now Theorem 4.1 guarantees that Gf−1 and Hλf−1 have a coincidence point
xλ,n0 ∈ B(Gf−1(xn0), δ) ⊂ U . As before, we have that

xλ,n0 ∈ fG−1(U).

Consequently λ ∈ A and so A is closed in [0, 1]. Hence we can deduce that
A = [0, 1] and so for each λ ∈ [0, 1], Hλf−1 and Gf−1 have a coincidence point
xλ ∈ fG−1(U) (i.e. Gf−1(xλ) ∈ Hf−1(xλ, λ)). ¤

If Y = X and f is the identity map on X then our Theorem 4.7 reduces to
the following result of O’Regan et al. [18, Theorem 4.5].

Corollary 4.8. Let (X, d) be a complete metric space and U an open subset
of X with H : (U ∪G−1(U))× [0, 1] → CD(X) and G : X → X and for each
λ ∈ [0, 1], Hλ and G are compatible on U , and Hλ(G−1(U)) ⊆ G(X). Assume
the following conditions hold:

(i) G(U) ⊆ U (i.e. U is invariant under G);
(ii) G is continuous;
(iii) there exists a continuous nondecreasing function φ : [0,∞) → [0,∞)

satisfying φ(z) < z for z > 0 such that for all λ ∈ [0, 1] and x, y ∈
U ∪G−1(U) we have

D(H(x, λ),H(y, λ)) ≤ φ(M(x, y, λ)),

with strict inequality if M(x, y, λ) 6= 0; here

M(x, y, λ) = max{d(G(x), G(y)), dist(G(x),H(x, λ)), dist(G(y),H(y, λ)),
1
2
[dist(G(x),H(y, λ)) + dist(G(y),H(x, λ))]};

(iv) for any ε > 0, there exists δ = δ(ε) > 0 such that when t, s ∈ [0, 1] with
|t− s| < δ then

D(H(x, t), H(x, s)) < ε

for x ∈ U ;
(v) there exists r0 > 0 such that

∞∑

i=0

φi(t) < ∞

for t ∈ (0, r0 − φ(r0)];
(vi)

∑∞
i=0 φi(r − φ(r)) ≤ φ(r) for any r ∈ (0, r0];

and
(vii) inf{dist(G(x),Hλ(x)) : x ∈ ∂U, λ ∈ [0, 1]} > 0; here Hλ(.) = H(., λ).
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In addition assume H0 and G have a coincidence point (i.e. there exists x ∈
G−1(U) with G(x) ∈ H0(x)). Then for each λ ∈ [0, 1], we have that Hλ and
G have a coincidence point xλ ∈ G−1(U).

O’Regan et al.[18, Theorem 4.6 ] obtained the following homotopy result
via Zorn’s Lemma.

Theorem 4.9. Let (X, d) be a complete metric space and U an open subset
of X with H : (U ∪G−1(U))× [0, 1] → CD(X) and G : X → X and for each
λ ∈ [0, 1], Hλ and G are compatible on U , and Hλ(G−1(U)) ⊆ G(X). Assume
the following conditions hold:

(i) for λ ∈ [0, 1], G(x) 6∈ H(x, λ) for x ∈ ∂U (the boundary of U in X)
and G(U) ⊆ U ;

(ii) H is closed (i.e. has closed graph), G is continuous and

d(G(x), G(y)) ≤ d(G(x), y)

for all x ∈ G−1(U) and y ∈ U ;
(iii) there exists a continuous nondecreasing function φ : [0,∞) → [0,∞)

satisfying φ(z) < z for z > 0 and all λ ∈ [0, 1] and x, y ∈ U ∪G−1(U)
we have

D(H(x, λ),H(y, λ)) ≤ φ(M(x, y, λ)),
with strict inequality if M(x, y, λ) 6= 0; here

M(x, y, λ) = max{d(G(x), G(y)), dist(G(x),H(x, λ)), dist(G(y),H(y, λ)),
1
2
[dist(G(x),H(y, λ)) + dist(G(y),H(x, λ))]};

(iv) there exists a continuous increasing function ψ : [0, 1] → R such that

D(H(x, t),H(x, s)) ≤ |ψ(t)− ψ(s)|
for all t, s ∈ [0, 1] and x ∈ U ;

(v) there exists r0 > 0 such that
∞∑

i=0

φi(t) < ∞

for t ∈ (0, r0 − φ(r0)];
(vi)

∑∞
i=0 φi(r − φ(r)) ≤ φ(r) for any r ∈ (0, r0];

(vii) Φ : [0,∞) → [0,∞) is strictly increasing (here Φ(x) = x− φ(x));
and

(viii) Φ−1(a) + Φ−1(b) ≤ Φ−1(a + b) for a ≥ 0 and b ≥ 0.

In addition assume H0 and G have a coincidence point (i.e. there exists
x ∈ G−1(U) with G(x) ∈ H0(x)). Then H1 and G have a coincidence point.
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Next we obtain a simplified proof of a homotopy result via Zorn’s Lemma by
dropping condition (viii), replacing condition (ii)with more general condition
and modifying conditions (iii) and (iv) of Theorem 4.9. In fact, we prove the
following.

Theorem 4.10. Let Y be an arbitrary space, (X, d) be a complete metric
space, f : Y → X be a bijection map, and U an open subset of X with
H : (f−1(U) ∪G−1(U))× [0, 1] → CD(X) and G : Y → X and for each λ ∈
[0, 1], Hλ and G are f-hybrid compatible on U , and Hλ(G−1(U)) ⊆ Gf−1(X).
Assume the following conditions hold:

(i) for λ ∈ [0, 1], Gf−1(x) 6∈ Hf−1(x, λ) for x ∈ ∂U (the boundary of U
in X) and Gf−1(U) ⊆ U ;

(ii) H is closed (i.e. has closed graph), f−1 and G are continuous and

d(Gf−1(x), Gf−1(y)) ≤ d(Gf−1(x), y)

for all x ∈ fG−1(U) and y ∈ U ;
(iii) there exists a continuous nondecreasing function φ : [0,∞) → [0,∞)

satisfying φ(z) < z for z > 0 and all λ ∈ [0, 1] and x, y ∈ U∪fG−1(U)
we have

D(Hf−1(x, λ),Hf−1(y, λ)) ≤ φ(M(x, y, λ; f−1)),

with strict inequality if M(x, y, λ) 6= 0; here

M(x, y, λ; f−1) = max{d(Gf−1(x), Gf−1(y)), dist(Gf−1(x),Hf−1(x, λ)),

dist(Gf−1(y),Hf−1(y, λ)),
1
2
[dist(Gf−1(x),Hf−1(y, λ))

+ dist(Gf−1(y),Hf−1(x, λ))]};
(iv) there exists a continuous increasing function ψ : [0, 1] → R such that

|D(Hf−1(x, t),Hf−1(y, s))− d(x, y)| ≤ 1
2
|ψ(t)− ψ(s)|

for all t, s ∈ [0, 1] and x ∈ U ;
(v) there exists r0 > 0 such that

∞∑

i=0

φi(t) < ∞

for t ∈ (0, r0 − φ(r0)];
(vi)

∑∞
i=0 φi(r − φ(r)) ≤ φ(r) for any r ∈ (0, r0]; and

(vii) Φ : [0,∞) → [0,∞) is monotone increasing (here Φ(x) = x− φ(x));
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In addition assume H0f
−1 and Gf−1 have a coincidence point (i.e. there

exists x ∈ fG−1(U) with

Gf−1(x) ∈ H0f
−1(x)).

