INTEGRAL MEAN ESTIMATES FOR THE POLYNOMIALS

N. A. Rather ${ }^{1}$ and M. Kawoosa ${ }^{2}$
${ }^{1}$ Department of Mathematics
University of Kashmir, Jammu and Kashmir, India
e-mail: dr.narather@gmail.com
${ }^{2}$ Department of Mathematics
Amar Singh College, Srinagar, Jammu and Kashmir, India

Abstract

In this paper certain integral inequalities for the polar derivative of a polynomial with restricted zeros are given, which generalize and refine some well-known polynomial inequalities due to Malik, Aziz and others.

1. Introduction

Let \mathcal{P}_{n} denote the space of all complex polynomials $P(z)$ of degree n. For $P \in \mathcal{P}_{n}$ having all their zeros in $|z| \leq 1$, it was shown by Turan [14] that

$$
\begin{equation*}
n \max _{|z|=1}|P(z)| \leq 2 \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{1.1}
\end{equation*}
$$

The result is sharp and equality in (1.1) holds for $P(z)=a z^{n}+b,|a|=|b|$.
As a generalization of (1.1), Malik [9] proved that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
n \max _{|z|=1}|P(z)| \leq(1+k) \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{1.2}
\end{equation*}
$$

and Govil [4] showed that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq k, k \geq 1$, then

$$
\begin{equation*}
n \max _{|z|=1}|P(z)| \leq\left(1+k^{n}\right) \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{1.3}
\end{equation*}
$$

Both the estimates are sharp.

[^0]Malik [10] obtained an extension of (1.1) in the sense that the left hand side of (1.1) is replaced by a factor involving the integral mean of $|P(z)|$ on $|z|=1$ by proving that if $P \in \mathcal{P}_{n}$ has all its zeros in $|z| \leq 1$, then for each $q>0$,

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{1.4}
\end{equation*}
$$

Equality in (1.4) holds for $P(z)=a z^{n}+b,|a|=|b| \neq 0$.
As generalizations of the inequalities (1.2), (1.3) and (1.4), Aziz [1] considered the class of polynomials $P \in \mathcal{P}_{n}$ having all their zeros in $|z| \leq k$ and proved for each $q>0$,

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+k e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|P^{\prime}(z)\right|, k \leq 1 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|P^{\prime}(z)\right|, k \geq 1 \tag{1.6}
\end{equation*}
$$

The estimate (1.6) is sharp and equality in (1.6) holds for $P(z)=z^{n}+k^{n}$.
In the limiting case when $q \rightarrow \infty$, the inequalities (1.5) and (1.6) reduce to inequalities (1.2) and (1.3), respectively.

Let $D_{\alpha} P(z)$ denote the polar derivative of a polynomial $P \in \mathcal{P}_{n}$ of degree n with respect to point $\alpha \in \mathbb{C}$. Then

$$
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)
$$

(see [8]). The polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the ordinary $P^{\prime}(z)$ of $P(z)$ in the sense that

$$
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)
$$

uniformly with respect z for $|z| \leq R, R>0$.
Aziz and Rather [2] proved several sharp results concerning the maximum modulus of the polar derivative of a polynomial with restricted zeros. Among other things, they extended inequalities (1.2) and (1.3) to the polar derivative of a polynomial by showing that if $P \in \mathcal{P}_{n}$ and $P(z)=0$ in $|z| \leq k$, then for every $\alpha \in \mathbb{C}$ with $\alpha \geq k$,

$$
\begin{equation*}
n(|\alpha|-k) \max _{|z|=1}|P(z)| \leq(1+k) \max _{|z|=1}\left|D_{\alpha} P(z)\right|, k \leq 1 \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
n(|\alpha|-k) \max _{|z|=1}|P(z)| \leq\left(1+k^{n}\right) \max _{|z|=1}\left|D_{\alpha} P(z)\right|, k \geq 1 . \tag{1.8}
\end{equation*}
$$

