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Abstract. This paper deals with oscillatory properties of solutions of a class of second order
nonlinear damped neutral difference equation of the form:

∆(an(∆zn)α) + pn(∆zn)α + qnf(xn−l) = 0, n ≥ n0. (E)

where zn = xn − bnxn−k. Some new sufficient conditions are obtained which ensure that

all solutions of equation (E) are oscillatory. The results presented in this paper extend and

improve some of the related results reported in the literature. Examples are provided to

illustrate the importance of the main results.

1. Introduction

Consider the second order neutral difference equation with damping term
of the form:

∆(an(∆zn)α) + pn(∆zn)α + qnf(xn−l) = 0, n ≥ n0, (1.1)
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where n0 is a nonnegative integer, α is a ratio of odd positive integers, and
zn = xn − bnxn−k.

Throughout this paper and without further mention, we assume that:
(H1) {an} is a positive real sequence, and {bn} is a real sequence with 0 ≤

bn ≤ b < 1 for all n ≥ n0;
(H2) {pn} is a real sequence, and {qn} is a positive real sequence for all

n ≥ n0;
(H3) l and k are positive integers;
(H4) f : R → R is a continuous function with uf(u) > 0 for u 6= 0, and

there exists a positive constant M such that f(u)
uβ
≥ M for all u 6= 0,

where β is the ratio of odd positive integers.

Let θ = max {k, l}. By a solution of equation (1.1), we mean a real sequence
{xn} defined for all n ≥ n0 − θ, and satisfying equation (1.1) for all n ≥ n0.

A nontrivial solution of equation (1.1) is said to be oscillatory if it is neither
eventually positive nor eventually negative, and it is nonoscillatory otherwise.

From the review of literature, it is known that there are many results avail-
able on the oscillatory behavior of solutions of equation (1.1) when pn ≡ 0 and
bn ≤ 0 for n ≥ n0, see for example [1, 2, 3, 14, 15] and the references cited
therein. However few results available on the oscillatory behavior of equation
(1.1) when pn ≡ 0 and bn ≥ 0 for n ≥ n0, see for example [1, 5, 6, 7, 12, 15].

In [7], the authors considered equation (1.1) with pn ≡ 0 and α = β, and es-
tablished some new conditions which ensure that any solution {xn} of equation
(1.1) is either oscillatory or converges to zero. In [5, 6], the authors considered
equation (1.1) with pn ≡ 0 and α = 1, and established some new conditions
which ensure that every solution of equation (1.1) is oscillatory.

If pn ≡ 0, bn ≡ 0 and α = 1, then equation (1.1) considered in [4, 8, 9, 10, 11]
and established sufficient conditions for the oscillation of all solutions of equa-
tion (1.1).

Motivated by the work in [5], [6] and [7], and the papers mentioned above,
in the present paper, by employing Riccati type transformation and summa-
tion averaging technique, we establish some new sufficient conditions which
ensure that every solution of equation (1.1) is oscillatory. Therefore the re-
sults obtained in this paper improve and complement to the results reported
in [4, 5, 6, 7, 8, 9, 10, 11].

2. Oscillation results:

In this section we present sufficient conditions for the oscillation of all so-
lutions of equation (1.1) when

∞∑
n=n0

1

(anEn)
1
α

=∞, (2.1)
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where

En =
n−1∏
s=n0

(
as

as − ps

)
and an − pn > 0 for all n ≥ n0. (2.2)

Note that using (2.2) we can write equation (1.1) in the equivalent form:

∆(Enan(∆zn)α) + En+1qnf(xn−l) = 0, n ≥ n0, (2.3)

and it is easy to see that from (2.2) that every solution of equation (1.1) is
oscillatory if and only if every solution of equation (2.3) is oscillatory.

First we study the oscillatory behavior of equation (1.1) when condition
(2.1) and (2.2) hold.

If {xn} is a solution of equation (1.1), then yn = −xn is a solution of the
equation.

∆(an(∆wn)α) + pn(∆wn)α + qnf
∗(yn−l) = 0, n ≥ n0,

where wn = yn−bnyn−k and f∗(yn−l) = −f(−yn−l), and uf∗(u) > 0 for u 6= 0.
Thus concerning nonoscillatory solution of equation (1.1) we can restrict our
attention only to solutions which are positive for all large n.

Define

Rn =
n−1∑
s=N

1

(asEs)
1
α

, N ≥ n0.

We begin with the following lemma.