Then H1f
−1 and Gf−1 have a coincidence point. Moreover, H1 and G have

a coincidence point y ∈ f−1B(Gf−1x0, r).

Remark 4.6. Condition (ii) of Theorem 4.10 (here we also assume Gf−1(U) ⊆
U) includes the class of maps satisfying the following condition:

(ii)? H is closed, (Gf−1)2 = Gf−1 on fG−1(U) and Gf−1 is nonexpansive on
U (i.e. d(Gf−1(x), Gf−1(y)) ≤ d(x, y) for all x, y ∈ U).

To see this, let G be a map satisfying condition (ii)? and let x ∈ fG−1(U)
and y ∈ U . Then

d(Gf−1(Gf−1(x)), Gf−1(y)) ≤ d(Gf−1(x), y).

Since (Gf−1)2 = Gf−1 on fG−1(U), it follows that

d(Gf−1(x), Gf−1(y)) = d(Gf−1(Gf−1(x)), Gf−1(y))

≤ d(Gf−1(x), y).

Clearly Gf−1 is continuous. So Gf−1 satisfies (ii).

Let U be an open convex subset of a Hilbert space X. Then the metric
projection P is a nonexpansive mapping from X to U with P 2 = P (see [10,
pp. 72, 73]). Therefore, the class of maps Gf−1 satisfying condition (ii)?

includes the class of metric projections.

Proof. Let

Q = {(t, x) ∈ [0, 1]× fG−1(U) : Gf−1(x) ∈ Hf−1(x, t)}.
Then Q is nonempty since H0f

−1 and Gf−1 have a coincidence point. We
now define the partial order on Q (see (vii) for transitivity) as follows:

(t, x) ≤ (s, y) iff t ≤ s and d(Gf−1(x), Gf−1(y)) ≤ ψ(s)− ψ(t).

Let P be a totally ordered subset of Q and let t∗ = sup{t : (t, x) ∈ P}.
Consider a sequence {(tn, xn)} ⊆ P such that (tn, xn) ≤ (tn+1, xn+1) and
tn → t∗. Then

d(Gf−1(xn), Gf−1(xm)) ≤ ψ(tn)− ψ(tm)for all m > n.

This implies that {Gf−1(xn)} is a Cauchy sequence and so converges to x? ∈ U.
Since Gf−1(xn) ∈ Htnf−1(xn), xn ∈ fG−1(U) for each n, it follows by the
f -hybrid compatibility of G and Htn that

Gf−1(Gf−1(xn)) ∈ Hf−1(Gf−1(xn), tn)
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(see Remark 4.1). Since H is closed and G is continuous, we have (t?, x?) ∈ Q
(note Gf−1(x?) ∈ Hf−1(x?, t?) and from (i) x? ∈ U and so Gf−1(x?) ∈ U i.e.
x? ∈ fG−1(U)). Since P is totally ordered, it follows from the definition of t?

that
(t, x) ≤ (t?, x?) for every (t, x) ∈ P.

Therefore (t?, x?) is an upper bound of P . By Zorn’s lemma Q admits a
maximal element (t0, x0) ∈ Q. Note x0 ∈ fG−1(U) (i.e. Gf−1(x0) ∈ U) and

Gf−1(x0) ∈ Hf−1(x0, t0).

We claim t0 = 1. Suppose it is not true. Then, choose r > 0 (with r ≤ r0)
and t ∈ (t0, 1] with B(Gf−1(x0), r) ⊆ U and

r − φ(r) = ψ(t)− ψ(t0) ≤ ψ(1)− ψ(t0) = r0 − φ(r0).

Notice

dist(Gf−1(x0),Hf−1(x0, t)) ≤ dist(Gf−1(x0),Hf−1(x0, t0))
+D(Hf−1(x0, t0),Hf−1(x0, t))

≤ 0 +
1
2
[ψ(t)− ψ(t0)]

=
1
2
(r − φ(r))

=
1
2
Φ(r) < Φ(r) = r − φ(r).

Now Theorem 4.1 guarantees that Htf
−1 and Gf−1 have a coincidence point

x ∈ B(Gf−1x0, r). Note x ∈ U and Gf−1(x) ∈ U (from (i)), so x ∈ fG−1(U).
Hence (t, x) ∈ Q. From (ii) and above, we have

d(Gf−1(x0), Gf−1(x)) ≤ d(Gf−1(x0), x) ≤ r = ψ(t)− ψ(t0) and t0 < t.

Therefore, (t0, x0) < (t, x). This contradicts the maximality of (t0, x0). Con-
sequently, t0 = 1 and so we are finished. ¤

5. Fixed point theory for multivalued maps in gauge spaces

In this section, we discuss analogue of some of the results of section 4 in
gauge spaces. For this section, E = (E, {dα}α∈Λ) will denote a gauge space
endowed with a complete gauge structure {dα : α ∈ Λ}. For any A,B ⊂ E,
we define the generalized Hausdorff pseudometric induced by dα to be

Dα(A,B) = inf{ε > 0 : ∀x ∈ A,∀y ∈ B,∃x∗ ∈ A,∃y∗ ∈ B

such that dα(x, y∗) < ε, dα(x∗, y) < ε},
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with the convention that inf(∅) = ∞. Let Y be an arbitrary space, f : Y → E

be a bijection map, F : f−1(B(Gf−1x0, r) ∪ G−1(B(Gf−1x0, r))) → CB(E)
and G : Y → E with

FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E).

Then F and G are said to be f -hybrid compatible on B(Gf−1x0, r) if for each
α ∈ Λ,

lim
n→∞ distα(Gf−1yn, Ff−1Gf−1xn) = 0

whenever {xn} is a sequence in G−1(B(Gf−1x0, r)) and {yn} is a sequence in
B(Gf−1x0, r) such that for each α ∈ Λ,

lim
n→∞ dα(yn, t) = lim

n→∞ dα(Gf−1xn, t) = 0

for some t ∈ B(Gf−1x0, r), where yn ∈ Ff−1xn for n ∈ {1, 2, · · · }.

Remark 5.1. If Ff−1 and Gf−1 are f -hybrid compatible and Gf−1x ∈
Ff−1x for some x ∈ fG−1(B(Gf−1x0, r)), then

Gf−1Gf−1x ∈ Ff−1Gf−1x.