Recently Rather et.al. [13] extended inequality (1.3) to the polar derivative of polynomial and proved that if $P \in \mathcal{P}_{n}$ and $P(z)$ has all its zeros in $|z| \leq k$ where $k \leq 1$, then

$$
\begin{align*}
& n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \left.\leq\left.\left\{\int_{0}^{2 \pi} \mid 1+k e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\alpha} P(z)\right| . \tag{1.9}
\end{align*}
$$

The main aim of this paper is to extends the inequality (1.4) to the polar derivative of a ploynomial and obtain a generalization of (1.6) in the sense that the left hand side of (1.8) is replaced by a factor involving the integral mean of $|P(z)|$ on $|z|=1$.

For the proofs of our main results, we need the following lemmas. The first lemma is a simple deduction from Maximum Modulus Principle(see [5] or [11]).
Lemma 1.1. ([5],[11]) If $P \in \mathcal{P}_{n}$, then for $R \geq 1$,

$$
\begin{equation*}
\max _{|z|=R}|P(z)| \leq R^{n} \max _{|z|=1}|P(z)| . \tag{1.10}
\end{equation*}
$$

The next lemma is a simple consequence of a well-known result of Hardy [6].

Lemma 1.2. ([6]) If $P \in \mathcal{P}_{n}$ and $P(z) \neq 0$ in $|z|<1$, then for $q>0, R \geq 1$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq R^{n}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \tag{1.11}
\end{equation*}
$$

We also require the following result due to Rahman and Schmeisser [12].
Lemma 1.3. ([12]) If $P \in \mathcal{P}_{n}$ and $P(z) \neq 0$ in $|z|<1$, then for $R \geq 1$ and $q>0$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq C_{q}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \tag{1.12}
\end{equation*}
$$

where

$$
C_{q}=\frac{\left\{\int_{0}^{2 \pi}\left|1+R^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}}{\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}} .
$$

2. Main results

Now we prove our main theorems.
Theorem 2.1. If $P \in \mathcal{P}_{n}$ and $P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$ and for each $q>0$,

$$
\begin{align*}
& n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\alpha} P(z)\right| . \tag{2.1}
\end{align*}
$$

Proof. Let $F(z)=P(k z)$. Since all the zeros of $P(z)$ lie in $|z| \leq k$, all the zeros of $F(z)$ lie in $|z| \leq 1$, the polynomial $G(z)=z^{n} \overline{F(1 / \bar{z})}$ has all its zeros in $|z| \geq 1$ and

$$
|G(z)|=|F(z)| \quad \text { for } \quad|z|=1
$$

Hence, it follows by a result of De Bruijn (see [3, Theorem 1, p.1265]) that

$$
\begin{equation*}
\left|G^{\prime}(z)\right| \leq\left|F^{\prime}(z)\right| \quad \text { for } \quad|z|=1 \tag{2.2}
\end{equation*}
$$

Since $G(z)=z^{n} \overline{F(1 / \bar{z})}, F(z)=z^{n} \overline{G(1 / \bar{z})}$ and it can be easily seen that

$$
\begin{equation*}
\left|G^{\prime}(z)\right|=\left|n F(z)-z F^{\prime}(z)\right| \text { and }\left|F^{\prime}(z)\right|=\left|n G(z)-z G^{\prime}(z)\right| \tag{2.3}
\end{equation*}
$$

for $|z|=1$. Combining (2.2) and (2.3), we get

$$
\begin{equation*}
\left|G^{\prime}(z)\right| \leq\left|n G(z)-z G^{\prime}(z)\right| \text { for } \quad|z|=1 \tag{2.4}
\end{equation*}
$$

