
Nonlinear Functional Analysis and Applications
Vol. 22, No. 4 (2017), pp. 711-722

ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2017 Kyungnam University Press

KUPress

EXISTENCE OF SOLUTIONS OF FRACTIONAL PARTIAL
INTEGRODIFFERENTIAL EQUATIONS WITH

NEUMANN BOUNDARY CONDITION

A. Akilandeeswari1, K. Balachandran2 and N. Annapoorani3

1Department of Mathematics
Bharathiar University, Coimbatore, India
e-mail: akilamathematics@gmail.com

2Department of Mathematics
Bharathiar University, Coimbatore, India

e-mail: kbkb1956@gmail.com

3Department of Mathematics
Bharathiar University, Coimbatore, India

e-mail: pooranimaths@gmail.com

Abstract. The main purpose of this paper is to study the existence of solutions for the

nonlinear fractional partial integrodifferential equations with Neumann boundary condition.

Under suitable assumptions, the results are established by using the Leray-Schauder fixed

point theorem and Arzela-Ascoli theorem. The examples are provided to illustrate the main

result.

1. Introduction

Fractional calculus is a field of mathematics that extends the concepts of in-
teger order differentiation and integration to an arbitrary order. Applications
of fractional calculus can be observed in stochastic dynamical systems, plasma
physics, image processing, controlled thermonuclear fusion and biological sys-
tems (for more applications see [18, 22, 23]). Fractional derivatives provide
more accurate models of real world problems than integer order derivatives.
Due to many applications of fractional differential equations in engineering
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and science, research in this area has grown significantly. Several authors in-
cluding Chang and Nieto [7], among others [5, 6], have proved the existence
and uniqueness results for fractional differential equations.

Integrodifferential equations arise as mathematical models in diverse dis-
ciplines. The origins of the study of integrodifferential equations trace back
to the works of Lotka, Malthus, Abel, Volterra, Fredholm and Verhulst on
problems in economics, mechanics and mathematical biology. From these
beginnings, the theory and applications of integrodifferential equations have
emerged as new areas of investigation. Fujita [9] have studied the integrodiffer-
ential equations with time fractional integral. Annapoorani et al. [2] showed
the existence of solutions of neutral integrodifferential equations by using fixed
point theorems. There are few articles available in the literature for the study
of fractional integrodifferential equations. For example, Balachandran et al.
[4, 3], Akilandeeswari et al. [1] and Shri Akiladevi et al. [25] studied the
existence results for several kinds of fractional integrodifferential equations in
Banach spaces using fixed point techniques.

Some partial differential equations of fractional order type like one-dimensional
time-fractional diffusion-wave equation were used for modeling relevant phys-
ical processes [21]. Saxena et al. [24] gave closed form solutions to the
fractional reaction and fractional diffusion equations in the form of Fox and
Mittag-Leffler functions via asymptotic expansion. Nowadays some of the re-
searchers started to consider fractional partial differential equations including
well-posedness. Regarding fractional partial differential equations, Zhang et
al. [27] proved the existence and uniqueness of variational solution of space-
fractional partial differential equation and obtained a fully discrete approxi-
mating system by using the Galerkin finite element method and a backward
difference method. The book [10] provides some efficient numerical meth-
ods for fractional partial differential equations. Jafari et al. [12] proposed
a method called iterative Laplace transform method for solving a system of
linear and nonlinear fractional partial differential equations. The solutions of
system of fractional partial differential equations has been found by Parthiban
and Balachandran [20] by using Adomain decomposition method. Joice Nir-
mala and Balachandran [13] determined the solution of time fractional tele-
graph equation by means of Adomain decomposition method and analysed
the efficiency of this method. The existence and uniqueness of solution for an
attractive fractional coupled system is established by Ibrahim and Jahangiri
[11].

Motivated by these accomplishments, we extend the results of [19] to frac-
tional order partial integrodifferential equation with Neumann boundary con-
dition.
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2. Preliminaries

Before looking at the existence result of fractional partial integrodifferential
equation, we introduce some basic definitions and facts that are inherently
tied to fractional calculus. Let Ω be a bounded domain in R. Let Γ(·) denote
the gamma function. For any arbitrary 0 < α < 1, the Riemann Liouville
derivative and Caputo derivative are defined as follows:

Definition 2.1. [14] The partial Riemann-Liouville fractional integral oper-
ator of order 0 < α < 1 with respect to t of a function f(x, t) is defined
by

Iαf(x, t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(x, s) ds.