Theorem 5.1. Let Y be an arbitrary space, E be a complete gauge space,
f : Y → E be a bijection map, x0 ∈ E , r = {rα}α∈Λ ∈ (0,∞)Λ with
F : f−1(B(Gf−1x0, r) ∪ fG−1(B(Gf−1x0, r))) → CD(E) and G : Y → E be
f-hybrid compatible maps on B(Gf−1x0, r) and

FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E).

Suppose f−1 and G are continuous and for each α ∈ Λ, there exists a continu-
ous function φα : [0,∞) → [0,∞) satisfying φα(z) < z for z > 0 and φα strictly
increasing on (0, rα] such that for x, y ∈ B(Gf−1x0, r)∪fG−1(B(Gf−1x0, r))
we have

Dα(Ff−1x, Ff−1y) ≤ φα(Mα(x, y; f−1)); (5.1)
here

M(x, y; f−1) = max{dα(Gf−1x,Gf−1y), distα(Gf−1x, Ff−1x),

distα(Gf−1y, Ff−1y),
1
2
[distα(Gf−1x, Ff−1y)

+ distα(Gf−1y, Ff−1x)]}.
Also suppose for each α ∈ Λ that

Φα is strictly increasing on [0,∞); here Φα(x) = x− φα(x) (5.2)

distα(Gf−1x0, Ff−1x0) < rα − φα(rα) (5.3)
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∞∑

i=0

φi
α(t) < ∞ for t ∈ (0, rα − φα(rα)] (5.4)

and ∞∑

i=0

φi
α(rα − φα(rα)) ≤ φα(rα). (5.5)

Finally assume the following condition holds:



for every x ∈ fG−1(B(Gf−1x0, r)) and every ε = {εα}α∈Λ ∈ (0,∞)Λ

there exists y ∈ Ff−1x with dα(Gf−1x, y) ≤ distα(Gf−1x, Ff−1x) + εα

for every α ∈ Λ.
(5.6)

Then there exists x ∈ B(Gf−1x0, r) with Gf−1x ∈ Ff−1x and Ff−1 and
Gf−1 have a common fixed point Gf−1x provided Gf−1Gf−1x = Gf−1x and
Gx ∈ B(Gf−1x0, r) ∪ fG−1(B(Gf−1x0, r)). Moreover, there exists a unique
y ∈ f−1

(
B(Gf−1x0, r)

)
with fy = Gy ∈ Fy .

Proof. From (5.3) and (5.6), we may choose z ∈ Ff−1x0 with

dα(Gf−1x0, z) < rα − φα(rα) for every α ∈ Λ.

Since Gf−1x0 ∈ B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E) and so
Ff−1(x0) ⊆ Gf−1(E), we have

z ∈ Gf−1(E).

Therefore, there exists x1 ∈ E with z = Gf−1x1. Consequently, we have

Gf−1x1 ∈ Ff−1x0

and
d(Gf−1x1, Gf−1x0) < rα − φα(rα) for every α ∈ Λ. (5.7)

Notice Gf−1x1 ∈ B(Gf−1x0, r). Now for α ∈ Λ, choose εα > 0 with εα ≤
φα(rα) and Φ−1

α (εα) < rα such that

φα(dα(Gf−1x0, Gf−1x1) + εα) + εα + φα(Φ−1
α (εα)) < φα(rα − φα(rα)) (5.8)

(this is possible from (5.7) and the fact that φα is strictly increasing on (0, rα]).
From (5.6) we can find y ∈ Ff−1x1 such that for every α ∈ Λ, we have

dα(Gf−1x1, y) < distα(Gf−1x1, Ff−1x1) + εα ≤ Dα(Ff−1x0, Ff−1x1) + εα.

Since Gf−1x1 ∈ B(Gf−1x0, r) and FG−1(B(Gx0, r)) ⊆ G(E) we have

Ff−1x1 ⊆ Gf−1(E),

and so y ∈ Gf−1(E). Thus there exists x2 ∈ E with

y = Gf−1x2.
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As a result,

dα(Gf−1x1, Gf−1x2) < distα(Gf−1x1, Ff−1x1) + εα

≤ Dα(Ff−1x0, Fvx1) + εα.
(5.9)

We claim
dα(Gf−1x1, Gf−1x2) < φα(dα(Gf−1x0, Gf−1x1) + εα)

+ εα + φα(Φ−1
α (εα)).

(5.10)

To see this notice



Dα(Ff−1x0, Ff−1x1) + εα ≤ φα(max{dα(Gf−1x0, Gf−1x1),
distα(Gf−1x0, Ff−1x0), distα(Gf−1x1, Ff−1x1),

1
2 [distα(Gf−1x0, Ff−1x1) + distα(Gf−1x1, Ff−1x0)]}) + εα.

(5.11)

Let
ηα = max{dα(Gf−1x0, Gf−1x1), distα(Gf−1x0, Ff−1x0),

distα(Gf−1x1, Ff−1x1),
1
2
[distα(Gf−1x0, Ff−1x1)

+ distα(Gf−1x1, Ff−1x0)]}.
If ηα = dα(Gf−1x0, Gf−1x1), then (5.10) holds.
If ηα = distα(Gf−1x0, Ff−1x0), then

ηα ≤ dα(Gf−1x0, Gf−1x1)(≤ rα)

so (5.10) holds. If ηα = distα(Gf−1x1, Ff−1x1), then (5.9) gives

distα(Gf−1x1, Ff−1x1) ≤ dα(Gf−1x1, Gf−1x2)

≤ φα(distα(Gf−1x1, Ff−1x1)) + εα,

so distα(Gf−1x1, Ff−1x1) ≤ Φ−1
α (εα). Therefore,

dα(Gf−1x1, Gf−1x2) ≤ φα(Φ−1
α (εα)) + εα,

so (5.10) holds. Finally if

ηα =
1
2
[distα(Gf−1x0, Ff−1x1) + distα(Gf−1x1, Ff−1x0)],

then

dα(Gf−1x1, Gf−1x2) ≤ 1
2
[distα(Gf−1x0, Ff−1x1)

+ distα(Gf−1x1, Ff−1x0)] + εα

≤ 1
2
[dα(Gf−1x0, Gf−1x1)

+ dα(Gf−1x1, Gf−1x2)] + εα,
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so
1
2
dα(Gf−1x0, Gf−1x2) ≤ 1

2
dα(Gf−1x0, Gf−1x1) + εα.

Consequently

dα(Gf−1x1, Gf−1x2) ≤ φα(
1
2
[distα(Gf−1x0, Ff−1x1)

+ distα(Gf−1x1, Ff−1x0)]) + εα

≤ φα(
1
2
[dα(Gf−1x0, Gf−1x1)

+ dα(Gf−1x1, Gf−1x2)]) + εα

≤ φα(dα(Gf−1x0, Gf−1x1) + εα) + εα,

(note dα(Gf−1x0, Gf−1x1) + εα ≤ rα) so (5.10) holds. As a result, (5.10) is
true in all cases. Therefore, it follows from (5.8) and (5.10) that

dα(Gf−1x1, Gf−1x2) < φα(rα − φα(rα)). (5.12)

Notice for all α ∈ Λ

dα(Gf−1x0, Gf−1x2) ≤ dα(Gf−1x0, Gf−1x1) + dα(Gf−1x1, Gf−1x2)

< [rα − φα(rα)] + φα(rα − φα(rα))

≤ [rα − φα(rα)] + φα(rα) = rα.