Also since $F(z)$ has all its zeros in $|z| \leq 1$, by Gauss-Lucas theorem all the zeros of $F^{\prime}(z)$ also lie in $|z| \leq 1$. This implies that the polynomial

$$
z^{n-1} \overline{F^{\prime}(1 / \bar{z})} \equiv n G(z)-z G^{\prime}(z)
$$

does not vanish in $|z|<1$. Therefore, it follows from (2.4) that the function

$$
w(z)=\frac{z G^{\prime}(z)}{n G(z)-z G^{\prime}(z)}
$$

is analytic for $|z| \leq 1$ and $|w(z)| \leq 1$ for $|z| \leq 1$. Furthermore, $w(0)=0$. Thus the function $1+w(z)$ is subordinate to the function $1+z$ for $|z| \leq 1$. Hence by a well-known property of subordination [4, p.422], we have for each $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q} d \theta \leq \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta \tag{2.5}
\end{equation*}
$$

Now

$$
1+w(z)=\frac{n G(z)}{n G(z)-z G^{\prime}(z)},
$$

which gives with the help of (2.3),

$$
\begin{aligned}
n|G(z)| & =|1+w(z)|\left|n G(z)-z G^{\prime}(z)\right| \\
& =|1+w(z)|\left|F^{\prime}(z)\right|, \text { for }|z|=1 .
\end{aligned}
$$

This implies for each $q>0$,

$$
\begin{equation*}
n^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)\right|^{q} d \theta=\int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q}\left|F^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta \tag{2.6}
\end{equation*}
$$

Also, by using (2.2) and (2.3), we have for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$ and for $|z|=1$,

$$
\begin{align*}
\left|D_{\alpha / k} F(z)\right| & =\left|n F(z)+\left(\frac{\alpha}{k}-z\right) F^{\prime}(z)\right| \\
& \geq \frac{|\alpha|}{k}\left|F^{\prime}(z)\right|-\left|n F(z)-z F^{\prime}(z)\right| \\
& =\frac{|\alpha|}{k}\left|F^{\prime}(z)\right|-\left|G^{\prime}(z)\right| \\
& \geq \frac{|\alpha|}{k}\left|F^{\prime}(z)\right|-\left|F^{\prime}(z)\right|=\left(\frac{|\alpha|}{k}-1\right)\left|F^{\prime}(z)\right| . \tag{2.7}
\end{align*}
$$

Combining (2.6) and (2.7), we have for each $q>0$,

$$
\begin{equation*}
n^{q}(|\alpha|-k)^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)\right|^{q} d \theta \leq \int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q} k^{q}\left|D_{\frac{\alpha}{k}} F\left(e^{i \theta}\right)\right|^{q} d \theta \tag{2.8}
\end{equation*}
$$

Again since $G(z) \neq 0$ in $|z|<1$ and $k \geq 1$, by taking $R=k \geq 1$ in Lemma 1.3, we have for each $q>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|G\left(k e^{i \theta}\right)\right|^{q} \leq B_{q}^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)\right|^{q} d \theta \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{q}=\frac{\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}}{\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}} \tag{2.10}
\end{equation*}
$$

From (2.5), (2.8) and (2.9), we deduce for each $q>0$,

$$
\begin{align*}
& n^{q}(|\alpha|-k)^{q} \int_{0}^{2 \pi}\left|G\left(k e^{i \theta}\right)\right|^{q} d \theta \\
& \leq B_{q}^{q} \int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q} k^{q}\left|D_{\frac{\alpha}{k}} F\left(e^{i \theta}\right)\right|^{q} d \theta . \\
& \leq k^{q} B_{q}^{q} \int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q} d \theta\left(\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right|\right)^{q} \\
& \leq k^{q} B_{q}^{q} \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\left(\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right|\right)^{q} \\
& =k^{q} \int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\left(\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right|\right)^{q} . \tag{2.11}
\end{align*}
$$

Moreover, we have

$$
G(z)=z^{n} \overline{F(1 / \bar{z})}=z^{n} \overline{P(k / \bar{z})},
$$

therefore, for $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\mid G\left(k e^{i \theta}\left|=\left|k^{n} e^{i n \theta} \overline{P\left(e^{i \theta}\right)}\right|=k^{n}\right| P\left(e^{i \theta}\right) \mid .\right. \tag{2.12}
\end{equation*}
$$

