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Abstract. In this paper, we suggest an iterative schemes on extragradient methods for find-

ing a common element of the set of solutions of generalized mixed equilibrium problems and

fixed points of a nonexpansive mappings, and the set of solutions of a variational inequality

problems for inverse strongly monotone mappings. We prove the convergence theorems for

the sequences generated by these iterative process in Hilbert spaces.

1. Introduction and preliminaries

There are various problems reduced to finding solutions of equilibrium prob-
lems, which cover variational inequalities, variational inclusions, complemen-
tarity problems, saddle point problems, noncooperative game theory, minimax
theory, fixed point problems as special cases.

Equilibrium problems which was initiated by Blum and Oettli [5] has been
extensively studied as an effective and powerful tools for a wide range of prob-
lems which arises in economics, finance, image reconstruction, ecology, trans-
portation network, engineering and optimization problems [2, 8, 20, 35]. For
the variational inequality problem, projection algorithm is efficient. However,
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they request the involving monotone mapping on inverse strongly monotone
[24]. To relax the restriction on inverse strongly monotone extragradient al-
gorithms, which have been extensively studied [9, 25] are considered for a
variational inequality involving a continuous and monotone mapping in this
works.

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm
‖ · ‖, respectively. Let C be a nonempty closed convex subsets of H. Let
B : C → H be a nonlinear mapping, F : C × C → R be a bifunction and
ϕ : C → R ∪ {+∞} be a function, where R is the set of real numbers.

We consider the generalized mixed equilibrium problems for finding x ∈ C
such that

F (x, y) + ϕ(y) + 〈Bx, y − x〉 ≥ ϕ(x), ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GMEP (F,B, ϕ). It is easy to see
that x is a solution of problem (1.1) implies that x ∈ domϕ = {x ∈ C : ϕ(x) <
+∞}.

Special cases:
(i) If B = 0, then problem (1.1) is reduces to the following mixed equilib-

rium problem for finding x ∈ C such that

F (x, y) + ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C, (1.2)

studied by Ceng and Yao [7] and also Peng and Yao [26, 27] and its
solution set is denoted by MEP (F,ϕ).

(ii) If ϕ = 0, then problem (1.1) is reduces to the following generalized
equilibrium problem for finding x ∈ C such that

F (x, y) + 〈Bx, y − x〉 ≥ 0 ∀y ∈ C, (1.3)

studied by Takahashi and Takahashi [29].
(iii) If ϕ = 0 and B = 0 then problem (1.1) is equivalent to the following

equilibrium problem for finding x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C, (1.4)

studied by Blum and Oettli [5].
(iv) If F (x, y) = 0 for all x, y ∈ C, then problem (1.1) is equivalent to

the following generalized nonlinear variational inclusion problem for
finding x ∈ C such that

〈Bx, y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C, (1.5)

which is variant form of [3, 4, 28].
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(v) If ϕ = 0 and F (x, y) = 0 for all x, y ∈ C, then problem (1.1) becomes
the following variational inequality problem for finding x ∈ C such that

〈Bx, y − x〉 ≥ 0, ∀y ∈ C, (1.6)

studied by Lions and Stampacchia [20]. The set of solutions of (1.6)
is denoted by V IP (B,C).

(vi) If B = 0 and F (x, y) = 0 for all x, y ∈ C, then problem (1.1) is reduces
to the following minimization problem for finding x ∈ C such that

ϕ(y) ≥ ϕ(x), ∀y ∈ C. (1.7)

In 1976, Korpelevich [16] introduced the extragradient method for the vari-
ational inequality problems in the finite dimensional Euclidean spaces as fol-
lows::

x1 = x ∈ C,
yn = PC(xn − λBxn),

xn+1 = PC(xn − λByn), for every n = 0, 1, · · · , λ ∈ (0, 1
k )

(1.8)

where C is a closed convex subset of Rn, B : C → Rn is a monotone and
k-Lipschitz continuous mapping and PC is the metric projection of Rn onto
C. She showed that if V IP (B,C) is nonempty, then the sequences {xn} and
{yn} generated by (1.8), converge to the same point x ∈ V IP (B,C).

