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Abstract. In this paper certain integral inequalities for the polar derivative of a polynomial

with restricted zeros are given, which generalize and refine some well-known polynomial

inequalities due to Malik, Aziz and others.

1. Introduction

Let Pn denote the space of all complex polynomials P (z) of degree n. For
P ∈ Pn having all their zeros in |z| ≤ 1, it was shown by Turan [14] that

nmax
|z|=1

|P (z)| ≤ 2 max
|z|=1

∣∣P ′(z)∣∣ . (1.1)

The result is sharp and equality in (1.1) holds for P (z) = azn + b, |a| = |b|.
As a generalization of (1.1), Malik [9] proved that if P ∈ Pn has all its zeros

in |z| ≤ k, k ≤ 1, then

nmax
|z|=1

|P (z)| ≤ (1 + k) max
|z|=1

∣∣P ′(z)∣∣ , (1.2)

and Govil [4] showed that if P ∈ Pn has all its zeros in |z| ≤ k, k ≥ 1, then

nmax
|z|=1

|P (z)| ≤ (1 + kn) max
|z|=1

∣∣P ′(z)∣∣ . (1.3)

Both the estimates are sharp.
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Malik [10] obtained an extension of (1.1) in the sense that the left hand side
of (1.1) is replaced by a factor involving the integral mean of |P (z)| on |z| = 1
by proving that if P ∈ Pn has all its zeros in |z| ≤ 1, then for each q > 0,

n

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣∣1 + eiθ
∣∣∣q dθ}1/q

max
|z|=1

∣∣P ′(z)∣∣ . (1.4)

Equality in (1.4) holds for P (z) = azn + b, |a| = |b| 6= 0.

As generalizations of the inequalities (1.2), (1.3) and (1.4), Aziz [1] consid-
ered the class of polynomials P ∈ Pn having all their zeros in |z| ≤ k and
proved for each q > 0,

n

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣∣1 + keiθ
∣∣∣q dθ}1/q

max
|z|=1

∣∣P ′(z)∣∣ , k ≤ 1 (1.5)

and

n

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣qdθ}1/q

≤
{∫ 2π

0

∣∣∣1+kneiθ
∣∣∣q dθ}1/q

max
|z|=1

∣∣P ′(z)∣∣ , k ≥ 1. (1.6)

The estimate (1.6) is sharp and equality in (1.6) holds for P (z) = zn + kn.
In the limiting case when q → ∞, the inequalities (1.5) and (1.6) reduce to
inequalities (1.2) and (1.3), respectively.

Let DαP (z) denote the polar derivative of a polynomial P ∈ Pn of degree
n with respect to point α ∈ C. Then

DαP (z) = nP (z) + (α− z)P ′(z)

(see [8]). The polynomial DαP (z) is of degree at most n−1 and it generalizes
the ordinary P ′(z) of P (z) in the sense that

lim
α→∞

DαP (z)

α
= P ′(z)

uniformly with respect z for |z| ≤ R, R > 0.

Aziz and Rather [2] proved several sharp results concerning the maximum
modulus of the polar derivative of a polynomial with restricted zeros. Among
other things, they extended inequalities (1.2) and (1.3) to the polar derivative
of a polynomial by showing that if P ∈ Pn and P (z) = 0 in |z| ≤ k, then for
every α ∈ C with α ≥ k,

n (|α| − k) max
|z|=1

|P (z)| ≤ (1 + k) max
|z|=1

|DαP (z)| , k ≤ 1 (1.7)

and

n (|α| − k) max
|z|=1

|P (z)| ≤ (1 + kn) max
|z|=1

|DαP (z)| , k ≥ 1. (1.8)
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Recently Rather et.al. [13] extended inequality (1.3) to the polar derivative
of polynomial and proved that if P ∈ Pn and P (z) has all its zeros in |z| ≤ k
where k ≤ 1, then

n (|α| − k)

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣∣1 + keiθ)
∣∣∣q dθ}1/q

max
|z|=1

|DαP (z)| . (1.9)

The main aim of this paper is to extends the inequality (1.4) to the polar
derivative of a ploynomial and obtain a generalization of (1.6) in the sense
that the left hand side of (1.8) is replaced by a factor involving the integral
mean of |P (z)| on |z| = 1.