Using this in (2.11), we get

$$
\begin{align*}
& n^{q} k^{n q}(|\alpha|-k)^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \\
& \leq k^{q} \int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\left(\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right|\right)^{q} . \tag{2.13}
\end{align*}
$$

Further, $D_{\alpha} P(z)$ being a polynomial of degree at most $n-1$, it follows from Lemma 1.1 with $R=k \geq 1$ that

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right|=\max _{|z|=k}\left|D_{\alpha} P(z)\right| \leq k^{n-1} \max _{|z|=1}\left|D_{\alpha} P(z)\right| . \tag{2.14}
\end{equation*}
$$

This in conjuction with (2.13) yields,

$$
n^{q} k^{n q}(|\alpha|-k)^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \leq k^{n q} \int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\left(\max _{|z|=1}\left|D_{\alpha} P(z)\right|\right)^{q}
$$

or equivalently,

$$
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q} \max _{|z|=1}\left|D_{\alpha} P(z)\right|
$$

This proves Theorem 2.1

Remark 2.2. If we divide the two sides of (2.1) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get inequality (1.6). Further if make $q \rightarrow \infty$ in (2.1), we get inequality (1.8).

Next, we have the following theorem.
Theorem 2.3. If $P \in \mathcal{P}_{n}, P(z)$ as all its zeros in $|z| \leq k$ where $k \geq 1$ and $m=\min _{|z|=k}|P(z)|$, then for $\alpha, \beta \in \mathbb{C}$ with $|\alpha| \geq k,|\beta| \leq 1$ and for each $q>0$,

$$
\begin{align*}
& n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta\right\}^{1 / q} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\alpha} P(z)\right|-n m / k^{n-1}\right\} \tag{2.15}
\end{align*}
$$

Proof. Let $F(z)=P(k z)$. Then

$$
m=\min _{|z|=k}|P(z)|=\min _{|z|=1}|P(k z)|=\min _{|z|=1}|F(z)| .
$$

This gives

$$
m \leq|F(z)| \quad \text { for } \quad|z|=1
$$

Since $P(z)$ has all its zeros in $|z| \leq k$, all the zeros of $F(z)=P(k z)$ lie in $|z| \leq 1$ and therefore, it follows from maximun modulus theorem that

$$
\begin{equation*}
m<|F(z)| \text { for } \quad|z|>1 \tag{2.16}
\end{equation*}
$$

We show all the zeros of polynomial $f(z)=F(z)+\beta m$ lie in $|z| \leq 1$ for every β with $|\beta| \leq 1$. This is obvious if $m=0$. For $m \neq 0$, if there is a point $z=z_{0}$ with $\left|z_{0}\right|>1$ such that $f\left(z_{0}\right)=F\left(z_{0}\right)+\beta m=0$, then $\left|f\left(z_{0}\right)\right|=\beta \mid m \leq m$, a contradiction to (2.17). Therefore, all the zeros of $f(z)$ lie in $|z| \leq 1$ for every β with $|\beta| \leq 1$. If $G(z)=z^{n} \overline{F(1 / \bar{z})}$, then

$$
g(z)=z^{n} \overline{f(1 / \bar{z})}=z^{n} \overline{F(1 / \bar{z})}+\bar{\beta} m z^{n}=G(z)+\bar{\beta} m z^{n}
$$

and

$$
|g(z)|=|f(z)| \quad \text { for } \quad|z|=1
$$

Since $g(z) \neq 0$ in $|z|<1$, by a result of De Bruijn [3], it follows that

$$
\left|g^{\prime}(z)\right| \leq\left|f^{\prime}(z)\right| \text { for }|z|=1
$$

