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Abstract. The purpose of this paper is to establish the existence and uniqueness of common

fixed point of a family of self-mappings satisfying implicit relation in a cone metric space.

As an application of the main results, the well-posedness of the common fixed point problem

is proved. Our results generalize and improve many known results in the literature.

1. Introduction

The well known Banach contraction mapping principle is widely recognized
as the source of metric fixed point theory. A mapping T : X → X, where (X, d)
is a metric space, is said to be a contraction mapping if, for all x, y ∈ X,

d(T (x), T (y)) ≤ αd(x, y), for 0 < α < 1. (1.1)

In the aspect of the Banach contraction principle, any mapping T satisfying
(1.1) in a complete metric space has a unique fixed point. This principle has
been generalized in different directions in different spaces by mathematicians
over the years. Also, in the contemporary research, it remains a heavily in-
vestigated branch. The studies noted in [6, 7] [10]-[16], [18, 19, 21] are some
examples from this line of research.
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Cone metric spaces are generalizations of metric spaces, where each pair of
points is assigned to a member of a real Banach space with a cone. This cone
naturally induces a partial order in the Banach space. The concept of cone
metric space was introduced by Huang and Zhang [8] where they also estab-
lished the Banach contraction mapping principle in such spaces. Moreover,
they defined the convergence through interior points of the cone. Such an
approach allows the investigation of the case that the cone is not necessarily
normal. Afterwards, several authors have studied fixed point problems in cone
metric spaces. Some of these works are noted in [1, 2, 5, 23, 24].

In this paper, we analyze the existence and uniqueness of common fixed
points of a family of self mappings under implicit relation in cone metric
spaces. As an application, we prove well-posedness of a common fixed point
problem.

2. Preliminaries

In this section, we recall the definition of cone metric space and some of
their properties. The following notions will be used in order to prove the main
results.

Definition 2.1. Let E be a real Banach space. A subset P of E is called a
cone if the following conditions are satisfied:

(i) P is closed, nonempty and P 6= {0};
(ii) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply that ax+ by ∈ P.

(iii) P ∩ (−P ) = {0}.

Given a cone P of E, we define a partial ordering ≤ with respect to P by
x ≤ y if and only if y − x ∈ P . We shall write x < y to indicate that x ≤ y
but x 6= y, while x� y will stand for y − x ∈ intP .

A cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖.
The least positive number satisfying the above inequality is called the normal
constant of P .

Definition 2.2. Let X be a nonempty set and d : X ×X → E be a mapping
such that the following conditions hold:

(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone metric on X and (X, d) is called a cone metric space.
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Example 2.3. Let X = R, E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2 and
d : X×X → E such that d(x, y) = (|x−y|, δ|x−y|), where δ ≥ 0 is a constant.
Then (X,d) is a cone metric space.

Example 2.4. Let E = C1
R([0, 1]) with norm ‖f‖ = ‖f‖∞+‖f ′‖∞. The cone

P = {f ∈ E : f ≥ 0} is a non-normal cone.

Definition 2.5. Let (X, d) be a cone metric space. We say that {xn} is

(i) a Cauchy sequence if for every c ∈ E with 0� c, there is N such that
for all m,n > N, d(xn, xm)� c;

(ii) a convergent sequence if for every c ∈ E with 0 � c, there is N such
that for all n > N, d(xn, x) � c, for some x ∈ X. We denote it by
lim
n→∞

xn = x or xn → x.

A cone metric space X is said to be complete if every Cauchy sequence in
X is convergent in X. The limit of a convergent sequence is unique provided
P is a normal cone with normal constant K (see [8]).

Lemma 2.6. Let (X, d) be a cone metric space and P be a normal cone with
normal constant K. Let {xn} be a sequence in X. Then {xn} is a Cauchy
sequence if and only if d(xn, xm)→ 0 as m,n→∞.

Definition 2.7. (Implicit Relation) Let Φ be the class of real valued con-
tinuous functions φ : R3

+ → R+ which are non-decreasing in the first argument
and satisfying the following condition: for x, y > 0,

(i) x ≤ φ
(
y,
x+ y

2
,
x+ y

2

)
or

(ii) x ≤ φ(x, 0, x),

there exists a real number 0 < h < 1 such that x ≤ hy.

Example 2.8. Let φ(r, s, t) = r − αmin(s, t) + (2 + α)t, where α > 0.

Example 2.9. Let φ(r, s, t) = r2 − armax(s, t)− bs, where a > 0, b > 0.

Example 2.10. Let φ(r, s, t) = r + cmax(s, t), where c ≥ 0.

Definition 2.11. A sequence {xn} in a cone metric space X is said to be
asymptotically T -regular if lim

n→∞
d(xn, Txn) = 0.
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3. Main results

We shall now prove our main results.

Theorem 3.1. Let (X, d) be a complete cone metric space, S and T be two
continuous self-mappings of X such that for all x, y ∈ X satisfying the condi-
tion

d(Sx, Ty) ≤ φ
(
d(x, y),

d(x, Sx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Sx)

2

)
. (3.1)

Then S and T have a unique common fixed point in X.