This implies that
Gf−1x2 ∈ B(Gf−1x0, r).

Next for α ∈ Λ, choose δα > 0 with φα(rα−φα(rα))+δα ≤ rα and Φ−1(δα) < rα

such that

φα(dα(Gf−1x1, Gf−1x2) + δα) + δα + φα(Φ−1
α (δα)) < φ2

α(rα− φα(rα)) (5.13)

(this is possible from (5.12)). From (5.6), we may choose x3 ∈ E so that
Gf−1x3 ∈ Ff−1x2 and

dα(Gf−1x2, Gf−1x3) ≤ distα(Gf−1x2, Ff−1x2) + δα

≤ Dα(Ff−1x1, Ff−1x2) + δα.

As before, we have

dα(Gf−1x2, Gf−1x3) ≤ φα(dα(Gf−1x2, Gf−1x3) + δα)

+ δα + φα(Φ−1
α (δα))

(5.14)

and this together with (5.13) gives

dα(Gf−1x2, Gf−1x3) < φ2
α(rα − φα(rα)). (5.15)
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Now for each α ∈ Λ, we have

dα(Gf−1x0, Gf−1x3) ≤ dα(Gf−1x0, Gf−1x1) + dα(Gf−1x1, Gf−1x2)

+ dα(Gf−1x2, Gf−1x3)

< [rα − φα(rα)] + φα(rα − φα(rα))

+ φ2
α(rα − φα(rα))

≤ rα + [
∞∑

j=1

φj
α(rα − φα(rα))− φα(rα)]

≤ rα.

Proceed inductively to obtain Gf−1xn ∈ Ff−1xn−1 for n ∈ {3, 4, · · · } with

Gf−1xn ∈ B(Gf−1x0, r)

and
dα(Gf−1xn, Gf−1xn+1) < φn

α(rα − φα(rα))
for each α ∈ Λ. Now (5.4) implies that {Gf−1xn} is Cauchy with respect to
dα for each α ∈ Λ. Consequently {Gf−1xn} is a Cauchy sequence in E. Since
E is complete, there exists x ∈ B(Gf−1x0, r) with Gf−1xn → x. Now since
Gf−1xn+1 ∈ Ff−1xn for n ∈ {1, 2, · · · }, it follows that from the continuity of
f−1 and G and f -hybrid compatibility of F and G that

lim
n→∞ distα(Gf−1x, Ff−1Gf−1xn) = 0

for each α ∈ Λ. Now fix α ∈ Λ. Then

distα(Gf−1x, Ff−1x) ≤ distα(Gf−1x, Ff−1Gf−1xn)
+Dα(Ff−1Gf−1xn, Ff−1x)

≤ distα(Gf−1x, Ff−1Gf−1xn)
+φα(max{dα(Gf−1x,Gf−1Gf−1xn),
distα(Gf−1x, Ff−1x),
distα(Gf−1Gf−1xn, Ff−1Gf−1xn),
1
2
[distα(Gf−1x, Ff−1Gf−1xn)

+distα(Gf−1Gf−1xn, Ff−1x)]}).
Letting n →∞, we obtain (as in Theorem 4.1) that

distα(Ff−1x,Gf−1x) ≤ φα(max{0, distα(Gf−1x, Ff−1x), 0,

1
2
distα(Gf−1x, Ff−1x)})

= φα(distα(Gf−1x, Ff−1x)).
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This implies that
distα(Gf−1x, Ff−1x) = 0

for each α ∈ Λ. Thus

Gf−1x ∈ Ff−1x = Ff−1x.

As in Theorem 4.1 it is easy to check that Ff−1 and Gf−1 have a common
fixed point provided Gf−1x = Gf−1Gf−1x and Gf−1x ∈ B(Gf−1x0, r) ∪
fG−1(B(Gf−1x0, r)). Further, let f−1x = y then since f is a surjective map,
we have a unique y ∈ f−1

(
B(Gf−1x0, r)

)
with fy = Gy ∈ Fy. ¤

If Y = E and f is the identity map on E then our theorem 5.1 reduces to
the following result of O’Regan et al. [18, Theorem 5.1].

Corollary 5.2. Let E be a complete gauge space, x0 ∈ E , r = {rα}α∈Λ ∈
(0,∞)Λ with F : (B(Gx0, r) ∪ G−1(B(Gx0, r))) → CD(E) and G : E → E

compatible maps on B(Gx0, r) and FG−1(B(Gx0, r)) ⊆ G(E). Suppose G
is continuous and for each α ∈ Λ, there exists a continuous function φα :
[0,∞) → [0,∞) satisfying φα(z) < z for z > 0 and φα strictly increasing on
(0, rα] such that for x, y ∈ B(Gx0, r) ∪G−1(B(Gx0, r)) we have

Dα(Fx, Fy) ≤ φα(Mα(x, y)); (5.1′)

here
M(x, y) = max{dα(Gx,Gy), distα(Gx,Fx), distα(Gy, Fy),

1
2
[distα(Gx,Fy) + distα(Gy, Fx)]}.

Also suppose for each α ∈ Λ that

Φα is strictly increasing on [0,∞); here Φα(x) = x− φα(x) (5.2′)

distα(Gx0, Fx0) < rα − φα(rα) (5.3′)
∞∑

i=0

φi
α(t) < ∞ for t ∈ (0, rα − φα(rα)] (5.4′)

and ∞∑

i=0

φi
α(rα − φα(rα)) ≤ φα(rα). (5.5′)

Finally assume the following condition holds:



for every x ∈ G−1(B(Gx0, r)) and every ε = {εα}α∈Λ ∈ (0,∞)Λ

there exists y ∈ Fx with dα(Gx, y) ≤ distα(Gx,Fx) + εα

for every α ∈ Λ.
(5.6′)
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Then there exists x ∈ B(Gx0, r) with Gx ∈ Fx . Moreover, F and G

have a common fixed point Gx provided GGx = Gx and Gx ∈ B(Gx0, r) ∪
G−1(B(Gx0, r)).