Equivalently,

$$
\begin{equation*}
\left|G^{\prime}(z)+n m \bar{\beta} z^{n-1}\right| \leq\left|F^{\prime}(z)\right| \text { for }|z|=1 \tag{2.17}
\end{equation*}
$$

Since $G(z)=z^{n} \overline{F(1 / \bar{z})}, F(z)=z^{n} \overline{G(1 / \bar{z})}$ and it can be easily verified that

$$
\begin{equation*}
\left|F^{\prime}(z)\right|=\left|n G(z)-z G^{\prime}(z)\right| \text { and }\left|G^{\prime}(z)\right|=\left|n F(z)-z F^{\prime}(z)\right| \tag{2.18}
\end{equation*}
$$

for $|z|=1$. Using this in (2.17), we get

$$
\begin{equation*}
\left|G^{\prime}(z)+n m \bar{\beta} z^{n-1}\right| \leq\left|n G(z)-z G^{\prime}(z)\right| \text { for }|z|=1 \tag{2.19}
\end{equation*}
$$

Now choosing the argument of β with $|\beta|=1$ in the left hand side of (2.19) suitably, we get

$$
\begin{equation*}
\left|G^{\prime}(z)\right|+n m \leq\left|n G(z)-z G^{\prime}(z)\right| \quad \text { for } \quad|z|=1 . \tag{2.20}
\end{equation*}
$$

Now consider the function

$$
w(z)=\frac{z\left(G^{\prime}(z)+n m \bar{\beta} z^{n-1}\right)}{n G(z)-z G^{\prime}(z)} .
$$

Since all the zeros of $f(z)$ lie in $|z| \leq 1$, by Gauss-Lucas theorem all the zeros of $F^{\prime}(z)$ also lie in $|z| \leq 1$. Therefore, all the zeros of polynomial $z^{n-1} \overline{F^{\prime}(1 / \bar{z})} \equiv n G(z)-z G^{\prime}(z)$ lie in $|z| \geq 1$. Hence the function $w(z)$ is analytic in $|z| \leq 1$ and $|w(z)| \leq 1$. Moreover, $w(0)=0$. Thus the function $1+w(z)$ is subordinate to the function $1+z$ for $|z| \leq 1$. Therefore by well-known property of subordination [4, p.422], we have for each $q>0$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q} d \theta \leq \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta \tag{2.21}
\end{equation*}
$$

Further,

$$
1+w(z)=\frac{n G(z)+n m \bar{\beta} z^{n}}{n G(z)-z G^{\prime}(z)}
$$

so that for $|z|=1$, we have

$$
\left|n G(z)+n m \bar{\beta} z^{n}\right|=|1+w(z)|\left|n G(z)-z G^{\prime}(z)\right|=|1+w(z)|\left|F^{\prime}(z)\right|
$$

which implies for each $q>0$,

$$
\begin{equation*}
n^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)+m \bar{\beta} e^{i n \theta}\right|^{q} d \theta=\int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q}\left|F^{\prime}\left(e^{i \theta}\right)\right|^{q} d \theta \tag{2.22}
\end{equation*}
$$

Also, from (2.18) and (2.20), we have for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$ and for $|z|=1$,

$$
\begin{aligned}
\left|D_{\alpha / k} F(z)\right| & =\left|n F(z)-z F^{\prime}(z)+\frac{\alpha}{k} F^{\prime}(z)\right| \\
& \geq \frac{|\alpha|}{k}\left|F^{\prime}(z)\right|-\left|n F(z)-z F^{\prime}(z)\right| \\
& =\frac{|\alpha|}{k}\left|F^{\prime}(z)\right|-\left|G^{\prime}(z)\right| \\
& \geq \frac{|\alpha|}{k}\left|F^{\prime}(z)\right|-\left|F^{\prime}(z)\right|+n m \\
& =\left(\frac{|\alpha|}{k}-1\right)\left|F^{\prime}(z)\right|+n m .
\end{aligned}
$$