Definition 2.2. [14] The partial Riemann-Liouville fractional derivative of
order 0 < α < 1 of a function f(x, t) with respect to t is of the form

∂αf(x, t)

∂tα
=

1

Γ(1− α)

∂

∂t

∫ t

0

f(x, s)

(t− s)α
ds.

Definition 2.3. [14] The Caputo partial fractional derivative of order 0 <
α < 1 with respect to t of a function f(x, t) is defined as

C∂αf(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

1

(t− s)α
∂f(x, s)

∂s
ds.

For a detailed study of the above operators refer the books [17, 8]. The Rie-
mann Liouville and Caputo fractional derivatives are linked by the following
relationship:

C∂αf(x, t)

∂tα
=

∂α

∂tα
f(x, t)− f(x, 0)

Γ(1− α)tα
.

To our equation, we adopt Caputo fractional derivative which has the ad-
vantage of approaching initial value problems, since the initial conditions of
fractional differential equations in terms of Caputo derivatives hold the same
form of integer order differential equations. Next we present some tools which
will be used to prove our main result.

In this paper, we consider the fractional partial integrodifferential equation

C∂αu(x, t)

∂tα
=a(t)∆u(x, t) +

∫ t

0
h(t− s)u(x, s)ds

+ f

(
t, u(x, t),

∫ t

0
g(t, s, u(x, s))ds

)
, t ∈ J, (2.1)
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where 0 < α < 1, h : J → R, g : J × J × R → R and the nonlinear function
f : J × R× R→ R. The initial and Neumann boundary conditions are

u(x, 0) = ϕ(x), x ∈ Ω, (2.2)

∂u

∂n
= 0, (x, t) ∈ ∂Ω× J. (2.3)

In order to establish our result, assume the following conditions.

(H1) f(t, u1, u2) is continuous with respect to u1, u2, Lebesgue measurable
with respect to t and satisfies

1

vol(Ω)

∫
Ω
f(t, u1, u2) dx ≤ f

(
t,

∫
Ω u1(x, t) dx

vol(Ω)
,

∫
Ω u2(x, t) dx

vol(Ω)

)
, t ∈ J.

(H2) There exists an integrable function m1(t) : J → [0,∞) such that

‖ f(t, u1, u2) ‖≤ m1(t) (‖u1‖+ ‖u2‖) , t ∈ J,

where m1(t) ≥ 0 and
( t∫

0

(m1(s))
1
β ds

)β
≤ l1, for some β ∈ (0, α) and

l1 ≥ 0.

(H3) g(t, s, u) is continuous with respect to u, Lebesgue measurable with
respect to t and also satisfies the inequality

1

vol(Ω)

∫
Ω
g(t, s, u) dx ≤ g

(
t, s,

∫
Ω u(x, t) dx

vol(Ω)

)
.

(H4) There exists an integrable function m2(t, s) : J ×J → [0,∞) such that

‖ g(t, s, u) ‖≤ m2(t, s)‖u‖, t, s ∈ J,

where m2(t, s) ≥ 0 and
( t∫

0

m2(s, τ) ds
)
≤ l2, for l2 ≥ 0.

(H5) The integral kernel satisfies

(∫ t

0

(∫ s

0
h(s− τ) dτ

) 1
β
)β
≤ l3,

where l3 ≥ 0.
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It is easy to show that the initial value problem (2.1) is equivalent to the
following integral equation:

u(x, t) = ϕ(x) +
1

Γ(α)

∫ t

0
(t− s)α−1a(s)∆u(x, s) ds

+
1

Γ(α)

∫ t

0
(t− s)α−1

(∫ s

0
h(s− τ)u(x, τ) dτ

)
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, u(x, s), v(x, s)) ds, (2.4)

where v(x, s) =
s∫
0

g(s, τ, u(x, τ)) dτ and t ∈ J .