For the proofs of our main results, we need the following lemmas. The
first lemma is a simple deduction from Maximum Modulus Principle(see [5] or
[11]).

Lemma 1.1. ([5],[11]) If P ∈ Pn, then for R ≥ 1,

max
|z|=R

|P (z)| ≤ Rn max
|z|=1

|P (z)| . (1.10)

The next lemma is a simple consequence of a well-known result of Hardy
[6].

Lemma 1.2. ([6]) If P ∈ Pn and P (z) 6= 0 in |z| < 1, then for q > 0, R ≥ 1,{∫ 2π

0

∣∣∣P (Reiθ)
∣∣∣q dθ}1/q

≤ Rn
{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ}1/q

. (1.11)

We also require the following result due to Rahman and Schmeisser [12].

Lemma 1.3. ([12]) If P ∈ Pn and P (z) 6= 0 in |z| < 1, then for R ≥ 1 and
q > 0, {∫ 2π

0

∣∣∣P (Reiθ)
∣∣∣q dθ}1/q

≤ Cq
{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ}1/q

, (1.12)

where

Cq =

{∫ 2π
0

∣∣1 +Rneiθ
∣∣q dθ}1/q

{∫ 2π
0 |1 + eiθ|q dθ

}1/q
.
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2. Main results

Now we prove our main theorems.

Theorem 2.1. If P ∈ Pn and P (z) has all its zeros in |z| ≤ k where k ≥ 1,
then for every α ∈ C with |α| ≥ k and for each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣∣1 + kneiθ
∣∣∣q dθ}1/q

max
|z|=1

|DαP (z)| . (2.1)

Proof. Let F (z) = P (kz). Since all the zeros of P (z) lie in |z| ≤ k, all the

zeros of F (z) lie in |z| ≤ 1, the polynomial G(z) = znF (1/z̄) has all its zeros
in |z| ≥ 1 and

|G(z)| = |F (z)| for |z| = 1.

Hence, it follows by a result of De Bruijn (see [3, Theorem 1, p.1265]) that∣∣G′(z)∣∣ ≤ ∣∣F ′(z)∣∣ for |z| = 1. (2.2)

Since G(z) = znF (1/z̄), F (z) = znG(1/z̄) and it can be easily seen that∣∣G′(z)∣∣ =
∣∣nF (z)− zF ′(z)

∣∣ and
∣∣F ′(z)∣∣ =

∣∣nG(z)− zG′(z)
∣∣ (2.3)

for |z| = 1. Combining (2.2) and (2.3), we get∣∣G′(z)∣∣ ≤ ∣∣nG(z)− zG′(z)
∣∣ for |z| = 1. (2.4)

Also since F (z) has all its zeros in |z| ≤ 1, by Gauss-Lucas theorem all the
zeros of F ′(z) also lie in |z| ≤ 1. This implies that the polynomial

zn−1F ′(1/z̄) ≡ nG(z)− zG′(z)
does not vanish in |z| < 1. Therefore, it follows from (2.4) that the function

w(z) =
zG′(z)

nG(z)− zG′(z)
is analytic for |z| ≤ 1 and |w(z)| ≤ 1 for |z| ≤ 1. Furthermore, w(0) = 0. Thus
the function 1 + w(z) is subordinate to the function 1 + z for |z| ≤ 1. Hence
by a well-known property of subordination [4, p.422], we have for each q > 0,∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣q dθ ≤ ∫ 2π

0

∣∣∣1 + eiθ
∣∣∣q dθ. (2.5)

Now

1 + w(z) =
nG(z)

nG(z)− zG′(z)
,
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which gives with the help of (2.3),

n |G(z)| = |1 + w(z)|
∣∣nG(z)− zG′(z)

∣∣
= |1 + w(z)|

∣∣F ′(z)∣∣ , for |z| = 1.