This gives for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$ and for $|z|=1$, we get

$$
(|\alpha|-k)\left|F^{\prime}(z)\right| \leq k\left(\left|D_{\alpha / k} F(z)\right|-n m\right)
$$

Using this and (2.21) in (2.22), we get

$$
\begin{align*}
& n^{q}(|\alpha|-k)^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)+m \bar{\beta} e^{i n \theta}\right|^{q} d \theta \\
& \leq k^{q} \int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q}\left\{\left|D_{\frac{\alpha}{k}} F\left(e^{i \theta}\right)\right|-n m\right\}^{q} d \theta \\
& \leq k^{q} \int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q} d \theta\left\{\max _{|z|=1}^{q}\left|D_{\frac{\alpha}{k}} F(z)\right|-n m\right\}^{q} \\
& \leq k^{q} \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q}\left\{\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right|-n m\right\}^{q} d \theta . \tag{2.23}
\end{align*}
$$

Also since $D_{\alpha} P(z)$ is a polynomial of degree at most $n-1$, by Lemma 1.1 for $R=k \geq 1$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\frac{\alpha}{k}} F(z)\right|=\max _{|z|=k}\left|D_{\alpha} P(z)\right| \leq k^{n-1} \max _{|z|=1}\left|D_{\alpha} P(z)\right| . \tag{2.24}
\end{equation*}
$$

Further, $g(z)=G(z)+\bar{\beta} z^{n} m=z^{n} \overline{F(1 / \bar{z})}+\bar{\beta} z^{n} m$, therefore, for $|z|=1$, we have

$$
|g(k z)|=\left|k^{n} z^{n} \overline{F(1 / k \bar{z})}+\bar{\beta} k^{n} z^{n} m\right|=k^{n}|F(z / k)+\beta m|=k^{n}|P(z)+\beta m|
$$

and since $g(z)$ does not vanish in $|z|<1$, by Lemma 1.3, we have for $q>0$,

$$
\begin{align*}
k^{n q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta & =\int_{0}^{2 \pi}\left|g\left(k e^{i \theta}\right)\right|^{q} d \theta \\
& \leq B_{q}^{q} \int_{0}^{2 \pi}\left|g\left(e^{i \theta}\right)\right|^{q} d \theta \\
& =B_{q}^{q} \int_{0}^{2 \pi}\left|G\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta \tag{2.25}
\end{align*}
$$

where B_{q} is given by (2.10). From (2.23), (2.24) and (2.25), we deduce for each $q>0$,

$$
\begin{aligned}
& n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)+\beta m\right|^{q} d \theta\right\}^{1 / q} \\
& \leq B_{q}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|-n m / k^{n-1}\right\} \\
& =\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\alpha} P(z)\right|-n m / k^{n-1}\right\},
\end{aligned}
$$

which proves Theorem 2.3.

The following result which is a refinement of (2.1) follows from Theorem 2.3 by setting $\beta=0$ in (2.15).

Corollary 2.4. For $P \in \mathcal{P}_{n}$, if $P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$ and $m=\min _{|z|=k}|P(z)|$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$ and for each $q>0$,

$$
\begin{align*}
& n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}\left\{\max _{|z|=1}\left|D_{\alpha} P(z)\right|-n m / k^{n-1}\right\} . \tag{2.26}
\end{align*}
$$

Letting $q \rightarrow \infty$ in (2.15) and choosing the argument of β with $|\beta|=1$ suitably, we obtain the following refinement of inequality (1.8).