3. Existence Results

In this section, we are concerned with the existence of solutions of the
problem (2.1)-(2.3). We define the function W (t) as

W (t) =
1

vol(Ω)

∫
Ω
u(x, t) dx. (3.1)

Theorem 3.1. Assume that there exists a β ∈ (0, α) for some 0 < α < 1 such
that (H1)− (H5) holds. For any constant b > 0, suppose that

r = min

T,
[

Γ(α)b

(‖W (0)‖+ b)(l1(1 + l2) + l3)

(
α− β
1− β

)1−β
] 1
α−β
 . (3.2)

Then there exists at least one solution for the initial value problem (2.1) on
Ω× [0, r].

Proof. First we have to prove the initial value problem (2.1) has a solution if
and only if the equation

W (t) = W (0)− 1

Γ(α)

∫ t

0
(t− s)α−1

(∫ s

0
h(s− τ)W (τ) dτ

)
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s,W (s), V (s)) ds, (3.3)

where V (t) =
t∫

0

g(t, s,W (s)) ds, has a solution.

Step 1. The proof of sufficiency is similar to that of Lemma 3.1 in [19]. To
prove the necessary part, let u(x, t) be a solution of (2.1). This implies u(x, t)
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is a solution of (2.4). Now integrating both sides of equation (2.4) with respect
to x ∈ Ω, we get∫

Ω
u(x, t) dx =

∫
Ω
ϕ(x) dx+

1

Γ(α)

∫
Ω

∫ t

0
(t− s)α−1a(s)∆u(x, s) ds dx

+
1

Γ(α)

∫
Ω

∫ t

0
(t− s)α−1

(∫ s

0
h(s− τ)u(x, τ) dτ

)
ds dx

+
1

Γ(α)

∫
Ω

∫ t

0
(t− s)α−1f(s, u(x, s), v(x, s)) ds dx. (3.4)

Using Green’s identity and the Neumann boundary condition, we obtain∫
Ω

∆u(x, t) dx = 0. (3.5)

Combining (3.5) and assumption (H1), equation (3.4) implies

W (t) ≤ W (0) +
1

Γ(α)

∫ t

0
(t− s)α−1

(∫ s

0
h(s− τ)W (τ) dτ

)
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s,W (s), V (s)) ds. (3.6)

Let K = {W : W ∈ C(J, R), ‖ W (t) −W (0) ‖≤ b}. Define an operator
F : K → K as

FW (t) = W (0) +
1

Γ(α)

∫ t

0
(t− s)α−1

(∫ s

0
h(s− τ)W (τ) dτ

)
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s,W (s), V (s)) ds. (3.7)

Clearly W (0) ∈ K. This means that K is nonempty. From our construction
of K, we can say that K is closed and bounded. Now for any W1,W2 ∈ K
and for any a1, a2 ≥ 0 such that a1 + a2 = 1,

‖ a1W1 + a2W2 −W (0) ‖ ≤ a1 ‖W1 −W (0) ‖ +a2 ‖W2 −W (0) ‖
≤ a1b+ a2b = b.

Thus a1W1 + a2W2 ∈ K. Therefore K is nonempty closed convex set. Next
we have to prove the operator F maps K into itself.

‖ FW (t)− FW (0) ‖≤ 1

Γ(α)
(‖W (0)‖+ b)

∫ t

0
(t− s)α−1

(∫ s

0
h(s− τ) dτ

)
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1‖f(s,W (s), V (s))‖ ds.

Then by using Holder inequality and the assumptions (H1)− (H5), we arrive
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‖ FW (t)− FW (0) ‖≤ 1

Γ(α)
(‖W (0)‖+ b)

(∫ t

0

(
(t− s)α−1

) 1
1−β ds

)1−β

(∫ t

0

(∫ s

0
h(s− τ) dτ

) 1
β

ds

)β
+

1

Γ(α)

∫ t

0
(t− s)α−1

∥∥f(s,W (s), V (s))
∥∥ ds

≤ 1

Γ(α)
(‖W (0)‖+ b)

(∫ t

0

(
(t− s)α−1

) 1
1−β ds

)1−β(∫ t

0

(∫ s

0
h(s− τ)dτ

) 1
β

ds

)β
+

1

Γ(α)