Recently, Zeng and Yao [37], and Nadezhkina and Takahashi [21] suggested
some iterative schemes based on the extragradient techniques for finding the
common point for the set of fixed points of nonexpansive mappings and the
set of solutions of a variational inequality problems for a monotone, Lipschitz
continuous mapping. Yao and Yao [34] defined the iterative schemes based
on the extragradient techniques for finding the common point of the set of
fixed points of nonexpansive mappings and the set of solutions of a variational
inequality problems for a k-inverse strongly monotone mapping. Plubtieng
and Punpaeng [23] introduced an iterative schemes based on the extragra-
dient method for finding the common element of the set of fixed points of
nonexpansive mappings, the set of solutions of an equilibrium problem and
the set of solution of a variational inequality problems for α-inverse strongly
monotone mappings.

In 2003, Takahashi and Toyoda [30] defined the following iterative scheme:

xn+1 = αnxn + (1− αn)SPC(xn − λnTxn), (1.9)

where {αn} is a sequence in (0, 1) and {λn} is a sequence in (0, 2α). They
show that if F (S) ∩ V IP (A,C) 6= ∅, then the sequence {xn} defined by (1.9)
converges weakly to some point z ∈ F (S) ∩ V IP (A,C), where F (S) denote
the fixed point set of the mapping S.
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Recently Zeng and Yao [37] introduced the following iterative scheme:
x0 = x ∈ C,
yn = PC(xn − λnxn),

xn+1 = αnx0 + (1− αn)SPC(xn − λnAyn),

(1.10)

where{λn} and {αn} satisfy the following conditions:

(i) λnk ⊂ (0, 1− δ) for some δ ∈ (0, 1);
(ii) αn ⊂ (0, 1),

∑∞
n=1 αn =∞, limn→∞ αn = 0.

And, they proved that the sequence {xn} and {yn} generated by (1.10) con-
verge strongly to the some point PF (S)∩V IP (C,B)x0 provided that

lim
x→∞

‖xn+1 − xn‖ = 0.

In 2010, Noor and Rassias [22], Huang et al. [10], defined the set of projec-
tion residual function by

Rλ(x) = x− PC(x− λAx). (1.11)

It is well known that x ∈ C is a solution of variational inequality (1.6) if
and only if x ∈ C is a zero of the projection residual function (1.11). They
proved the strong convergence result of the iterative scheme (1.9) using the
error analysis techniques.

By the recent works [1, 2, 6, 10, 12, 13, 14, 15, 17, 19, 23, 11, 28], we define
an iterative process based on the extragradient method for finding a common
point of the set of solution of a generalized mixed equilibrium problems.

x1 = x ∈ C,
F (un, y) + 〈Bxn, y − un〉+ ϕ(y)− ϕ(un) + 1

rn
〈y − un, un − xn〉 ≥ 0,∀y ∈ C,

yn = PC(un − λnAun),

xn+1 = αnxn + α
′
nS[βnxn + (1− βn)PC(yn − λnAyn)] + α

′′
nen,

where {en} is a bounded sequence in C and {αn}, {α
′
n}, {α

′′
n}, {βn}, {rn}, {λn}

satisfied some parameter control conditions.

2. Preliminaries

In this paper, we assume that C is a closed convex subset of a real Hilbert
space H. Then there exists a unique nearest point in C denoted by PC(x)
such that

‖x− PC(x)‖ ≤ ‖x− y‖, ∀y ∈ C.
PC is called the metric projection of H onto C. It is well known that PC is a
nonexpansive mapping from H onto C and satisfies

〈x− y, PC(x)− PC(y)〉 ≥ ‖PC(x)− PC(y)‖2, ∀x, y ∈ H.
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Moreover, PC(x) is characterized by the following properties: PC(x) ∈ C and

〈x− PC(x), y − PC(y)〉 ≤ 0, (2.1)

‖x− y‖2 ≥ ‖x− PC(x)‖2 + ‖y − PC(x)‖2, ∀x ∈ H, y ∈ C.

Definition 2.1. A mapping A : C → H is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C,

and α-inverse strongly monotone if there exists a positive real number α such
that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

Definition 2.2. A mapping S : C → C is called nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C,

and pseudocontractive if

〈Sx− Sy, x− y〉 ≤ ‖x− y‖2, ∀x, y ∈ C,

and also called k-strictly pseudocontractive if there exists a constant k ∈ [0, 1)
such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + κ‖(I − S)x− (I − S)y‖2, ∀x, y ∈ C.