Corollary 2.5. For $P \in \mathcal{P}_{n}$, if $P(z)$ has all its zeros in $|z| \leq k$, where $k \geq 1$ and $m=\min _{|z|=k}|P(z)|$, then for every $\alpha \in \mathbb{C}$ with $\alpha \geq k$,

$$
\begin{equation*}
n(|\alpha|-k) \max _{|z|=1}|P(z)|+n\left(|\alpha|+1 / k^{n-1}\right) m \leq\left(1+k^{n}\right) \max _{|z|=1}\left|D_{\alpha} P(z)\right| . \tag{2.27}
\end{equation*}
$$

Finally we use Holder's inequality to establish a generalization of (2.1) in the sense that the maximum of $\left|D_{\alpha} P(z)\right|$ on $|z|=1$ in the right hand side of (2.1) is replaced by factor involving the integral mean of $\left|D_{\alpha} P(z)\right|$ on $|z|=1$.

In fact, we have the following:
Theorem 2.6. If $P \in \mathcal{P}_{n}$ and $P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$ and for $q>0, r>1, s>1$ with $r^{-1}+s^{-1}=$ 1 ,

$$
\begin{align*}
& n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq B_{q}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q r} d \theta\right\}^{1 / q r}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q s} d \theta\right\}^{1 / q s} \tag{2.28}
\end{align*}
$$

where

$$
\begin{equation*}
B_{q}=\frac{\left\{\int_{0}^{2 \pi}\left|1+k^{n} e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}}{\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta\right\}^{1 / q}} \tag{2.29}
\end{equation*}
$$

Proof. Let $F(z)=P(k z)$ and $G(z)=z^{n} \bar{F}(1 / \bar{z})$. Since $P(z)$ has all its zeros in $|z|<k$ where $k \geq 1$, proceeding similarily as in the proof of Theorem 2.1,
we have from (2.5) and (2.8) for each $q>0$ and $|\alpha| \geq k$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q} d \theta \leq \int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q} d \theta \tag{2.30}
\end{equation*}
$$

and

$$
\begin{align*}
& n^{q}(|\alpha|-k)^{q} \int_{0}^{2 \pi}\left|G\left(k e^{i \theta}\right)\right|^{q} d \theta \\
& \leq B_{q}^{q} \int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q} k^{q}\left|D_{\frac{\alpha}{k}} F\left(e^{i \theta}\right)\right|^{q} d \theta . \tag{2.31}
\end{align*}
$$

where B_{q} is defined by (2.10). This gives with the help of Holder's inequality for $r>1, s>1$ with $r^{-1}+s^{-1}=1$ and $q>0$,

$$
\begin{align*}
& n^{q}(|\alpha|-k)^{q} \int_{0}^{2 \pi}\left|G\left(k e^{i \theta}\right)\right|^{q} d \theta \\
& \leq k^{q} B_{q}^{q}\left\{\int_{0}^{2 \pi}\left|1+w\left(e^{i \theta}\right)\right|^{q r} d \theta\right\}^{1 / r}\left\{\int_{0}^{2 \pi}\left|D_{\frac{\alpha}{k}} F\left(e^{i \theta}\right)\right|^{q s} d \theta\right\}^{1 / s} . \tag{2.32}
\end{align*}
$$

Now using (2.30) and the fact that $\left|G\left(k e^{i \theta}\right)\right|=k^{n}\left|P\left(e^{i \theta}\right)\right|$ in (2.32), we get

$$
\begin{align*}
& n^{q} k^{q n}(|\alpha|-k)^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \\
& \leq k^{q} B_{q}^{q}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q r} d \theta\right\}^{1 / r}\left\{\int_{0}^{2 \pi}\left|D_{\frac{\alpha}{k}} F\left(e^{i \theta}\right)\right|^{q s} d \theta\right\}^{1 / s} . \tag{2.33}
\end{align*}
$$

Further, since

$$
D_{\frac{\alpha}{k}} F(z)=n F(z)+\left(\frac{\alpha}{k}-z\right) F^{\prime}(z)=n P(k z)+(\alpha-k z) P^{\prime}(k z)
$$

is a polynomial of degree at most $n-1$, it follows from Lemma 1.2 by replacing q by $q s$ and R by k, that