This implies for each q > 0,

nq
∫ 2π

0

∣∣∣G(eiθ)
∣∣∣q dθ =

∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣q ∣∣∣F ′(eiθ)∣∣∣q dθ. (2.6)

Also, by using (2.2) and (2.3), we have for every α ∈ C with |α| ≥ k and for
|z| = 1,

∣∣Dα/kF (z)
∣∣ =

∣∣∣nF (z) +
(α
k
− z
)
F ′(z)

∣∣∣
≥ |α|

k

∣∣F ′(z)∣∣− ∣∣nF (z)− zF ′(z)
∣∣

=
|α|
k

∣∣F ′(z)∣∣− ∣∣G′(z)∣∣
≥ |α|

k

∣∣F ′(z)∣∣− ∣∣F ′(z)∣∣ =

(
|α|
k
− 1

) ∣∣F ′(z)∣∣ . (2.7)

Combining (2.6) and (2.7), we have for each q > 0,

nq (|α| − k)q
∫ 2π

0

∣∣∣G(eiθ)
∣∣∣q dθ ≤ ∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣q kq ∣∣∣Dα

k
F (eiθ)

∣∣∣q dθ. (2.8)

Again since G(z) 6= 0 in |z| < 1 and k ≥ 1, by taking R = k ≥ 1 in Lemma
1.3, we have for each q > 0,

∫ 2π

0

∣∣∣G(keiθ)
∣∣∣q ≤ Bq

q

∫ 2π

0

∣∣∣G(eiθ)
∣∣∣q dθ, (2.9)

where

Bq =

{∫ 2π
0

∣∣1 + kneiθ
∣∣q dθ}1/q

{∫ 2π
0 |1 + eiθ|q dθ

}1/q
. (2.10)



754 N. A. Rather and M. Kawoosa

From (2.5), (2.8) and (2.9), we deduce for each q > 0,

nq (|α| − k)q
∫ 2π

0

∣∣∣G(keiθ)
∣∣∣q dθ

≤ Bq
q

∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣q kq ∣∣∣Dα

k
F (eiθ)

∣∣∣q dθ.
≤ kqBq

q

∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣q dθ(max

|z|=1

∣∣∣Dα
k
F (z)

∣∣∣)q
≤ kqBq

q

∫ 2π

0

∣∣∣1 + eiθ
∣∣∣q dθ(max

|z|=1

∣∣∣Dα
k
F (z)

∣∣∣)q
= kq

∫ 2π

0

∣∣∣1 + kneiθ
∣∣∣q dθ(max

|z|=1

∣∣∣Dα
k
F (z)

∣∣∣)q . (2.11)

Moreover, we have

G(z) = znF (1/z̄) = znP (k/z̄),

therefore, for 0 ≤ θ < 2π,∣∣∣G(keiθ
∣∣∣ =

∣∣∣kneinθP (eiθ)
∣∣∣ = kn

∣∣∣P (eiθ)
∣∣∣ . (2.12)

Using this in (2.11), we get

nqknq (|α| − k)q
∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ

≤ kq
∫ 2π

0

∣∣∣1 + kneiθ
∣∣∣q dθ(max

|z|=1

∣∣∣Dα
k
F (z)

∣∣∣)q . (2.13)

Further, DαP (z) being a polynomial of degree at most n−1, it follows from
Lemma 1.1 with R = k ≥ 1 that

max
|z|=1

∣∣∣Dα
k
F (z)

∣∣∣ = max
|z|=k

|DαP (z)| ≤ kn−1 max
|z|=1

|DαP (z)| . (2.14)

This in conjuction with (2.13) yields,

nqknq (|α| − k)q
∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ ≤ knq ∫ 2π

0

∣∣∣1 + kneiθ
∣∣∣q dθ(max

|z|=1
|DαP (z)|

)q
,

or equivalently,

n (|α| − k)

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣∣1 + kneiθ
∣∣∣q dθ}1/q

max
|z|=1

|DαP (z)| .

This proves Theorem 2.1 �
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Remark 2.2. If we divide the two sides of (2.1) by |α| and let |α| → ∞, we
get inequality (1.6). Further if make q →∞ in (2.1), we get inequality (1.8).

Next, we have the following theorem.

Theorem 2.3. If P ∈ Pn, P (z) as all its zeros in |z| ≤ k where k ≥ 1 and
m = min|z|=k |P (z)|, then for α, β ∈ C with |α| ≥ k, |β| ≤ 1 and for each
q > 0,

n (|α| − k)

{∫ 2π

0

∣∣∣P (eiθ) + βm
∣∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣∣1 + kneiθ
∣∣∣q dθ}1/q {

max
|z|=1

|DαP (z)| − nm/kn−1
}
. (2.15)

Proof. Let F (z) = P (kz). Then

m = min
|z|=k

|P (z)| = min
|z|=1
|P (kz)| = min

|z|=1
|F (z)| .