Proof. For x0 ∈ X, we define a sequence {xn} as follows:

x2n+1 = Sx2n, x2n+2 = Tx2n+1, n = 0, 1, 2, · · ·
Now, for all u ∈ X, from (3.1), we have

d(x2n+1, x2n) = d(Sx2n, Tx2n−1)

≤ φ

(
d(x2n, x2n−1),

d(x2n, Sx2n) + d(x2n−1, Tx2n−1)

2
,

d(x2n, Tx2n−1) + d(x2n−1, Sx2n)

2

)
≤ φ

(
d(x2n, x2n−1),

d(x2n, x2n+1) + d(x2n−1, x2n)

2
,

d(x2n, x2n) + d(x2n−1, x2n+1)

2

)
≤ φ

(
d(x2n, x2n−1),

d(x2nx2n+1) + d(x2n−1, x2n)

2
,

d(x2n−1, x2n) + d(x2n, x2n+1)

2

)
.

Hence by Definition 2.7 (i), we have

d(x2n+1, x2n) ≤ hd(x2n, x2n−1), for 0 < h < 1.

Proceeding in the similar way, we obtain

d(x2n+1, x2n) ≤ h2nd(x1, x0), n = 1, 2, 3, · · · .
Also for n > m, we have

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm)

≤ (hn−1 + hn−2 + · · ·+ hm)d(x1, x0)

≤ hm

1− h
d(x1, x0).
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Note that
hm

1− h
→ 0 as n → ∞, since 0 < h < 1. Thus d(xn, xm) → 0 as

m,n → ∞, which shows that {xn} is a Cauchy sequence in X. Hence there
exists a point z ∈ X such that xn → z as n→∞. By the continuity of S and
T , it is clear that Sz = Tz = z. Therefore, z is a common fixed point of S and
T .

In order to prove the uniqueness, let take another common fixed point of S
and T , say v with v 6= z. Then

d(v, z) = d(Sv, Tz)

≤ φ

(
d(v, z),

d(v, Sv) + d(z, Tz)

2
,
d(v, Tz) + d(z, Sv)

2

)
≤ φ

(
d(v, z), 0, d(v, z)

)
.

Now, by Definition 2.7 (ii), we get

d(v, z) ≤ hd(v, z), for 0 < h < 1.

This means that z is a unique common fixed point of S and T . �

Remark 3.2. Theorem 3.1 extends the result of Pitchaimani and Ramesh
[12] to cone metric spaces.

Theorem 3.3. Let (X, d) be a complete cone metric space, S and T be two
continuous self-mappings of X such that

d(Spx, T qy) ≤ φ
(
d(x, y),

d(x, Spx) + d(y, T qy)

2
+
d(x, T qy) + d(y, Spx)

2

)

for all x, y ∈ X, where p and q are some positive integers. Then S and T have
a unique common fixed point.

Proof. Since Sp and T q satisfy the conditions of Theorem 3.1, Sp and T q have
a unique common fixed point. Let v be the common fixed point. Now

Spv = v ⇒ S(Spv) = Sv,
Sp(Sv) = Sv.
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If Sv = x0 then Sp(x0) = x0. So, Sv is a fixed point of Sp. Similarly, T q(Tv) =
Tv. Now, we have

d(v, Tv)

= d(Spv, T q(Tv))

≤ φ
(
d(v, Tv),

d(v, Spv) + d(Tv, T q(Tv))

2
,
d(v, T q(Tv)) + d(Tv, Spv)

2

)
= φ

(
d(v, Tv), 0, d(v, Tv)

)
.

Hence, by Definition 2.7 (ii), we obtain

d(v, Tv) ≤ 0.

Thus v = Tv. Similarly, v = Sv.

For uniqueness of v, let w 6= v be another common fixed point of S and
T . Then clearly w is also a common fixed point of Sp and T q which implies
w = v. Hence S and T have a unique common fixed point. �

Hence we have proved that if x0 is a unique common fixed point of Sp and
T q for some positive integers p and q then x0 is a unique common fixed point
of S and T . Next we generalize Theorem 3.1 to the case of family of mappings
satisfying the condition (3.1).

Theorem 3.4. Let (X, d) be a complete cone metric space and {Fα} be a
family of continuous self-mappings on X satisfying

d(Fαx, Fβy)

≤ φ
(
d(x, y),

d(x, Fαx) + d(y, Fβy)

2
,
d(x, Fβy) + d(y, Fαx)

2

)
(3.2)

for α, β ∈ Λ with α 6= β and x, y ∈ X, where Λ is an index set. Then there
exists a unique v ∈ X satisfying Fαv = v for all α ∈ Λ.