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|D_{\frac{\alpha}{k}} F\left(e^{i \theta}\right)\right|^{q s} d \theta & =\int_{0}^{2 \pi}\left|n P\left(k e^{i \theta}\right)+\left(\alpha-k e^{i \theta}\right) P^{\prime}\left(k e^{i \theta}\right)\right|^{q s} d \theta \\
& \leq k^{n-1} \int_{0}^{2 \pi}\left|n P\left(e^{i \theta}\right)+\left(\alpha-e^{i \theta}\right) P^{\prime}\left(e^{i \theta}\right)\right|^{q s} d \theta \\
& =k^{n-1} \int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q s} d \theta
\end{aligned}
$$

Combining this with (2.33), we get

$$
\begin{aligned}
& n^{q} k^{q n}(|\alpha|-k)^{q} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta \\
& \leq k^{q} k^{q(n-1)} B_{q}^{q}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q r} d \theta\right\}^{1 / r}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q s} d \theta\right\}^{1 / s} .
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
& n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \\
& \leq B_{q}\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{q r} d \theta\right\}^{1 / q r}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q s} d \theta\right\}^{1 / q s} .
\end{aligned}
$$

This completes the proof of Theorem 2.6.
Remark 2.7. By letting $s \rightarrow \infty$ (so that $r \rightarrow 1$) in (2.28), we get inequality (2.1).

The following result is an immediate consequence of Theorem 2.6.
Corollary 2.8. If $P \in \mathcal{P}_{n}$ and $P(z)$ has all its zeros in $|z| \leq k$ where $k \geq 1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$ and for each $q>0$,

$$
\begin{equation*}
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \leq\left(1+k^{n}\right)\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q} d \theta\right\}^{1 / q} \tag{2.34}
\end{equation*}
$$

Remark 2.9. Making $q \rightarrow \infty$ in (2.34), we get inequality (1.8).
Acknowledgments: The authors are highly greatful to the referee for his valuable suggestions.

References

[1] A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx., 55 (1988), 232-238.
[2] A. Aziz and N.A. Rather, A refinement of a theorem of P. Turan concerning polynomials, J. Math. Ineq. and Appl., 1 (1998), 231-238.
[3] N.G. De Bruijn, Inequalities concerning the polynomials in the complex domain, Nederal. Akad. Wetensch, Proc., 50 (1947), 1265-1272.
[4] N.K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc., 41 (1973), 543-546.
[5] G. Pólya and G. Szegö, Problems and Theorems in Analysis, II, Springer- Verlag, Berlin, New York, 1976.
[6] G.H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc., 14 (1915), 319-330.
[7] E. Hille, Analytic function theory, Vol.II, Ginn and Company, New York, Toronto, 1962.
[8] M. Marden, Geometry of polynomial, Mathg. Survey No. 3, Amer./ Math. Soc., Providence, RI, 1966.
[9] M.A. Malik, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.
[10] M.A. Malik, An integral mean estimate for polynomials, Proc. Amer. Math. Soc., 91 (1984), 281-284.
[11] G.V. Milvanovic, D.S. Mitrinovic and Th.M. Rassias, Topics in polynomials: Extremal properties, inequalities, zeros, World Scientific Publishing Co., Singapore, 1994.
[12] Q.I. Rahman and G. Schmeisser, L^{p} inequalities for polynomials, J. Approx. Theory, 53 (1988), 26-32.
[13] N.A. Rather, S, Gulzar and S.H. Ahanger, Inequalities involving the integrals of polynomials and their polar derivatives, J. Classical Anal., 1 (2016), 59-64.
[14] P. Turán, Über die ableitung von polynomen, Compositio Math., 7 (1939), 89-95.

[^0]: ${ }^{0}$ Received December 20, 2016. Revised July 14, 2017.
 ${ }^{0} 2010$ Mathematics Subject Classification: 30C10, 26D10, 41A17.
 ${ }^{0}$ Keywords: Integral mean, polynomials, polar derivative, complex domain.