Let A : C → H be a monotone mapping. The variational inequality problem
has the characterization by projection (2.1) as follows:

u ∈ V IP (A,C)⇔ u = PC(u− λAu),∀λ > 0. (2.2)

For solving the generalized mixed equilibrium problems, let us give the
following assumptions for the bifunction F , function ϕ and the set C:

(A1) F (x, x) = 0,∀x ∈ C;
(A2) F is monotone i.e.,

F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C;

(A3) for any y ∈ C, x ` F (x, y) is weakly upper semi-continuous;
(A4) for each x ∈ C, y ` F (x, y) is convex;
(A5) for any x ∈ C, y ` F (x, y) is lower semi-continuous;
(B1) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊂ C and

yx ∈ C ∩ domϕ such that for every z ∈ C −Dx,

F (z, yn) + ϕ(yx) + 〈Bz, yx − z〉+
1

r
〈yn − z, z − x〉 ≤ ϕ(z);

(B2) C is a bounded set.
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Lemma 2.3. [26] Let C be a nonempty closed convex subset of a Hilbert space
H. Let F : C × C → R be a function satisfying (A1)-(A5) and ϕ : C →
R∪{+∞} be a proper convex lower-semicontinuous. Assume that either (B1)
or (B2) holds. For r > 0 and x ∈ H, define a mapping Tr : H → C as follows:

Tr =
{
z ∈ C : F (z, y) + ϕ(y) + 〈Bz, y − z〉+

1

r
〈y − z, z − x〉 ≤ ϕ(z), ∀y ∈ C

}
.

Then the following statements hold:

(1) for each x ∈ H,Tr(x) 6= ∅;
(2) Tr is single-valued;
(3) Tr is firmly nonexpansive, i.e., for any x, y ∈ H

‖Tr(x)− Tr(y)‖2 ≤ 〈Tr(x)− Tr(y), x− y〉;

(4) F (Tr(I − rB)) = GMEP (F,B, ϕ);
(5) GMEP (F,B, ϕ) is closed and convex.

Lemma 2.4. [6] If A : C → H is α-inverse strongly monotone, then for
any λ ∈ [0, 4α], Rλ(x) is (1 − λ

4α)-inverse strongly monotone and for x∗ ∈
V IP (A,C),

〈x− x∗, Rλ(x)〉 ≥ (1− λ

4α
)‖Rλ(x)‖2,

where Rλ(x) = x− PC(x− λAx).

Lemma 2.5. [10] For all x ∈ H and λ′ ≥ λ > 0, we have

‖Rλ(x)‖ ≤ ‖Rλ′(x)‖

where Rλ(x) = x− PC(x− λAx).

Lemma 2.6. [32] Let {an}∞n=1 be a sequence of real numbers in [0, 1] such that∑∞
n=1 an = 1. Then we have

‖
∞∑
i=1

aixi‖2 ≤
∞∑
i=1

ai‖xi‖2,

for any given bounded sequence {xn}∞n=1 in H.

Lemma 2.7. [18] Let {an} and {bn} be two sequences of nonnegative numbers
such that

∑∞
n=1 bn < +∞ and

an+1 ≤ an + bn, ∀n ∈ N.

If there exists a convergent subsequence of {an} to 0, then limn→∞ an = 0.
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Lemma 2.8. [33] Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− ρn)an + ρnδn, n ≥ 1,

where {ρn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 ρn =∞;

(ii) lim supn→∞ δn ≤ 0, or
∑∞

n=1 | ρnδn |<∞.
Then limn→∞ an = 0.

Lemma 2.9. [36] Let 0 < p ≤ tn ≤ q < 1 for all n ≥ 1. Suppose that {xn}
and {yn} are sequences in H such that

lim sup
n→∞

‖xn‖ ≤ d, lim sup
n→∞

‖yn‖ ≤ d

and

lim
n→∞

‖tnxn + (1− tn)yn‖ = d,

for some d ≥ 0. Then

lim
n→∞

‖xn − yn‖ = 0.

It is also known that H satisfies Opial’s condition, that is, for any sequence
{xn} with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x.