∫ t

0
m1(s)(t− s)α−1 (‖W (s)‖+ ‖V (s)‖) ds

≤ 1

Γ(α)
(‖W (0)‖+ b)

(∫ t

0

(
(t− s)α−1

) 1
1−β ds

)1−β(∫ t

0

(∫ s

0
h(s− τ)dτ

) 1
β

ds

)β
+

1

Γ(α)
(‖W (0)‖+ b)

(∫ t

0

(
(t− s)α−1

) 1
1−β ds

)1−β (∫ t

0
(m1(s))

1
β ds

)β
+

l2
Γ(α)

(‖W (0)‖+ b)

(∫ t

0

(
(t− s)α−1

) 1
1−β ds

)1−β (∫ t

0
(m1(s))

1
β ds

)β
≤ (‖W (0)‖+ b) l1

Γ(α)

(
1− β
α− β

)1−β
rα−β +

(‖W (0)‖+ b) l1l2
Γ(α)

(
1− β
α− β

)1−β
rα−β

(‖W (0)‖+ b) l3
Γ(α)

(
1− β
α− β

)1−β
rα−β

=
(‖W (0)‖+ b) (l1(1 + l2) + l3)

Γ(α)

(
1− β
α− β

)1−β
rα−β

≤ b, t ∈ [0, r].

Therefore F maps K into itself. Now we define a sequence {Wk(t)} in K such
that

W0(t) = W (0) and Wk+1(t) = FWk(t), k = 0, 1, 2, . . .

Since K is closed, there exists a subsequence {Wki(t)} of Wk(t) and W̃ (t) ∈ K
such that

lim
ki→∞

Wki(t) = W̃ (t).

Then Lebesgue’s dominated convergence theorem yields that

W̃ (t) = W̃ (0)− 1

Γ(α)

∫ t

0
(t− s)α−1

(∫ s

0
h(s− τ)W̃ (τ) dτ

)
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, W̃ (s), Ṽ (s)) ds,
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where Ṽ (t) =
t∫

0

g(t, s, W̃ (t)) ds. Next we claim that F is completely continu-

ous.

Step 2. For that first we prove F : K → K is continuous. Let {Wm(t)} be a
convergence sequence in K to W (t). Then for any ε > 0, we have

‖Wm(t)−W (t)‖ ≤ Γ(α)ε

2l3rα−β

(
α− β
1− β

)1−β
. (3.8)

By assumption (H1),

f

(
t,Wm(t),

∫ t

0
g(t, s,Wm(s)) ds

)
−→ f

(
t,W (t),

∫ t

0
g(t, s,W (s)) ds

)
,

for each t ∈ [0, r]. Therefore for any ε > 0, we can take∥∥∥∥f(t,Wm(t), Vm(t)

)
− f

(
t,W (t), V (t)

)∥∥∥∥ ≤ αΓ(α)ε

2rα
, (3.9)

where Vm(t) =
t∫

0

g(t, s,Wm(s)) ds. Using (3.8) and (3.9) and simplifying, we

have

‖FWm(t)− FW (t)‖ ≤ l3
Γ(α)

(
1− β
α− β

)1−β
rα−β‖Wm(t)−W (t)‖+

rα

αΓ(α)

×
∥∥∥∥f (s,Wm(s), Vm(s))− f (s,W (s), V (s))

∥∥∥∥
≤ ε.

Taking the limit m→∞, the right hand side of the above inequality tends to
zero, since ε can be arbitrary small. Therefore F is continuous.

Step 3. Moreover, for W ∈ K,

‖ FW (t) ‖ ≤ ‖W (0)‖+
l1 + l2 + l3

Γ(α)
(‖W (0)‖+ b)

(
1− β
α− β

)1−β
rα−β

≤ ‖W (0)‖+ b.