Theorem 5.3. Let Y be an arbitrary space, E be a complete gauge space,
f : Y → E be a bijection map, and U an open subset of E with H : f−1(U ∪
fG−1(U))× [0, 1] → CD(E) and G : Y → E and for each λ ∈ [0, 1], Hλ and
G are f-hybrid compatible on U , and Hλ(G−1(U)) ⊆ Gf−1(E). Assume the
following conditions hold:

(i) Gf−1(U) ⊆ U ;
(ii) Hf−1 is closed, G is continuous;
(iii) for each α ∈ Λ, there exists a continuous strictly increasing function

φα : [0,∞) → [0,∞) satisfying φα(z) < z for z > 0 and for all λ ∈ [0, 1]
and x, y ∈ U ∪ fG−1(U) we have

Dα(Hf−1(x, λ), Hf−1(y, λ)) ≤ φα(Mα(x, y, λ; f−1)),

Mα(x, y, λ; f−1) = max{dα(Gf−1(x), Gf−1(y)), distα(Gf−1(x),Hf−1(x, λ)),

distα(Gf−1(y),Hf−1(y, λ)),
1
2
[distα(Gf−1(x),Hf−1(y, λ))

+ distα(Gf−1(y),Hf−1(x, λ))]};
(iv) for every ε = {εα}α∈Λ ∈ (0,∞)Λ, there exists δ = δ(ε) > 0 (which does

not depend on α) such that when t, s ∈ [0, 1] with |t− s| < δ, then

Dα(Hf−1(x, t),Hf−1(x, s)) ≤ εα

for all x ∈ U and all α ∈ Λ;
(v) for each each α ∈ Λ and for any sα ∈ (0,∞),

∞∑

i=0

φi
α(t) < ∞

for t ∈ (0, sα − φα(sα)] and
∞∑

i=0

φi
α(sα − φα(sα)) ≤ φα(sα);

(vi) for each α ∈ Λ, Φα : [0,∞) → [0,∞) is monotone increasing (here
Φα(x) = x− φα(x));
and

(vii) for every λ ∈ [0, 1] and every ε = {εα}α∈Λ ∈ (0,∞)Λ there exists
y ∈ fG−1(U) with Gf−1y ∈ Ff−1x with

dα(Gf−1x, Gf−1y) ≤ distα(Gf−1x, Ff−1x) + εα

for every α ∈ Λ.
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(viii) there exists α0 ∈ Λ with

inf{distα0(Gf−1(x), Htf
−1(x)) : x ∈ ∂U, t ∈ [0, 1]} > 0;

here Htf
−1(·) = Hf−1(·, t).

In addition assume H0f
−1 and Gf−1 have a coincidence point (i.e. there

exists x ∈ fG−1(U) with

Gf−1(x) ∈ H0f
−1(x)).

Then H1f
−1 and Gf−1 have a coincidence point. Moreover, there exists a

unique y ∈ f−1
(
B(Gf−1x0, r)

)
with fy = Gy ∈ Fy .

Remark 5.2. Note

for λ ∈ [0, 1], Gf−1(x) 6∈ Hf−1(x, λ) for x ∈ ∂U

is implicitly implied by the other assumptions.

Proof. Let

A = {λ ∈ [0, 1] : Gf−1(x) ∈ Hf−1(x, λ) for some x ∈ fG−1(U)}.
Since H0f

−1 and Gf−1 have a coincidence point, A is nonempty.
First we show A is open in [0, 1]. Let λ0 ∈ A. Then there exists x0 ∈

fG−1(U) with
Gf−1(x0) ∈ Hf−1(x0, λ0).

Then Gf−1(x0) ∈ U . Since U is open, there exists δ = {δα}α∈Λ ∈ (0,∞)Λ

with
B(Gf−1(x0), δ) ⊆ U.

Now fix α ∈ Λ. Then by (iv), there exists η(δ) > 0 with

distα(Gf−1(x0),Hf−1(x0, λ) ≤ Dα(Hf−1(x0, λ0),Hf−1(x0, λ)) < δα−φα(δα)

for λ ∈ [0, 1] and |λ− λ0| < η. Now Theorem 5.1 guarantees that there exists
xλ ∈ B(Gf−1(x0), δ) ⊆ U with

Gf−1(xλ) ∈ Hλf−1(xλ)

for λ ∈ [0, 1] and |λ− λ0| < η. As a result A is open in [0, 1].
Next we show A is closed in [0, 1]. Let {λk} be a sequence in A with

λk → λ ∈ [0, 1] as k →∞. By definition, for each k, there exists xk ∈ fG−1(U)
with

Gf−1(xk) ∈ Hf−1(xk, λk).
We claim

inf
k≥1

distα0(Gf−1(xk), ∂U) > 0.
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Suppose it is not true. Fix i ∈ {1, 2, · · · }. Then there exist ni ∈ {1, 2, · · · } and
a yni ∈ ∂U such that

d(Gf−1(xni), yni) <
1

l(i)
(with l(i) →∞ if i →∞).

Since f−1 and G is continuous, we may assume

d(Gf−1(Gf−1(xni)), Gf−1(yni)) <
1
i
.

Therefore, there exist a subsequence Sα0 of {1, 2, · · · } and a sequence {yi} ⊆
∂U (for i ∈ Sα0) such that

d(Gf−1(Gf−1(xi)), Gf−1(yi)) <
1
i

for i ∈ S.

This together with (viii) implies

0 < inf{distα0(Gf−1(x),Hλf−1(x)) : x ∈ ∂U, λ ∈ [0, 1]}
≤ lim inf

i→∞ in Sα0

distα0(Gf−1(yi),Hλif
−1(yi)).

Essentially the same argument as in Theorem 4.5 guarantees that

lim inf
i→∞ in Sα0

distα0(Gf−1(yi),Hλif
−1(yi)) = 0,

so this contradicts (5.17). Consequently (5.16) is true. So, there exists εα0 > 0
with

dα0(Gf−1(xk), z) > εα0

for all k ≥ 1 and for all z ∈ ∂U . Since Gf−1(xk) ∈ U for each k, there exists
ε = {εα}α∈Λ ∈ (0,∞)Λ such that

B(Gf−1(xk), ε) ⊆ U

for k ≥ 1. Fix α ∈ Λ. Then by (iv) there exists an integer n0 (which does not
depend on α) such that

distα(Gf−1(xn0),Hλf−1(xn0)) ≤ Dα(Hf−1(xn0 , λn0),Hf−1(xn0 , λ))

< εα − φα(εα).

Now Theorem 5.1 guarantees that Gf−1 and Hλf−1 have a coincidence point
xλ,n0 ∈ B(Gf−1(xn0), δ) ⊂ U . As a result, λ ∈ A. Hence A is closed in [0, 1].
This completes the proof. ¤

If Y = E and f is the identity map on E then our theorem 5.3 reduces to
the following result of O’Regan et al. [18, Theorem 5.2].