Lemma 2.10. [31] Let C be a nonempty closed convex subset of a real Hilbert
space H and S : C → C be a strictly pseudocontractive mapping. If {xn} is a
sequence in C such that xn ⇀ x and limn→∞ ‖xn − Sxn‖ = 0, then x = Sx.

Lemma 2.11. [31] Let S : C → C be a k-strictly pseudocontractive mapping.
Define St : C → C by

Stx = tx+ (1− t)Sx
for each x ∈ C. Then for t ∈ [k, 1), St is nonexpansive such that F (St) = F (S).

Lemma 2.12. [30] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let {xn} be a sequence in H. Suppose that for any x∗ ∈ C

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖.

Then

lim
n→∞

PC(xn) = z ∈ C.
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3. Main results

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let
F : C × C → R be a bifunction satisfying (A1)-(A5), and ϕ : C → R ∪ {+∞}
be a proper lower semicontinuous and convex function. Let A : C → H be
an α-inverse strongly monotone mapping and B : C → H be a β-inverse
strongly monotone mapping. Let S : C → C be a nonexpansive and k-strictly
pseudocontractive mapping such that

Ω := F (S) ∩ V IP (A,C) ∩GMEP (F,B, ϕ) 6= ∅.

Let {αn}, {α
′
n}, {α

′′
n} and {βn} be the sequences of real numbers in (0, 1). As-

sume that either (B1) or (B2) holds. Let {xn}, {yn} and {un} be the sequences
generated by

x1 = x ∈ C,
F (un, y) + 〈Bxn, y − un〉+ ϕ(y)− ϕ(un) + 1

rn
〈y − un, un − xn〉 ≥ 0,∀y ∈ C,

yn = PC(un − λnAun),

xn+1 = αnxn + α
′
nS[βnxn + (1− βn)PC(yn − λnAyn)] + α

′′
nen,

(3.1)
where {en} is a bounded sequence in C. Suppose that the following conditions
hold:

(i) αn + α
′
n + α

′′
n = 1, 0 < a ≤ αn ≤ b < 1;

(ii) 0 < rn < 2β, {λn} ⊂ [a, b] for some a, b ∈ (0, 2α);
(iii) {α} ⊂ [c, d], {β} ⊂ [e, f ] for some c, d, e, f ∈ (0, 1);

(iv) lim infn→∞ rn > 0,
∑∞

n=1 | α
′′
n |<∞.

Then {xn} converges strongly to p∗ ∈ Ω, where p∗ = limn→∞ PΩ(xn).

Proof. We divide the proof into five steps:

Step 1. We claim that {xn} is bounded and

lim
n→∞

Ra(un) = lim
n→∞

Rλn(un) = 0.

Put vn = PC(yn − λnAyn) and wn = βnxn + (1− βn)vn, then we have

Rλn(un) = un − PC(un − λnAun)

and

Rλn(yn) = yn − PC(yn − λnAyn),

for every n = 1, 2, · · · .
Let p ∈ Ω. Then, for the sequence of mappings {Trn} defined in Lemma

2.3, we have

p = PC(p− λnAp) = Trn(p− rnBp).
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From un = Trn(xn − rnBxn) ∈ C, the β-inverse strongly monotonicity of B
and 0 < rn < 2β, we have

‖un − p‖2 = ‖Trn(xn − rnBxn)− Trn(p− rnBp)‖2

≤ ‖(xn − rnBxn)− (p− rnBp)‖2

≤ ‖xn − p‖2 − 2rn〈xn − p,Bxn −Bp〉+ r2
n‖Bxn −Bp‖2

≤ ‖xn − p‖2 − 2rnβ‖Bxn −Bp‖2 + r2
n‖Bxn −Bp‖2

≤ ‖xn − p‖2 + rn(rn − 2β)‖Bxn −Bp‖2

≤ ‖xn − p‖2. (3.2)

Hence, from Lemma 2.4, we have

‖yn − p‖2 = ‖un −Rλn(un)− p‖2

= ‖un − p‖2 − 2〈un − p,Rλn(un)〉+ ‖Rλn(un)‖2

≤ ‖un − p‖2 − 2(1− λn
4α

)‖Rλn(un)‖2 + ‖Rλn(un)‖2

≤ ‖un − p‖2 − (1− λn
2α

)‖Rλn(un)‖2, (3.3)

which implies from (3.2) that

‖yn − p‖2 ≤ ‖xn − p‖2 − (1− λn
2α

)‖Rλn(un)‖2. (3.4)

