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Abstract. In this paper certain integral inequalities for the polar derivative of a polynomial
with restricted zeros are given, which generalize and refine some well-known polynomial

inequalities due to Malik, Aziz and others.

1. INTRODUCTION

Let P,, denote the space of all complex polynomials P(z) of degree n. For
P € P, having all their zeros in |z| < 1, it was shown by Turan [14] that

nmax |P(z)| < 2max |P'(2)]|. (1.1)
|z|=1 |z|=1

The result is sharp and equality in (1.1) holds for P(z) = az™ + b, |a| = |b|.
As a generalization of (1.1), Malik [9] proved that if P € P, has all its zeros
in |z| <k, k<1, then

nmax |P(z)| < (14 k) max |P'(2)], (1.2)
|z|=1 |z|=1
and Govil [4] showed that if P € P, has all its zeros in |z| < k, k > 1, then
n|m|ax |P(2)] < (14 k") lmlax ’Pl(z)’ . (1.3)
z|=1 z|=1

Both the estimates are sharp.
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Malik [10] obtained an extension of (1.1) in the sense that the left hand side
of (1.1) is replaced by a factor involving the integral mean of |P(z)| on |z| =1
by proving that if P € P,, has all its zeros in |z| < 1, then for each ¢ > 0,

([ el <{

Equality in (1.4) holds for P(z) = az™ + b, |a| = |b| # 0.

As generalizations of the inequalities (1.2), (1.3) and (1.4), Aziz [1] consid-
ered the class of polynomials P € P, having all their zeros in |z| < k and
proved for each g > 0,

27 g 1/q 27
n {/ P(e® dﬁ} < {/
0 0

and
21 ) q 1/‘1 2
n {/ P(e? dG} < {/
0 0

The estimate (1.6) is sharp and equality in (1.6) holds for P(z) = 2™ + k™.
In the limiting case when ¢ — oo, the inequalities (1.5) and (1.6) reduce to
inequalities (1.2) and (1.3), respectively.

i0]? v /
1+e"| db max |P'(z)] . (1.4)

|2=1

~—

1/q
1+ ke'? qd@} max |P'(2)] ,k <1 (L5)

|z|=1

1/q
1+k"e qd@} max |P'(z)] ,k>1. (1.6)

~—

Let D,P(z) denote the polar derivative of a polynomial P € P, of degree
n with respect to point o € C. Then

DoP(2) =nP(z) + (a — 2)P'(2)

(see [8]). The polynomial D, P(z) is of degree at most n — 1 and it generalizes
the ordinary P’(z) of P(z) in the sense that

lim 7DQP(Z)
a—00 «

= P'(2)

uniformly with respect z for |z| < R, R > 0.

Aziz and Rather [2] proved several sharp results concerning the maximum
modulus of the polar derivative of a polynomial with restricted zeros. Among
other things, they extended inequalities (1.2) and (1.3) to the polar derivative
of a polynomial by showing that if P € P, and P(z) = 0 in |z| < k, then for
every « € C with o > k,

n(jal = Dmax|PG) < (4 Dmax|DaP()], k<1 (LD
and
n (Ja| — k) max |P(z)| < (1 + k") max|D,P(2)|, k > 1. (1.8)

|z|=1 |z|=1
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Recently Rather et.al. [13] extended inequality (1.3) to the polar derivative
of polynomial and proved that if P € P,, and P(z) has all its zeros in |z| < k
where k£ < 1, then

n(lal —k:){/f
{[

The main aim of this paper is to extends the inequality (1.4) to the polar
derivative of a ploynomial and obtain a generalization of (1.6) in the sense
that the left hand side of (1.8) is replaced by a factor involving the integral
mean of |P(z)| on |z| = 1.

For the proofs of our main results, we need the following lemmas. The
first lemma is a simple deduction from Maximum Modulus Principle(see [5] or

[11]).
Lemma 1.1. ([5],[11]) If P € Py, then for R > 1,

P(e") (q de}l/q

1/q
1+ k:eie))qde} max | DoP(2)] (1.9)

‘Hlla)I(% |P(z)| < R" ‘m|a>1< |P(2)]. (1.10)

The next lemma is a simple consequence of a well-known result of Hardy
[6].