Corollary 5.4. Let E be a complete guage space and U an open subset of
E with H : (U ∪ G−1(U)) × [0, 1] → CD(E) and G : E → E and for each
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λ ∈ [0, 1], Hλ and G are compatible on U , and Hλ(G−1(U)) ⊆ G(E). Assume
the following conditions hold:

(i) G(U) ⊆ U ;
(ii) H is closed, G is continuous;
(iii) for each α ∈ Λ, there exists a continuous strictly increasing function

φα : [0,∞) → [0,∞) satisfying φα(z) < z for z > 0 and for all λ ∈ [0, 1]
and x, y ∈ U ∪G−1(U) we have

Dα(H(x, λ),H(y, λ)) ≤ φα(Mα(x, y, λ)),

Mα(x, y, λ) = max{dα(G(x), G(y)), distα(G(x), H(x, λ)),

distα(G(y),H(y, λ)),
1
2
[distα(G(x),H(y, λ))

+ distα(G(y),H(x, λ))]};
(iv) for every ε = {εα}α∈Λ ∈ (0,∞)Λ, there exists δ = δ(ε) > 0 (which does

not depend on α) such that when t, s ∈ [0, 1] with |t− s| < δ, then

Dα(H(x, t),H(x, s)) ≤ εα

for all x ∈ U and all α ∈ Λ;
(v) for each each α ∈ Λ and for any sα ∈ (0,∞),

∞∑

i=0

φi
α(t) < ∞

for t ∈ (0, sα − φα(sα)] and
∞∑

i=0

φi
α(sα − φα(sα)) ≤ φα(sα);

(vi) for each α ∈ Λ, Φα : [0,∞) → [0,∞) is strictly increasing (here
Φα(x) = x− φα(x));
and

(vii) for every λ ∈ [0, 1] and every ε = {εα}α∈Λ ∈ (0,∞)Λ there exists
y ∈ G−1(U) with Gy ∈ Fx with

dα(Gx,Gy) ≤ distα(Gx,Fx) + εα

for every α ∈ Λ.
(viii) there exists α0 ∈ Λ with

inf{distα0(G(x), Ht(x)) : x ∈ ∂U, t ∈ [0, 1]} > 0;

here Ht(.) = H(., t).
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In addition assume H0 and G have a coincidence point (i.e. there exists x ∈
G−1(U) with G(x) ∈ H0(x)). Then H1 and G have a coincidence point.

O’Regan et al. [18, Theorem 5.3] proved the following result:

Theorem 5.5. Let E be a complete gauge space and U an open subset of
E with H : (U ∪ G−1(U)) × [0, 1] → CD(E) and G : E → E and for each
λ ∈ [0, 1], Hλ and G are compatible on U , and Hλ(G−1(U)) ⊆ G(E). Assume
the following conditions hold:

(i) for λ ∈ [0, 1], G(x) 6∈ H(x, λ) for x ∈ ∂U and G(U) ⊆ U ;
(ii) H is closed, G is continuous and for each α ∈ Λ,

dα(G(x), G(y)) ≤ dα(G(x), y)

for all x ∈ G−1(U) and y ∈ U ;
(iii) for each α ∈ Λ, there exists a continuous strictly increasing function

φα : [0,∞) → [0,∞) satisfying φα(z) < z for z > 0 and for all λ ∈ [0, 1]
and x, y ∈ U ∪G−1(U) we have

Dα(H(x, λ),H(y, λ)) ≤ φα(Mα(x, y, λ)),

Mα(x, y, λ) = max{dα(G(x), G(y)), distα(G(x), H(x, λ)),

distα(G(y),H(y, λ)),
1
2
[distα(G(x),H(y, λ))

+ distα(G(y),H(x, λ))]};
(iv) there exists M = {Mα}α∈Λ ∈ (0,∞)Λ and there exists a continuous

increasing function ψ : [0, 1] → R such that for every α ∈ Λ,

Dα(H(x, t),H(x, s)) ≤ Mα|ψ(t)− ψ(s)|
for all t, s ∈ [0, 1] and x ∈ U ;

(v) for each each α ∈ Λ and for any sα ∈ (0,∞),
∞∑

i=0

φi
α(t) < ∞

for t ∈ (0, sα − φα(sα)] and
∞∑

i=0

φi
α(sα − φα(sα)) ≤ φα(sα);

(vi) for each α ∈ Λ, Φα : [0,∞) → [0,∞) is strictly increasing (here
Φα(x) = x− φα(x)) and

Φ−1
α (a) + Φ−1

α (b) ≤ Φ−1
α (a + b)

for a ≥ 0 and b ≥ 0;
and
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(vii) for every λ ∈ [0, 1] and every ε = {εα}α∈Λ ∈ (0,∞)Λ there exists
y ∈ G−1(U) with Gy ∈ Fx with

dα(Gx,Gy) ≤ distα(Gx,Fx) + εα

for every α ∈ Λ.

In addition assume H0 and G have a coincidence point (i.e. there exists x ∈
G−1(U) with G(x) ∈ H0(x)). Then H1 and G have a coincidence point.

We now extend and improve the above result in the following:

Theorem 5.6. Let Y be an arbitrary space, E be a complete gauge space,
f : Y → E be a bijection map, and U an open subset of E with H : f−1(U ∪
fG−1(U))× [0, 1] → CD(E) and G : Y → E and for each λ ∈ [0, 1], Hλ and
G are f-hybrid compatible on U , and Hλ(G−1(U)) ⊆ Gf−1(E). Assume the
following conditions hold:

(i) for λ ∈ [0, 1], Gf−1(x) 6∈ Hf−1(x, λ) for x ∈ ∂U and Gf−1(U) ⊆ U ;
(ii) Hf−1 is closed, f−1 and G are continuous and for each α ∈ Λ,

dα(Gf−1(x), Gf−1(y)) ≤ dα(Gf−1(x), y)

for all x ∈ fG−1(U) and y ∈ U ;
(iii) for each α ∈ Λ, there exists a continuous strictly increasing function

φα : [0,∞) → [0,∞) satisfying φα(z) < z for z > 0 and for all λ ∈ [0, 1]
and x, y ∈ U ∪ fG−1(U) we have

Dα(Hf−1(x, λ), Hf−1(y, λ)) ≤ φα(Mα(x, y, λ; f−1)),

Mα(x, y, λ; f−1) = max{dα(Gf−1(x), Gf−1(y)), distα(Gf−1(x),Hf−1(x, λ)),

distα(Gf−1(y),Hf−1(y, λ)),
1
2
[distα(Gf−1(x),Hf−1(y, λ))

+ distα(Gf−1(y),Hf−1(x, λ))]};
(iv) there exists M = {Mα}α∈Λ ∈ (0,∞)Λ and there exists a continuous

increasing function ψ : [0, 1] → R such that for every α ∈ Λ,

Dα(Hf−1(x, t),Hf−1(x, s)) ≤ 1
2
Mα|ψ(t)− ψ(s)|

for all t, s ∈ [0, 1] and x ∈ U ;
(v) for each each α ∈ Λ and for any sα ∈ (0,∞),

∞∑

i=0

φi
α(t) < ∞
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for t ∈ (0, sα − φα(sα)] and
∞∑

i=0

φi
α(sα − φα(sα)) ≤ φα(sα);

(vi) for each α ∈ Λ, Φα : [0,∞) → [0,∞) is monotone increasing (here
Φα(x) = x− φα(x)) ;
and

(vii) for every λ ∈ [0, 1] and every ε = {εα}α∈Λ ∈ (0,∞)Λ there exists
y ∈ fG−1(U) with Gf−1y ∈ Ff−1x with

dα(Gf−1x, Gf−1y) ≤ distα(Gf−1x, Ff−1x) + εα

for every α ∈ Λ.