By the same process an in (3.3), we also have from (3.4) that

‖vn − p‖2 ≤ ‖yn − p‖2 − (1− λn
2α

)‖Rλn(yn)‖2

≤ ‖yn − p‖2 − (1− λn
2α

)‖Rλn(yn)‖2 (3.5)

≤ ‖xn − p‖2 − (1− λn
2α

)‖Rλn(un)‖2

− (1− λn
2α

)‖Rλn(yn)‖2.
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Further from (3.1) and (3.5), we have

‖wn − p‖2 = β2
n‖xn − p‖2 + 2βn(1− βn)〈xn − p, vn − p〉

+ (1− βn)2‖vn − p‖2

= β2
n‖xn − p‖2 + 2βn(1− βn)‖xn − p‖2

+ (1− βn)2‖xn − p‖2

− (1− βn)2(1− λn
2α

)‖Rλn(un)‖2 (3.6)

− (1− βn)2(1− λn
2α

)‖Rλn(yn)‖2

≤ ‖xn − p‖2 − (1− βn)2(1− λn
2α

)‖Rλn(un)‖2

− (1− βn)2(1− λn
2α

)‖Rλn(yn)‖2.

Let Sn = βnI+(1−βn)S. Then Sn is nonexpansive from the nonexpansivity
of S, for each n ∈ N , and using Lemma 2.11, we find that F (Sn) = F (S).
Since 0 < λn < 2α and from (3.6), we have

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + α
′
n‖Snwn − p‖2 + α

′′
n‖en − p‖

≤ αn‖xn − p‖2 + α
′
n‖wn − p‖2 + α

′′
n‖en − p‖

≤ αn‖xn − p‖2 + α
′
n[‖xn − p‖2 − (1− βn)2(1− λn

2α
)‖Rλn(un)‖2

− (1− βn)2(1− λn
2α

)‖Rλn(yn)‖2] + α
′′
n‖en − p‖

≤ (αn + α
′
n)‖xn − p‖2 − α

′
n(1− βn)2(1− λn

2α
)‖Rλn(un)‖2

− α′
n(1− βn)2(1− λn

2α
)‖Rλn(yn)‖2 + α

′′
n‖en − p‖

≤ (1− α′′
n)‖xn − p‖2 − α

′
n(1− βn)2(1− λn

2α
)‖Rλn(un)‖2 (3.7)

− α′
n(1− βn)2(1− λn

2α
)‖Rλn(yn)‖2 + α

′′
n‖en − p‖

≤ (1− α′′
n)‖xn − p‖2 + α

′′
n{‖en − p‖

− α′
n(1− βn)2(1− λn

2α
)‖Rλn(un)‖2

− α′
n(1− βn)2(1− λn

2α
)‖Rλn(yn)‖2}

≤ ‖xn − p‖2 + ‖en − p‖.
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Hence {‖xn−p‖} is a bounded and nonincreasing sequence, so limn→∞ ‖xn−p‖
exists. Hence {xn} is bounded. Consequently the sets {un}, {vn}, {wn}, {yn}
are also bounded.

By inequality (3.7), we have

α
′
n(1− βn)2(1− λn

2α
)‖Rλn(un)‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ‖en − p‖.

From the conditions (i) and (ii), there exists a constant M1 > 0 such that

M1‖Rλn(un)‖2 ≤ α
′
n(1− βn)2(1− λn

2α
)‖Rλn(un)‖2 + ‖en − p‖

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ‖en − p‖.

It follows that

M1

∞∑
n=1

‖Rλn(un)‖2 ≤
∞∑
n=1

[‖xn − p‖2 − ‖xn+1 − p‖2 + ‖en − p‖]

= ‖x1 − p‖2 + ‖e1 − p‖
< ∞.

Hence, limn→∞ ‖Rλn(un)‖ = 0. And so, we have

lim
n→∞

Rλn(un) = 0.

Since

Rλn(un) = un − PC(un − λnAun) = un − yn,
we have

lim
n→∞

‖un − yn‖ = 0.