Lemma 1.2. ([6]) If P € P, and P(z) #0 in |z| < 1, then for ¢ >0, R > 1,

{/0% P(Rew)‘qde}l/q < R" {/0%

We also require the following result due to Rahman and Schmeisser [12].

P(ew)‘qde}l/q. (1.11)

Lemma 1.3. ([12]) If P € P,, and P(z) # 0 in |z| < 1, then for R > 1 and

q>0,
27 ) q 1/q 27
{/ P(Rew)‘ dH} <, {/
0 0

P(ei")’qde}l/q, (1.12)

where

{f027r }1 +Rnei9’qd9}l/q

T i)
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2. MAIN RESULTS

Now we prove our main theorems.

Theorem 2.1. If P € P,, and P(z) has all its zeros in |z| < k where k > 1,
then for every a € C with |o| > k and for each q > 0,

n(jaf —k){/oh
{[

Proof. Let F(z) = P(kz). Since all the zeros of P(z) lie in |z| < k, all the
zeros of F(z) lie in |z| < 1, the polynomial G(z) = 2"F(1/Z) has all its zeros
in |z| > 1 and

g 1/q
P(ew)‘ de}

1/q
1+ k"t qd@} max | Do P(2)|. (2.1)

|2=1

G(2)| = |F(2)] for [2] =1,
Hence, it follows by a result of De Bruijn (see [3, Theorem 1, p.1265]) that

|G"(Z)| < }F/(z)‘ for |z| =1. (2.2)
Since G(z) = 2"F(1/z), F(z) = 2"G(1/Z) and it can be easily seen that
|G'(2)| = |nF(z) — 2F'(2)| and |F'(z)| = |nG(z) — 2G'(2)| (2.3)
for |z| = 1. Combining (2.2) and (2.3), we get
|G'(z)| < ‘nG(z) - zG'(z)l for |z| =1 (2.4)

Also since F'(z) has all its zeros in |z| < 1, by Gauss-Lucas theorem all the
zeros of F'(z) also lie in |z| < 1. This implies that the polynomial

2"FI(1/2) = nG(2) — 2G'(2)
does not vanish in |z| < 1. Therefore, it follows from (2.4) that the function
2G'(z)
w(z) = nG(z) — zG'(2)
is analytic for |z] < 1 and |w(2)| < 1 for |z| < 1. Furthermore, w(0) = 0. Thus

the function 1 + w(z) is subordinate to the function 1+ z for |z| < 1. Hence
by a well-known property of subordination [4, p.422|, we have for each ¢ > 0,

/27r
0

27
1+w(ei9)‘qd0 g/ 1+ e®|" o, (2.5)
0

Now

nG(z)

L+w(z) = nG(z) — 2G'(z)’
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which gives with the help of (2.3),

n|G(z)| = |14+ w(z)| |nG(z) — 2G'(2)|
=11+ w(z)| |F’(z)| , for |z| =1.

This implies for each ¢ > 0,

2m g 2m
nq/ G(e’e)‘ d@z/
0 0

Also, by using (2.2) and (2.3), we have for every a € C with |a| > k and for
|2l =1,

14 w(ew)]q )F'(ew)]q do. (2.6)

Do/ F(2)| = ’nF(z) + (% ~2) F’(z)‘
> MZ‘ |F'(z)| — [nF(z) — 2F'(z)]
_ lal |, /
~ bl ) - e

o a
> 0 p) - ) = (|k| _ 1) F). @)
Combining (2.6) and (2.7), we have for each g > 0,

(ol -0 [

Again since G(z) # 0 in |z| < 1 and k > 1, by taking R = k > 1 in Lemma
1.3, we have for each ¢ > 0,

/27r
0

G(eia)‘qde < /:ﬂ

1+ w(ew)‘q K ‘D%F(eia)‘qde. (2.8)

) q 27
G(ke"’)‘ < BY /
0

G(ei‘))‘q o, (2.9)

where

{f(f” 1+ knei‘)\qda}”q
By =~ T (2.10)
{0 1+ eif| d0}
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From (2.5), (2.8) and (2.9), we deduce for each ¢ > 0,