Proof. As the proof is similar to that of Theorem 3.1, we omit the proof
here. �

Theorem 3.5. Let (X, d) be a complete metric space and {Fn} be a sequence
of self-mappings on X such that {Fn} converging pointwise to a self-mapping
F and

d(Fnx, Fny) ≤ φ
(
d(x, y),

d(x, Fnx) + d(y, Fny)

2
,
d(x, Fny) + d(y, Fnx)

2

)
,

for all x, y ∈ X. If {Fn} has a fixed point vn and F has a fixed point v. Then
the sequence {vn} converges to v.
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Proof. Note that Fnvn = vn and Fv = v. Now consider

d(v, vn) = d(Fv, Fnvn)

≤ d(Fv, Fnv) + d(Fnv, Fnvn)

≤ d(Fv, Fnv) + φ

(
d(v, vn),

d(v, Fnv) + d(vn, Fnvn)

2
,

d(v, Fnvn) + d(vn, Fnv)

2

)
.

By the fact that Fnv → Fv as n→∞, we get

d(v, vn) ≤ φ
(
d(v, vn), 0, d(v, vn)

)
.

Hence, by Implicit Relation 2.7 (ii), we obtain

d(v, vn) ≤ 0

which implies that vn → v as n→∞. �

Theorem 3.6. Let (X, d) be a complete cone metric space and T : X → X be
a self-mapping such that

d(Tx, Ty) ≤ φ
(
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

)
.

Then T has a unique fixed point v ∈ X and {zn} is asymptotically T -regular
if and only if T is continuous at v ∈ X.

Proof. Let v ∈ X and zn → v as n→∞. Now

d(Tzn, T v) ≤ φ

(
d(zn, v),

d(zn, T zn) + d(v, Tv)

2
,
d(zn, T v) + d(v, Tzn)

2

)
.

Since T has a fixed point and {zn} is asymptotically T -regular, we get

d(Tzn, T v) ≤ φ

(
d(Tzn, T v), 0, d(Tzn, T v)

)
.

By Implicit Relation 2.7 (ii), there exists 0 < h < 1 such that

d(Tzn, T v) ≤ hd(Tzn, T v),

this implies that

Tzn → Tv as n→∞.
Hence T is continuous at v ∈ X. Conversely, assume that T is continuous at
v ∈ X. Note that

zn → v ⇒ Tzn → Tv as n→∞,
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which implies that

d(zn, T zn) → d(v, Tv) = 0,

since T has a fixed point. This completes the proof. �

Remark 3.7. Theorem 3.4 extends the study of Saluja [22] to a family of
continuous self-mappings using implicit relation in the setting of cone metric
spaces. In Theorem 3.5, convergence of sequence of self-mappings to another
self-mapping implies convergence of corresponding sequence of fixed points.
One can notice that the continuity of mappings is not essential in Theorem
3.5.

4. Applications

The concept of well-posedness of a fixed point problem has generated much
interest to several mathematicians, for example [3, 4, 9, 17, 20]. Here, we study
well-posedness of a common fixed point problem of mappings in Theorem 3.1.

Definition 4.1. Let (X, d) be a complete cone metric space and f be a self-
mapping. Then the fixed point problem of f is said to be well-posed if

(i) f has a unique fixed point x0 ∈ X,
(ii) for any sequence {xn} ⊂ X and lim

n→∞
d(xn, fxn) = 0, we have

lim
n→∞

d(xn, x0) = 0.

Let CFP (T, f,X) denote a common fixed point problem of self-mappings
T and f on X and CF (T, f) denote the set of all common fixed points of T
and f .

Definition 4.2. CFP (T, f,X) is called well-posed if CF (T, f) is singleton
and for any sequence {xn} in X with

x̃ ∈ CF (T, f) and lim
n→∞

d(xn, fxn) = lim
n→∞

d(xn, Txn) = 0

implies x̃ = lim
n→∞

xn.

Theorem 4.3. Let (X, d) be a complete cone metric space and T, f be self-
mappings on X as in Theorem 3.1. Then the common fixed point problem of
f and T is well-posed.

Proof. From Theorem 3.1, the mappings f and T have a unique common
fixed point, say v ∈ X. Let {xn} be a sequence in X and lim

n→∞
d(fxn, xn) =

lim
n→∞

d(Txn, xn) = 0. Without loss of generality, assume that v 6= xn for any
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non-negative integer n. Using (3.1) and fv = Tv = v, we get

d(v, xn) ≤ d(Tv, Txn) + d(Txn, xn)

= d(fv, Txn) + d(Txn, xn)

≤ d(Txn, xn) + φ

(
d(v, xn),

d(v, fv) + d(xn, Txn)

2
,

d(v, Txn) + d(xn, fv)

2

)
= φ(d(v, xn), 0, d(v, xn)).

Hence by Implicit Relation 2.7 (ii), we obtain d(v, xn) → 0 as n → ∞. This
completes the proof. �

Corollary 4.4. Let (X, d) be a complete cone metric space and T be a self-
mapping on X such that

d(Tx, Ty) ≤ φ

(
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

)
,

for all x, y ∈ X. Then the fixed point problem of T is well-posed.
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