This gives
m ≤ |F (z)| for |z| = 1.

Since P (z) has all its zeros in |z| ≤ k, all the zeros of F (z) = P (kz) lie in
|z| ≤ 1 and therefore, it follows from maximun modulus theorem that

m < |F (z)| for |z| > 1. (2.16)

We show all the zeros of polynomial f(z) = F (z) + βm lie in |z| ≤ 1 for every
β with |β| ≤ 1. This is obvious if m = 0. For m 6= 0, if there is a point z = z0
with |z0| > 1 such that f(z0) = F (z0) + βm = 0, then |f(z0)| = β|m ≤ m, a
contradiction to (2.17). Therefore, all the zeros of f(z) lie in |z| ≤ 1 for every

β with |β| ≤ 1. If G(z) = znF (1/z̄), then

g(z) = znf(1/z̄) = znF (1/z̄) + β̄mzn = G(z) + β̄mzn

and
|g(z)| = |f(z)| for |z| = 1.

Since g(z) 6= 0 in |z| < 1, by a result of De Bruijn [3], it follows that∣∣g′(z)∣∣ ≤ ∣∣f ′(z)∣∣ for |z| = 1.

Equivalently, ∣∣G′(z) + nmβ̄zn−1
∣∣ ≤ ∣∣F ′(z)∣∣ for |z| = 1. (2.17)

Since G(z) = znF (1/z̄), F (z) = znG(1/z̄) and it can be easily verified that∣∣F ′(z)∣∣ =
∣∣nG(z)− zG′(z)

∣∣ and
∣∣G′(z)∣∣ =

∣∣nF (z)− zF ′(z)
∣∣ (2.18)

for |z| = 1. Using this in (2.17), we get∣∣G′(z) + nmβ̄zn−1
∣∣ ≤ ∣∣nG(z)− zG′(z)

∣∣ for |z| = 1. (2.19)
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Now choosing the argument of β with |β| = 1 in the left hand side of (2.19)
suitably, we get∣∣G′(z)∣∣+ nm ≤

∣∣nG(z)− zG′(z)
∣∣ for |z| = 1. (2.20)

Now consider the function

w(z) =
z(G′(z) + nmβ̄zn−1)

nG(z)− zG′(z)
.

Since all the zeros of f(z) lie in |z| ≤ 1, by Gauss-Lucas theorem all the
zeros of F ′(z) also lie in |z| ≤ 1. Therefore, all the zeros of polynomial

zn−1F ′(1/z̄) ≡ nG(z) − zG′(z) lie in |z| ≥ 1. Hence the function w(z) is
analytic in |z| ≤ 1 and |w(z)| ≤ 1. Moreover, w(0) = 0. Thus the func-
tion 1 + w(z) is subordinate to the function 1 + z for |z| ≤ 1. Therefore by
well-known property of subordination [4, p.422], we have for each q > 0∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣q dθ ≤ ∫ 2π

0

∣∣∣1 + eiθ
∣∣∣q dθ. (2.21)

Further,

1 + w(z) =
nG(z) + nmβ̄zn

nG(z)− zG′(z)
so that for |z| = 1, we have∣∣nG(z) + nmβ̄zn

∣∣ = |1 + w(z)|
∣∣nG(z)− zG′(z)

∣∣ = |1 + w(z)|
∣∣F ′(z)∣∣

which implies for each q > 0,

nq
∫ 2π

0

∣∣∣G(eiθ) +mβ̄einθ
∣∣∣q dθ =

∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣q ∣∣∣F ′(eiθ)∣∣∣q dθ. (2.22)

Also, from (2.18) and (2.20), we have for every α ∈ C with |α| ≥ k and for
|z| = 1, ∣∣Dα/kF (z)

∣∣ =
∣∣∣nF (z)− zF ′(z) +

α

k
F ′(z)

∣∣∣
≥ |α|

k

∣∣F ′(z)∣∣− ∣∣nF (z)− zF ′(z)
∣∣

=
|α|
k

∣∣F ′(z)∣∣− ∣∣G′(z)∣∣
≥ |α|

k

∣∣F ′(z)∣∣− ∣∣F ′(z)∣∣+ nm

=

(
|α|
k
− 1

) ∣∣F ′(z)∣∣+ nm.