Notice that λn ≥ a, then by Lemma 2.5,

‖Ra(un)‖ ≤ ‖Rλn(un)‖.

Therefore, we have

lim
n→∞

Ra(un) = lim
n→∞

Rλn(un) = 0. (3.8)

By the same way, we also obtain

lim
n→∞

‖Rλn(yn)‖ = lim
n→∞

‖yn − vn‖ = 0,

and thus, we have

lim
n→∞

‖un − vn‖ = 0. (3.9)

Step 2. We show that

lim
n→∞

‖xn − un‖ = lim
n→∞

‖Snxn − xn‖ = 0.
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Indeed, for any p ∈ Ω, it follows from (3.1) and (3.5) that

‖wn − p‖2 = βn‖xn − p‖2 + (1− βn)‖vn − p‖2 − βn(1− βn)‖xn − vn‖2

≤ ‖xn − p‖2 − βn(1− βn)‖xn − vn‖2,
which implies that

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + α
′
n‖wn − p‖2

− αnα
′
n‖Snwn − xn‖2 + α

′′
n‖en − p‖

≤ αn‖xn − p‖2 + α
′
n‖xn − p‖2 (3.10)

− α′
nβn(1− βn)‖xn − vn‖2

− αnα
′
n‖Snwn − xn‖2 + α

′′
n‖en − p‖

≤ (α+ α
′
)‖xn − p‖2 − α

′
nβn(1− βn)‖xn − vn‖2

− αnα
′
n‖Snwn − xn‖2 + α

′′
n‖en − p‖.

Thus, it follow from (3.10) that

αnα
′
n‖Snwn − xn‖2 ≤ (1− α′′

n)‖xn − p‖2 − ‖xn+1 − p‖2 + α
′′
n‖en − p‖.

From the condition (ii), there exists a constant M2 > 0 such that

M2‖Snwn − xn‖2 ≤ αnα
′
n‖Snwn − xn‖2

≤ (1− α′′
n)‖xn − p‖2 − ‖xn+1 − p‖2 + α

′′
n‖en − p‖.

Hence, we have

M2

∞∑
n=1

‖Snwn − xn‖2 ≤
∞∑
n=1

[
(1− α′′

n)‖xn − p‖2 − ‖xn+1 − p‖2 + α
′′
n‖en − p‖

]
= ‖x1 − p‖2 + ‖e1 − p‖
<∞.

Hence

lim
n→∞

‖Snwn − xn‖ = 0. (3.11)

From (3.10), we also get

α
′
nβn(1− βn)‖xn − vn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + α”

n‖en − p‖.
Similarly, we obtain

lim
n→∞

‖xn − vn‖ = 0. (3.12)

This combinine with (3.9), then we have

lim
n→∞

‖xn − un‖ = 0. (3.13)
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Since

‖Snxn − xn‖ ≤ ‖Snxn − Snvn‖+ ‖Snvn − Snwn‖+ ‖Snwn − xn‖
≤ ‖xn − vn‖+ ‖vn − wn‖+ ‖Snwn − xn‖
≤ ‖xn − vn‖+ βn‖xn − vn‖+ ‖Snwn − xn‖,

it implies from (3.11)-(3.12) that

lim
n→∞

‖Snxn − xn‖ = 0. (3.14)

Step 3. Next, we prove that there exists a convergent subsequence {xnk
} of

{xn} such that limk→∞ xnk
= p∗ for some p∗ ∈ C. Moreover

p∗ ∈ Ω = F (S) ∩ V IP (A,C) ∩GMEP (F,B, ϕ).

Since {xn} is a bounded sequence, there exists a weakly convergent subse-
quence {xnk

} such that xnk
⇀ p∗. It implies from (3.11) and (3.13) that

Snwnk
⇀ p∗(k → ∞) and unk

⇀ p∗(k → ∞). Since A is inverse strongly
monotone with the positive constant α > 0, we have

α‖Ax−Ay‖2 ≤ 〈Ax−Ay, x− y〉 ≤ ‖Ax−Ay‖‖x− y‖.

Hence ‖Az −Ay‖ ≤ 1
α‖x− y‖, it means that A is 1

α -Lipschitz continuous.