Hence FK is uniformly bounded. Now it remains to show that F maps K
into an equicontinuous family.
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Step 4. Now let U ∈ K and t1, t2 ∈ J . Then for 0 < t1 < t2 ≤ r, by the
assumptions (H1)− (H5) we obtain

‖ FW (t1)− FW (t2) ‖ ≤ 1

Γ(α)
(‖W (0)‖+ b)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
(∫ s

0
h(s− τ)dτ

)
ds+

1

Γ(α)
(‖W (0)‖+ b)

∫ t2

t1

(t2 − s)α−1
(∫ s

0
h(s− τ)dτ

)
ds

+
1

Γ(α)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)∥∥f(s,W (s), V (s))
∥∥ ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1
∥∥f(s,W (s), V (s))

∥∥ ds

≤ l3
Γ(α)

(‖W (0)‖+ b)

(∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

) 1
1−β ds

)1−β

+
l3

Γ(α)
(‖W (0)‖+ b)

(∫ t2

t1

((t2 − s)α−1)
1

1−β ds

)1−β

+
1

Γ(α)

(∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

) 1
1−β

ds

)1−β (∫ t

0
(m1(s))

1
β ds

)β

+
1

Γ(α)
(‖W (0)‖+ b)

(∫ t2

t1

(
(t2 − s)α−1

) 1
1−β ds

)1−β (∫ t

0
(m1(s))

1
β ds

)β

+
l2

Γ(α)

(∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

) 1
1−β

ds

)1−β (∫ t

0
(m1(s))

1
β ds

)β

+
l2

Γ(α)
(‖W (0)‖+ b)

(∫ t2

t1

((t2 − s)α−1)
1

1−β ds

)1−β(∫ t

0
(m1(s))

1
β ds

)β

≤ l1 + l1l2 + l3
Γ(α)

(‖W (0)‖+ b)

(∫ t1

0
((t2 − s)α−1 − (t1 − s)α−1)

1
1−β ds

)1−β

+
l1 + l1l2 + l3

Γ(α)
(‖W (0)‖+ b)

(∫ t2

t1

((t2 − s)α−1)
1

1−β ds

)1−β
.

The right hand side is independent of W ∈ K. Since 0 < β < α < 1, the
right hand side of the above inequality goes to zero as t1 → t2. Thus, F maps
K into an equicontinuous family of functions. In the view of Ascoli-Arzela
theorem, F is completely continuous. Then applying Leray-Schauder fixed
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point theorem, we deduce that F has a fixed point in K, which is a solution
of (2.1). �

4. Examples

Example 4.1. Consider the partial fractional integrodifferential equation

C∂
1
2u(x, t)

∂tα
= t2∆u(x, t) +

∫ t

0
(t− s)

1
2u(x, s) ds+ tu2

+tu

∫ t

0

(
s+ u2/3 exp(−s)

)
ds, (x, t) ∈ Ω× J (4.1)

with the initial condition

u(x, 0) = u0, x ∈ Ω

and the boundary condition

∂u

∂n
= 0, (x, t) ∈ ∂Ω× J,

where J = [0, 1] and Ω = [0, π/2]. Here a(t) = t2, h(t − s) = (t − s)
1
2 ,∫ t

0
g(t, s, u(x, s)) ds =

∫ t

0
(s+ u2/3 exp(−s)) ds and

f
(
t, u(x, t),

∫ t

0
g(t, s, u(x, s)) ds

)
= tu2 + tu

∫ t

0

(
s+ u2/3 exp(−s)

)
ds. (4.2)

We note that the assumptions (H1)-(H5) of Theorem 3.1 are satisfied for
some β ∈ (0, 1/2). Hence the problem (4.1) has a solution.

Example 4.2. Consider the partial fractional intgrodifferential equation

C∂
2
3u(x, t)

∂tα
= ∆u(x, t) + u(x, t) +

1

1 + t2

∫ t

0
su(x, s) ds, (x, t) ∈ Ω× J (4.3)

with the initial condition

u(x, 0) = u0, x ∈ Ω

and the boundary condition

∂u

∂n
= 0, (x, t) ∈ ∂Ω× J,

where J = [0, 1] and Ω = [0, π/2]. Here a(t) = 1,∫ t

0
g(t, s, u(x, s)) ds =

1

1 + t2

∫ t

0
su(x, s) ds,
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h(t− s) = 0 and

f
(
t, u(x, t),

∫ t

0
g(t, s, u(x, s)) ds

)
= u(x, t) +

1

1 + t2

∫ t

0
su(x, s) ds. (4.4)

The assumptions (H1)-(H5) of Theorem (3.2) are satisfied for some β ∈
(0, 2/3). Thus the problem (4.3) has a solution.
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