This gives for every α ∈ C with |α| ≥ k and for |z| = 1, we get

(|α| − k)
∣∣F ′(z)∣∣ ≤ k(

∣∣Dα/kF (z)
∣∣− nm).
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Using this and (2.21) in (2.22), we get

nq (|α| − k)q
∫ 2π

0

∣∣∣G(eiθ) +mβ̄einθ
∣∣∣q dθ

≤ kq
∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣q {∣∣∣Dα

k
F (eiθ)

∣∣∣− nm}q dθ
≤ kq

∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣q dθ{max

|z|=1

∣∣∣Dα
k
F (z)

∣∣∣− nm}q
≤ kq

∫ 2π

0

∣∣∣1 + eiθ
∣∣∣q {max

|z|=1

∣∣∣Dα
k
F (z)

∣∣∣− nm}q dθ. (2.23)

Also since DαP (z) is a polynomial of degree at most n− 1, by Lemma 1.1 for
R = k ≥ 1, we have

max
|z|=1

∣∣∣Dα
k
F (z)

∣∣∣ = max
|z|=k

|DαP (z)| ≤ kn−1 max
|z|=1

|DαP (z)| . (2.24)

Further, g(z) = G(z) + β̄znm = znF (1/z̄) + β̄znm, therefore, for |z| = 1, we
have

|g(kz)| =
∣∣∣knznF (1/kz̄) + β̄knznm

∣∣∣ = kn |F (z/k) + βm| = kn |P (z) + βm|

and since g(z) does not vanish in |z| < 1, by Lemma 1.3, we have for q > 0,

knq
∫ 2π

0

∣∣∣P (eiθ) + βm
∣∣∣q dθ =

∫ 2π

0

∣∣∣g(keiθ)
∣∣∣q dθ

≤ Bq
q

∫ 2π

0

∣∣∣g(eiθ)
∣∣∣q dθ

= Bq
q

∫ 2π

0

∣∣∣G(eiθ) + βm
∣∣∣q dθ, (2.25)

where Bq is given by (2.10). From (2.23), (2.24) and (2.25), we deduce for
each q > 0,

n (|α| − k)

{∫ 2π

0

∣∣∣P (eiθ) + βm
∣∣∣q dθ}1/q

≤ Bq
{∫ 2π

0

∣∣∣1 + eiθ
∣∣∣q dθ}1/q {

max
|z|=1

∣∣∣DαP (eiθ)
∣∣∣− nm/kn−1}

=

{∫ 2π

0

∣∣∣1 + kneiθ
∣∣∣q dθ}1/q {

max
|z|=1

|DαP (z)| − nm/kn−1
}
,

which proves Theorem 2.3. �
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The following result which is a refinement of (2.1) follows from Theorem 2.3
by setting β = 0 in (2.15).

Corollary 2.4. For P ∈ Pn, if P (z) has all its zeros in |z| ≤ k where k ≥ 1
and m = min|z|=k |P (z)|, then for every α ∈ C with |α| ≥ k and for each
q > 0,

n (|α| − k)

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ}1/q

≤
{∫ 2π

0

∣∣∣1 + kneiθ
∣∣∣q dθ}1/q {

max
|z|=1

|DαP (z)| − nm/kn−1
}
. (2.26)

Letting q → ∞ in (2.15) and choosing the argument of β with |β| = 1
suitably, we obtain the following refinement of inequality (1.8).

Corollary 2.5. For P ∈ Pn, if P (z) has all its zeros in |z| ≤ k, where k ≥ 1
and m = min|z|=k |P (z)|, then for every α ∈ C with α ≥ k,

n (|α| − k) max
|z|=1

|P (z)|+ n
(
|α|+ 1/kn−1

)
m ≤ (1 + kn) max

|z|=1
|DαP (z)| . (2.27)

Finally we use Holder’s inequality to establish a generalization of (2.1) in
the sense that the maximum of |DαP (z)| on |z| = 1 in the right hand side of
(2.1) is replaced by factor involving the integral mean of |DαP (z)| on |z| = 1.