27
nt(jal - by [
0

27
< B /0

27
<oy [
0

2
iy [
0

2
0

Moreover, we have

G(ke)| do

‘ q

‘qu.

| +w(ei9)‘qkq ’D%F(ew)

|+ w(eiO))qu <|r?i)1{ ‘D%F(z)Dq

1+ e qd9 (max ‘D%F(Z)’)q

|z|=1

1+ k™e®

" do <r£1|i>1<‘DzF(z)Dq. (2.11)

G(z)=2"F(1/z) = 2"P(k/z),
therefore, for 0 < 0 < 2,
’G(kew

P(ew)’ . (2.12)

kneinGP(ew)‘ — kn

Using this in (2.11), we get

2
Rk (o —k)q/ P(eif’)’qde)
0
2 g q
gkq/ 1+ ket®|” ap <m|a>1(’DzF(z)D . (2.13)
0 2=

Further, D, P(z) being a polynomial of degree at most n— 1, it follows from
Lemma 1.1 with R = k > 1 that

DaF(z)| = max|D,P(2)] < k" |m‘a)1( | Do P(2)]. (2.14)

. |z|=k

max
|z|=1

This in conjuction with (2.13) yields,

27
k" (jaf = )" [
0

or equivalently,
g 1/q 2
P(ew)‘ de} < {/
0

nwu—m{A%

This proves Theorem 2.1 O

. 27 . 7
P(ele)‘qde S k‘nq/ 1 + kne’LQ ng <maX|DaP(Z)|> )
0

|z|=1

n_i0|? Ve
1+ Kk"e™| db max |DyP(2)].

|2/=1
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Remark 2.2. If we divide the two sides of (2.1) by |a| and let |a] — oo, we

get inequality (1.6). Further if make ¢ — oo in (2.1), we get inequality (1.8).
Next, we have the following theorem.

Theorem 2.3. If P € P, P(z) as all its zeros in |z| < k where k > 1 and
m = minj,— |P(2)|, then for o, € C with |a| > k, |B] < 1 and for each
q>0,

(ol "“‘){/o%
{[

Proof. Let F(z) = P(kz). Then

m = min |P(z)| = min |P(kz)| = min |F(2)].
|z|=k |z|=1 |z|=1

. q 1/q
P(e?) + ﬁm‘ de}

1/q
1+ ke de} {lr?zulc Do P(2)] — nm/kz"l} . (2.15)

This gives

m < |F(z)| for |z|=1.
Since P(z) has all its zeros in |z| < k, all the zeros of F(z) = P(kz) lie in
|z| <1 and therefore, it follows from maximun modulus theorem that

m < |F(z)| for |z|>1. (2.16)
We show all the zeros of polynomial f(z) = F(z) 4+ fm lie in |z| < 1 for every
B with |3| < 1. This is obvious if m = 0. For m # 0, if there is a point z = z
with |z9| > 1 such that f(z0) = F'(20) + fm = 0, then |f(20)| = Blm < m, a
contradiction to (2.17). Therefore, all the zeros of f(z) lie in |2| < 1 for every
B with |5] < 1. If G(z) = 2"F(1/%), then

g(2) =2"f(1/2) = 2"F(1/2) + Bmz" = G(2) + Bmz"

and
l9(z)[ =1f(2)] for |z[=1.
Since g(z) # 0 in |z| < 1, by a result of De Bruijn [3], it follows that

9'(2)] < |f'(2)| for |2| = 1.