In addition assume H0f
−1 and Gf−1 have a coincidence point (i.e. there

exists x ∈ fG−1(U) with Gf−1(x) ∈ H0f
−1(x)). Then H1f

−1 and Gf−1 have
a coincidence point.

Proof. Let

Q = {(t, x) ∈ [0, 1]× fG−1(U) : Gf−1(x) ∈ Hf−1(x, t)}.
Then Q is nonempty since H0 and G have a coincidence point. On Q define
the partial order

(t, x) ≤ (s, y) iff t ≤ s and dα(Gf−1(x), Gf−1(y)) ≤ Mα[ψ(s)− ψ(t)]

for every α ∈ Λ. Let P be a totally ordered subset of Q and let

t∗ = sup{t : (t, x) ∈ P}.
Take a sequence {(tn, xn)} ⊆ P such that

(tn, xn) ≤ (tn+1, xn+1)

and tn → t∗. Then, as in Theorem 4.6, {Gf−1(xn)} is Cauchy with respect to
dα for each α ∈ Λ and so (t?, x?) ∈ Q with

(t, x) ≤ (t?, x?) for every (t, x) ∈ P.

Thus (t?, x?) is an upper bound of P . By Zorn’s lemma Q admits a maximal
element (t0, x0) ∈ Q. Note x0 ∈ fG−1(U) and Gf−1(x0) ∈ Hf−1(x0, t0).

We claim t0 = 1. Suppose our claim is false. Note since U is open, there
exist δ1, · · · , δm ∈ (0,∞) with

U(Gf−1x0, δ1) ∩ · · · ∩ U(Gf−1x0, δm) ⊆ U ;

here U(Gf−1x0, δi) = {x : dαi(x, Gf−1x0) < δi} for i ∈ {1, 2, · · · ,m} and
αi ∈ Λ for i ∈ {1, 2, · · · ,m}. Choose r = {rα}α∈Λ ∈ (0,∞)Λ and t ∈ (t0, 1]
with

B(Gf−1x0, r) ⊆ U and rα − φα(rα) = Mα[ψ(t)− ψ(t0)].
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Notice for every α ∈ Λ that

distα(Gf−1(x0),Hf−1(x0, t)) ≤ distα(Gf−1(x0), Hf−1(x0, t0))
+Dα(Hf−1(x0, t0),Hf−1(x0, t))

≤ 1
2
Mα[ψ(t)− ψ(t0)]

=
1
2
(rα − φα(rα)) < rα − φα(rα).

Now Theorem 5.1 guarantees that Htf
−1 and Gf−1 have a coincidence point

x ∈ B(Gf−1x0, r). Note x ∈ U and Gf−1(x) ∈ U (from (i)), so x ∈ fG−1(U).
Hence (t, x) ∈ Q and from (ii), we have

dα(Gf−1(x0), Gf−1(x)) ≤ dα(Gf−1(x0), x)

≤ rα ≤ Mα[ψ(t)− ψ(t0)] and t0 < t

for every α ∈ Λ. Therefore, (t0, x0) < (t, x). This contradicts the maximality
of (t0, x0). As a result, t0 = 1 and so we are finished. ¤

Our final result was motivated by a result in [17].

Theorem 5.7. Let Y be an arbitrary space, E be a complete gauge space,
f : Y → E be a bijection map, x0 ∈ E , r = {rα}α∈Λ ∈ (0,∞)Λ with F :
f−1(B(Gf−1x0, r)∪fG−1(B(Gx0, r))) → CD(E) and G : Y → E compatible
maps on B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E). Suppose f−1

and G are continuous and for each α ∈ Λ, there exists a continuous monotone
increasing function φα : [0,∞) → [0,∞) satisfying φα(z) < z for z > 0. Also
assume there exists functions β : Λ → Λ and γ : Λ → Λ such that for each
α ∈ Λ and x, y ∈ B(Gf−1x0, r) ∪ fG−1(B(Gf−1x0, r)) we have

Dα(Ff−1x, Ff−1y) ≤ φβ(α)(dγ(α)(Gf−1x,Gf−1y)). (5.16)

Further suppose the following conditions hold:

for each α ∈ Λ we have distα(Gf−1x0, Ff−1x0) < rα − φβ(α)(rα) (5.17)

and





for every x ∈ fG−1(B(Gf−1x0, r)) and every ε = {εα}α∈Λ ∈ (0,∞)Λ

there exists y ∈ Fx with dα(Gf−1x, y) ≤ distα(Gf−1x, Ff−1x) + εα

for every α ∈ Λ.
(5.18)
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Finally assume for each α ∈ Λ that
∞∑

n=1

φβ(α)φβ(γ(α))...φβ(γn−1(α)) (rγn(α) − φβ(γn(α))(rγn(α))) (5.19)

≤ φβ(α)(rα).

Then there exists x ∈ B(Gf−1x0, r) with Gf−1x ∈ Ff−1x and Ff−1 and
Gf−1 have a common fixed point Gf−1x provided Gf−1Gf−1x = Gf−1x
and Gf−1x ∈ B(Gf−1x0, r) ∪ fG−1(B(Gf−1x0, r)). Moreover, there exists
a unique y ∈ f−1

(
B(Gf−1x0, r)

)
with fy = Gy ∈ Fy .

Proof. From (5.17) and (5.18), we may choose z ∈ Ff−1x0 with

dα(Gf−1x0, z) < rα − φβ(α)(rα) for every α ∈ Λ.

Since Gf−1x0 ∈ B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E) and so
Ff−1(x0) ⊆ Gf−1(E), we have z ∈ Gf−1(E). Therefore, there exists x1 ∈ E
with z = Gf−1x1. As a result, we have

Gf−1x1 ∈ Ff−1x0

and
d(Gf−1x1, Gf−1x0) < rα − φβ(α)(rα) for every α ∈ Λ. (5.20)

Notice Gf−1x1 ∈ B(Gf−1x0, r). Now for α ∈ Λ, choose εα > 0 with

φβ(α)(dγ(α)(Gf−1x0, Gf−1x1)) + εα < φβ(α)(rγ(α) − φβ(γ(α))(rγ(α))) (5.21)

(this is possible from (5.20) and the fact that φα is monotone increasing).
From (5.18) we can choose y ∈ Ff−1x1 such that for every α ∈ Λ, we have

dα(Gf−1x1, y) ≤ distα(Gf−1x1, Ff−1x1) + εα ≤ Dα(Ff−1x0, Ff−1x1) + εα.