From the 1
α -Lipschitz continuity of A and the continuity of PC , it follows

that Ra(x) = x−PC [x− aAx] is also continuous. Notice that ρn ≥ a, then by
Lemma 2.5, ‖Ra(xn)‖ ≤ ‖Rρn(xn)‖. Then from Step 1,

lim
k→∞

‖Ra(xnk
)‖ = lim

k→∞
‖Rρn(xnk

)‖ = 0.

Therefore from the continuity of Ra(x),

Ra(p
∗) = lim

k→∞
Ra(xnk

) = 0.

This show that p∗ is a solution of the variational inequality (1.6), that is
p∗ ∈ V IP (A,C). From (3.12), limk→∞ ‖xnk

−p∗‖ = 0, and the property of the
nonexpansivity of the mapping S, it follows that p∗ = Sp∗, that is, p∗ ∈ F (S).
Finally, from Theorem 3.1 in [5], we prove that p∗ ∈ GMEP (F,B, ϕ). Thus,
we have

p∗ ∈ Ω := F (S) ∩ V IP (A,C) ∩GMEP (F,B, ϕ).
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Next, we will prove that xnk
→ p∗(k →∞). From (3.1), (3.6) and (3.7) we

can calculate that

‖xn+1 − p∗‖2 = 〈αnxn + α
′
nSnwn + α

′′
nen − p∗, xn+1 − p∗〉

= αn〈xn − p∗, xn+1 − p∗〉+ α
′
n〈Snwn − p∗, xn+1 − p∗〉

+ α
′′
n〈en − p∗, xn+1 − p∗〉

≤ αn‖xn − p∗‖2 + α
′
n〈Snwn − p∗, xn+1 − p∗〉

+ α
′′
n〈en − p∗, xn+1 − p∗〉

≤ αn‖xn − p∗‖2 + α
′
n〈Snwn − p∗, xn+1 − xn〉

+ α
′
n〈Snwn − p∗, xn − p∗〉+ α

′′
n〈en − p∗, xn+1 − p∗〉

≤ αn‖xn − p∗‖2 + α
′
n‖xn − p∗‖2 + α

′
n〈Snwn − p∗, xn+1 − xn〉

+ α
′′
n〈en − p∗, xn+1 − p∗〉

≤ (αn + α
′
n)‖xn − p∗‖2 + α

′
n〈Snwn − p∗, xn+1 − xn〉

+ α
′′
n〈en − p∗, xn+1 − p∗〉

≤ (1− α′′
n)‖xn − p∗‖2 + α

′′
n

(α′
n

α′′
n

)
〈Snwn − p∗, xn+1 − xn〉

+ 〈en − p∗, xn+1 − p∗〉.

Since Snwnk
⇀ p∗ and xnk

⇀ p∗ as k → ∞, from Lemma 2.8, we conclude
that

‖xnk
− p∗‖ → 0, (k →∞).

Using the Kadec-Klee property of H, we obtain that limk→∞ xnk
= p∗.

Step 4. We claim that the sequence {xn} generated by algorithm (3.1) con-
verges strongly to p∗ ∈ Ω := F (S) ∩ V IP (A,C) ∩GMEP (F,B, ϕ). From the
result of Step 3, we know that p∗ ∈ Ω. Let p = p∗ in (3.7). Consequently,

‖xn+1 − p∗‖ ≤ ‖xn − p∗‖+ ‖en − P ∗‖.

And also, we know that, limk→∞ ‖xnk
− p∗‖ = 0 from Step 3. Then from

Lemma 2.7, we have

lim
n→∞

‖xn − p∗‖ = 0.

Therefore limn→∞ xn = p∗.

Step 5. Finally, We claim that p∗ = limn→∞ PΩxn. From (2.1), we have

〈xn − PΩxn , p
∗ − PΩxn〉 ≤ 0. (3.15)
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By (3.7) and Lemma 2.12, limn→∞ PΩxn = q∗ for some q∗ ∈ Ω. Since limn→∞ xn =
p∗ from Step 4, taking the limit in (3.15), we have

〈p∗ − q∗ , p∗ − q∗〉 ≤ 0,

and this means that p∗ = q∗. Hence

lim
n→∞

PΩxn = p∗.

This completes the proof �
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