Equivalently, -
|G/ (2) —I—nmﬁz”_l‘ < |F'(2)| for |z =1. (2.17)
Since G(z) = z"F(1/z), F(z) = 2"G(1/Z) and it can be easily verified that
|F'(2)| = |nG(z) — 2G'(2)| and |G'(2)| = |nF(z) — 2F'(2)| (2.18)

for |z| = 1. Using this in (2.17), we get
|G/ (2) + nmB2"""| < |nG(z) — 2G'(z)| for |z| = 1. (2.19)
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Now choosing the argument of 5 with || = 1 in the left hand side of (2.19)

suitably, we get
|G (2)| +nm < |nG(z) — 2G'(z)| for |z] =1. (2.20)

Now consider the function

w(z) = 2(G'(2) + nmBz""1)
nG(z) — zG'(z)

Since all the zeros of f(z) lie in |z| < 1, by Gauss-Lucas theorem all the
zeros of F'(z) also lie in |z| < 1. Therefore, all the zeros of polynomial
2" 1F(1/2) = nG(z) — 2G'(2) lie in |z| > 1. Hence the function w(z) is
analytic in |z] < 1 and |w(z)| < 1. Moreover, w(0) = 0. Thus the func-
tion 1 + w(z) is subordinate to the function 1 + z for |z| < 1. Therefore by
well-known property of subordination [4, p.422], we have for each ¢ > 0

/2#
0

2
l—i—w(eie)’qd& g/ 1+ e®|" o, (2.21)
0

Further, -
nG(z) +nmpBz"
nG(z) — zG'(2)

14+ w(z) =
so that for |z| = 1, we have
InG(z) + nmBz"| = |1+ w(2)| |nG(z) — 2G'(2)| = |1 + w(z)| |F'(2)|
which implies for each ¢ > 0,
q 2
do :/
0

27
0

Also, from (2.18) and (2.20), we have for every o € C with |a| > k and for
2] =1,

G(e) + mpBe™ do.  (2.22)

1+w(ei9))q ‘F/(eie)‘q

|DapF(2)] = [nF (=) = 2F() + S F/(2)|
> 1) = por ) - 2 2)
= p ) - e
> 1 p )| - 1P )] 4 nm
_ <VZ| _ > |F'(2)|] + nim.

This gives for every a € C with |a| > k and for |z| = 1, we get

(o] = k) [F'(2)] < k(| DajpF(2)| = nim).
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Using this and (2.21) in (2.22), we get

(17 [

< lcq/ozTr 1+w(ei9)‘q{(D%F(ew)‘ —nm}qu

q
—nm}

{rglaﬂD F(z ‘—nm} do. (2.23)

G(e") + mpBe™’ " a0

27
ng/ 1+w(ei9)‘qd0{max)1) F(2)
0

|z|=1
21 g
Skq/ 1+ e
0

Also since D, P(z) is a polynomial of degree at most n — 1, by Lemma 1.1 for
R=Fk>1, we have

max)D F(2)| = max|DaP(2)| < k”_1|m‘a>1(]DaP(z)]. (2.24)

|2|=1 |2|=k

Further, g(z) = G(2) + B2"m = 2"F(1/2) + 32"m, therefore, for |z| = 1, we
have

lg(kz)| =

and since g(z) does not vanish in |z| < 1, by Lemma 1.3, we have for ¢ > 0,

2w
o [
0

k" F(1/RZ) + Bk"z”m’ — k" |F(2/k) + Bm| = K" |P(2) + Bm|

P(ei?) + ﬁm(q = /0%

2
<z |
0
2w
[
0

where B, is given by (2.10). From (2.23), (2.24) and (2.25), we deduce for
each ¢ > 0,

nwu—m{A%
wlf
i

which proves Theorem 2.3. O

g(k‘ew)‘q do

g(ew)‘qu

G(e®) + ﬂm‘qd& (2.25)

' q 1/q
P(ei®) + /Bm‘ de}

1—|—ei9

q 1/q '
dH} {|m|a>1<‘DaP(e’9)‘ — nm/k"_l}

1/q
14 ket qu} {|m|a>1( |DoP(2)] — nm/k:"_l} ,
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The following result which is a refinement of (2.1) follows from Theorem 2.3
by setting 8 =0 in (2.15).