In fact, we have the following:

Theorem 2.6. If P ∈ Pn and P (z) has all its zeros in |z| ≤ k where k ≥ 1,
then for every α ∈ C with |α| ≥ k and for q > 0, r > 1, s > 1 with r−1 + s−1 =
1,

n (|α| − k)

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ}1/q

≤ Bq
{∫ 2π

0

∣∣∣1 + eiθ
∣∣∣qr dθ}1/qr {∫ 2π

0

∣∣∣DαP (eiθ)
∣∣∣qs dθ}1/qs

, (2.28)

where

Bq =

{∫ 2π
0

∣∣1 + kneiθ
∣∣q dθ}1/q

{∫ 2π
0 |1 + eiθ|q dθ

}1/q
. (2.29)

Proof. Let F (z) = P (kz) and G(z) = znF (1/z̄). Since P (z) has all its zeros
in |z| < k where k ≥ 1, proceeding similarily as in the proof of Theorem 2.1,
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we have from (2.5) and (2.8) for each q > 0 and |α| ≥ k,∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣q dθ ≤ ∫ 2π

0

∣∣∣1 + eiθ
∣∣∣q dθ (2.30)

and

nq (|α| − k)q
∫ 2π

0

∣∣∣G(keiθ)
∣∣∣q dθ

≤ Bq
q

∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣q kq ∣∣∣Dα

k
F (eiθ)

∣∣∣q dθ. (2.31)

where Bq is defined by (2.10). This gives with the help of Holder’s inequality
for r > 1, s > 1 with r−1 + s−1 = 1 and q > 0,

nq (|α| − k)q
∫ 2π

0

∣∣∣G(keiθ)
∣∣∣q dθ

≤ kqBq
q

{∫ 2π

0

∣∣∣1 + w(eiθ)
∣∣∣qr dθ}1/r {∫ 2π

0

∣∣∣Dα
k
F (eiθ)

∣∣∣qs dθ}1/s

. (2.32)

Now using (2.30) and the fact that
∣∣G(keiθ)

∣∣ = kn
∣∣P (eiθ)

∣∣ in (2.32), we get

nqkqn (|α| − k)q
∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ

≤ kqBq
q

{∫ 2π

0

∣∣∣1 + eiθ
∣∣∣qr dθ}1/r {∫ 2π

0

∣∣∣Dα
k
F (eiθ)

∣∣∣qs dθ}1/s

. (2.33)

Further, since

Dα
k
F (z) = nF (z) +

(
α

k
− z
)
F ′(z) = nP (kz) + (α− kz)P ′(kz)

is a polynomial of degree at most n−1, it follows from Lemma 1.2 by replacing
q by qs and R by k, that∫ 2π

0

∣∣∣Dα
k
F (eiθ)

∣∣∣qs dθ =

∫ 2π

0

∣∣∣nP (keiθ) + (α− keiθ)P ′(keiθ)
∣∣∣qs dθ

≤ kn−1
∫ 2π

0

∣∣∣nP (eiθ) + (α− eiθ)P ′(eiθ)
∣∣∣qs dθ

= kn−1
∫ 2π

0

∣∣∣DαP (eiθ)
∣∣∣qs dθ.
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Combining this with (2.33), we get

nqkqn (|α| − k)q
∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ

≤ kqkq(n−1)Bq
q

{∫ 2π

0

∣∣∣1 + eiθ
∣∣∣qr dθ}1/r {∫ 2π

0

∣∣∣DαP (eiθ)
∣∣∣qs dθ}1/s

.

Equivalently,

n (|α| − k)

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ}1/q

≤ Bq
{∫ 2π

0

∣∣∣1 + eiθ
∣∣∣qr dθ}1/qr {∫ 2π

0

∣∣∣DαP (eiθ)
∣∣∣qs dθ}1/qs

.

This completes the proof of Theorem 2.6. �

Remark 2.7. By letting s →∞ (so that r → 1) in (2.28), we get inequality
(2.1).

The following result is an immediate consequence of Theorem 2.6.

Corollary 2.8. If P ∈ Pn and P (z) has all its zeros in |z| ≤ k where k ≥ 1,
then for every α ∈ C with |α| ≥ k and for each q > 0,

n (|α|−k)

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣q dθ}1/q

≤ (1+kn)

{∫ 2π

0

∣∣∣DαP (eiθ)
∣∣∣q dθ}1/q

. (2.34)

Remark 2.9. Making q →∞ in (2.34), we get inequality (1.8).

Acknowledgments: The authors are highly greatful to the referee for his
valuable suggestions.
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