Since Gf−1x1 ∈ B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E) we have

Ff−1x1 ⊆ Gf−1(E),

and so y ∈ Gf−1(E). Thus y = Gf−1x2 for some x2 ∈ E. As a result,

dα(Gf−1x1, Gf−1x2) ≤ distα(Gf−1x1, Ff−1x1) + εα

≤ Dα(Ff−1x0, Ff−1x1) + εα

≤ φβ(α)(dγ(α)(Gf−1x0, Gf−1x1)) + εα

and this together with (5.21) gives for each α ∈ Λ that

dα(Gf−1x1, Gf−1x2) < φβ(α)(rγ(α) − φβ(γ(α))(rγ(α))). (5.22)
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Notice for each α ∈ Λ

dα(Gf−1x2, Gf−1x0) ≤ dα(Gf−1x0, Gf−1x1) + dα(Gf−1x1, Gf−1x2)
< [rα − φβ(α)(rα)] + φβ(α)(rγ(α)

−φβ(γ(α))(rγ(α)))
≤ [rα − φβ(α)(rα)] + φβ(α)(rα) = rα

and so Gf−1x2 ∈ B(Gf−1x0, r). Now fix α ∈ Λ and choose δα > 0 so that

φβ(α)(dγ(α)(Gf−1x1, Gf−1x2)) + δα < φβ(α)φβ(γ(α))(rγ2(α) − φβ(γ2(α))(rγ2(α))).
(5.23)

Again from (5.18) we can choose z ∈ Ff−1x2 such that for every α ∈ Λ, we
have

dα(Gf−1x2, z) ≤ distα(Gf−1x2, Ff−1x2) + δα ≤ Dα(Ff−1x1, Ff−1x2) + δα.

Since Gf−1x2 ∈ B(Gf−1x0, r) and FG−1(B(Gf−1x0, r)) ⊆ Gf−1(E) we have

Ff−1x2 ⊆ Gf−1(E),

and so z ∈ Gf−1(E). Thus z = Gf−1x2 for some x2 ∈ E. Consequently,

dα(Gf−1x2, Gf−1x3) ≤ distα(Gf−1x2, Ff−1x2) + δα

≤ Dα(Ff−1x1, Ff−1x2) + δα

≤ φβ(α)(dγ(α)(Gf−1x1, Gf−1x2)) + δα

and this together with (5.23) yields for each α ∈ Λ that

dα(Gf−1x2, Gf−1x3) < φβ(α)φβ(γ(α))(rγ2(α) − φβ(γ2(α))(rγ2(α))). (5.24)

Notice Gf−1x3 ∈ B(Gf−1x0, r). Proceed inductively to obtain Gf−1xn+1 ∈
Ff−1xn for n ∈ {2, 3, · · · } such that

dα(Gf−1xn, Gf−1xn+1) < φβ(α)φβ(γ(α)) · · ·φβ(γn−1(α))(rγn(α)

− φβ(γn(α))(rγn(α)))
(5.25)



160 H. K. Pathak, M. S. Khan and J. K. Kim

for each α ∈ Λ. Notice Gf−1xn+1 ∈ B(Gf−1x0, r) for each n ∈ {2, 3, · · · }
since for α ∈ Λ we have

dα(Gf−1xn+1, Gf−1x0)

≤ dα(Gf−1x0, Gf−1x1) + dα(Gf−1x1, Gf−1x2) + · · ·
+ dα(Gf−1xn, Gf−1xn+1)

≤
∞∑

k=1

φβ(α)φβ(γ(α))...φβ(γk−1(α))(rγk(α) − φβ(γk(α))(rγk(α)))

+ dα(Gf−1x0, Gf−1x1)

≤ dα(Gf−1x0, Gf−1x1) + φβ(α)(rα)

< [rα − φβ(α)(rα)] + φβ(α)(rα)
= rα.

Also for each α ∈ Λ and n, p ∈ {0, 1, · · · }, we have

dα(Gf−1xn+p, Gf−1xn) ≤
∞∑

k=n

φβ(α)φβ(γ(α))...φβ(γk−1(α))(rγk(α) −

φ(β(γk(α))(rγk(α))).

This together with (5.19) guarantees that {Gf−1xn} is a Cauchy sequence with
respect to dα. Consequently, there exists x ∈ B(Gf−1x0, r) with Gf−1xn →
x. Now since Gf−1xn+1 ∈ Ff−1xn for n ∈ {1, 2, · · · }, we have from the
continuity of f−1 and G and f -hybrid compatibility of F and G that

lim
n→∞ distα(Gf−1x, Ff−1Gf−1xn) = 0

for each α ∈ Λ. Now fix α ∈ Λ. Then

distα(Gf−1x, Ff−1x) ≤ distα(Gf−1x, Ff−1Gf−1xn)
+Dα(Ff−1Gf−1xn, Ff−1x)

≤ distα(Gx,FGxn) +
φβ(α)(dγ(α)(Gf−1Gf−1xn, Gf−1x)).

Taking the limit as n → ∞, we obtain distα(Ff−1x,Gf−1x) = 0 for each
α ∈ Λ. Thus

Gf−1x ∈ Ff−1x = Ff−1x.

As in Theorem 4.1 it can be seen that Ff−1 and Gf−1 have a common
fixed point provided Gf−1x = Gf−1Gf−1x and Gf−1x ∈ B(Gf−1x0, r) ∪
fG−1(B(Gf−1x0, r)). Further, let f−1x = y then since f is a surjective map
we have a unique y ∈ f−1

(
B(Gf−1x0, r)

)
with fy = Gy ∈ Fy. ¤
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Corollary 5.8. Let E be a complete gauge space, x0 ∈ E , r = {rα}α∈Λ ∈
(0,∞)Λ with F : (B(Gx0, r) ∪ G−1(B(Gx0, r))) → CD(E) and G : E → E

compatible maps on B(Gx0, r) and FG−1(B(Gx0, r)) ⊆ G(E). Suppose G is
continuous and for each α ∈ Λ, there exists a continuous strictly increasing
function φα : [0,∞) → [0,∞) satisfying φα(z) < z for z > 0. Also assume
there exists functions β : Λ → Λ and γ : Λ → Λ such that for each α ∈ Λ and
x, y ∈ B(Gx0, r) ∪G−1(B(Gx0, r)) we have

Dα(Fx, Fy) ≤ φβ(α)(dγ(α)(Gx,Gy)).

Further suppose the following conditions hold:

for each α ∈ Λ we have distα(Gx0, Fx0) < rα − φβ(α)(rα)

and





for every x ∈ G−1(B(Gx0, r)) and every ε = {εα}α∈Λ ∈ (0,∞)Λ

there exists y ∈ Fx with dα(Gx, y) ≤ distα(Gx,Fx) + εα

for every α ∈ Λ.

Finally assume for each α ∈ Λ that
∞∑

n=1

φβ(α)φβ(γ(α))...φβ(γn−1(α)) (rγn(α) − φβ(γn(α))(rγn(α))) ≤ φβ(α)(rα).

Then there exists x ∈ B(Gx0, r) with Gx ∈ Fx . Moreover, F and G

have a common fixed point Gx provided GGx = Gx and Gx ∈ B(Gx0, r) ∪
G−1(B(Gx0, r)).
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