Corollary 2.4. For P € P, if P(z) has all its zeros in |z| < k where k > 1
and m = min,— |P(2)|, then for every a € C with |a| > k and for each
q>0,

nwn—m{ﬁ%
{[

Letting ¢ — oo in (2.15) and choosing the argument of 5 with 3] = 1
suitably, we obtain the following refinement of inequality (1.8).

g 1/q
P(ew)‘ d@}

1+ ke

! de}l/q {gleul{ Do P(2)] — nm/k:”_l} . (2.26)

Corollary 2.5. For P € Py, if P(z) has all its zeros in |z| < k, where k > 1
and m = min|,— |P(z)|, then for every a € C with o > k,

n(Ja] — k) gl\i)f |P(2)|+n (Jaf + 1/E" ) m < (1+ k") gl\i)f |DoP(2)|. (2.27)

Finally we use Holder’s inequality to establish a generalization of (2.1) in
the sense that the maximum of |D,P(2)| on |z| = 1 in the right hand side of
(2.1) is replaced by factor involving the integral mean of |D,P(z)| on |z] = 1.

In fact, we have the following:

Theorem 2.6. If P € P, and P(z) has all its zeros in |z| < k where k > 1,
then for every o € C with |a| > k and for ¢ > 0,7 > 1,8 > 1 with r~' +s71 =

1,
ntal =0 { [
. Bq{/o%

g 1/q
P(e’e)‘ d9}

r 1/gr 2w
Taf - {]
0

{J5m I+ k”ew\qde}l/q
By= (2.29)
{0 1+ eif| de}

1+ei9

., 19 1/qs
Dap(ew)) de} , (2.28)

Proof. Let F(z) = P(kz) and G(z) = 2"F(1/z). Since P(z) has all its zeros
in |z| < k where k > 1, proceeding similarily as in the proof of Theorem 2.1,
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we have from (2.5) and (2.8) for each ¢ > 0 and |a| > k,

/27r
0

(ol 1y [

2m
q
<y [
0

where By is defined by (2.10). This gives with the help of Holder’s inequality
for r > 1,5 > 1 with 7! 4571 =1 and ¢ > 0,

(] = )" [ "

27 ] qr 1/r 27
< kB¢ {/ 1+w(629)‘ de} {/
0 0

Now using (2.30) and the fact that ‘G(k‘ew)‘ = k" ‘P(ew)’ in (2.32), we get

2T
14 w(em)‘qdﬂ < / 1+e*|" do (2.30)
0

and

G(ke'?)|" db

’ q

1 +w(ei9)‘qkq )D%F(ew)]qda. (2.31)

G(ke)| do

‘ q

1/s
., 198
D%F(e"’)‘ de} . (2.32)

2w
Rk (o — k)‘Y/ P(ew)’q df
0
2T qr 1/r 2T qs 1/s
0 10
gqug{/ 1+e d@} {/ Do Fle )} d@} L (2.33)
0 0
Further, since
DaF(z) = nF(z) + <Z - z) F'(z) =nP(kz) + (a — kz)P'(kz)

is a polynomial of degree at most n—1, it follows from Lemma 1.2 by replacing
q by ¢s and R by k, that

/271'
0

. s 27 . . . s
D%F(eze)’q do :/ nP(k:e’e) + (Oé _ kezO)Pl(keze)’q a0
0

2w
S k,n—l/
0
2w
— k,n—l/
0

nP(e?) + (a — ) P'(e?)|" db

"

DaP(ew)‘qs d6.
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Combining this with (2.33), we get

27
k™ (jaf )" [
0

21
< kg1 pa { /
0

Equivalently,

P(e)| db

qr 1/r 27
) {]
0

n (o] — k) {/0% P(e”)‘qde}l/q

2 r 1/qr 27
<o el
0 0

This completes the proof of Theorem 2.6. O

)q

1+6i0

igs 1/s
DaP(e“’)‘ d@} .

< 1/qs
1+ et DaP(ew)‘q da} .

Remark 2.7. By letting s — oo (so that » — 1) in (2.28), we get inequality
(2.1).

The following result is an immediate consequence of Theorem 2.6.

Corollary 2.8. If P € P, and P(z) has all its zeros in |z| < k where k > 1,
then for every a € C with |a| > k and for each ¢ > 0,

n (|| —k) {/0% P(eia)‘qde}l/qs (1+k™) {/Ozﬂ

Remark 2.9. Making ¢ — oo in (2.34), we get inequality (1.8).

g 1/q
Dap(e*’)] d@} . (2.34)
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