Lemma 2.1. Assume conditions (2.1) and (2.2) hold. Let {xn} be an even-
tually positive solution of equation (1.1). Then one of the following two cases
holds for all sufficiently large n :

(1) zn > 0, ∆zn > 0, ∆(Enan(∆zn)α) ≤ 0;
(2) zn < 0, ∆zn > 0, ∆(Enan(∆zn)α) ≤ 0.

Proof. Assume that xn > 0, xn−k > 0 and xn−l > 0 for all n ≥ n1 ≥ n0.
Multiplying equation (1.1) by En+1 and simplifying we have equation (2.3).

From (H2), (2.2) and (2.3) we obtain

∆(anEn(∆zn)α) = −En+1qnf(xn−l) ≤ 0, n ≥ n1, (2.4)

so {anEn(∆zn)α} is eventually decreasing for all n ≥ n2 ≥ n1. We claim that
∆zn > 0 for all n ≥ n2. If this is not the case, there exists an integer n3 ≥ n2

such that ∆zn3 ≤ 0. In view of (2.4) there is an integer n4 ≥ n3 such that

Enan(∆zn)α ≤ En4an4(∆zn4) = c < 0, for n ≥ n4.

Hence

∆zn ≤
c

1
α

(anEn)
1
α
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from which it follows that

zn ≤ zn4 + c
1
α

n−1∑
s=n4

1

(asEs)
1
α

.

In view of condition (2.1), the last inequality implies that

lim
n→∞

zn = −∞. (2.5)

Therefore, there are two cases to consider:

Case (1): If {xn} is unbounded, then there exists a sequence of integers {nj}
such that limj→∞ nj = ∞ and limj→∞ xnj = ∞, where xnj = max{xs : n0 ≤
s ≤ nj}. Since n− k < n, we have

xnj−k = max{xs : n0 ≤ s ≤ nj − k}
≤ max{xs : n0 ≤ s ≤ nj} = xnj . (2.6)

So from the definition of zn, we see that

znj = xnj − bnjxnj−k ≥ (1− bnj )xnj ≥ (1− b)xnj > 0

which is a contradiction with (2.5).

Case (2): If {xn} is bounded, then from the definition of zn and (H1), we see
that {zn} is bounded which again contradicts (2.5). Thus we conclude that
∆zn > 0 for all n ≥ n2, and this completes the proof. �

Lemma 2.2. Assume conditions (2.1) and (2.2) hold. If {xn} is an eventually
positive solution of equation (1.1) such that case (1) of Lemma 2.1 holds, then

zn ≥ RnE1/α
n a1/α

n ∆zn, n ≥ N ≥ n0 (2.7)

and { znRn } is eventually decreasing.

Proof. The proof is similar to that of Lemma 2 of [12] and is omitted. �

Theorem 2.3. Let conditions (2.1), (2.2), α = β, and l > k be hold. If there
exists a positive nondecreasing sequence {ρn} such that

lim
n→∞

sup
n∑

s=N

[
MρsEs+1qs

(
Rs−l
Rs+1

)α
− ∆ρs
Rαs+1

]
=∞ (2.8)

and

lim
n→∞

sup

n−1∑
s=n−l+k

(
1

asEs

n−1∑
t=s

Et+1qt

) 1
α

>
b

M
1
α

, (2.9)

then every solution of equation (1.1) is oscillatory.
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Proof. Assume that there exists a nonoscillatory solution xn of equation (1.1),
say xn > 0, xn−k > 0 and xn−l > 0 for all n ≥ N ≥ n0, where N is chosen so
that two cases of Lemma 2.1 hold for all n ≥ N.
Case (1): From the definition of zn and (H1), we have xn ≥ zn, and set

wn = ρn
Enan(∆zn)α

zαn
, n ≥ N. (2.10)

Then wn > 0 for n ≥ N, and from equation (1.1), (2.2), (H4) and (2.10), we
obtain

∆wn

= ∆ρn
En+1an+1(∆zn+1)α

zαn+1

+ ρn
∆(Enan(∆zn)α)

zαn+1

− ρn
Enan(∆zn)α

zαnz
α
n+1

∆zαn

≤ ∆ρn
En+1an+1(∆zn+1)α

zαn+1

−MρnEn+1

qnz
α
n−l

zαn+1

− ρnEnan(∆zn)α

zαnz
α
n+1

∆zαn .

(2.11)

By the mean value theorem and the fact that {zn} is nondecreasing, we have

∆zαn ≥
{
αzα−1

n ∆zn, if α ≥ 1;
αzα−1

n+1∆zn, if α < 1.
(2.12)

Using (2.12) in (2.11), we obtain

∆wn ≤ −MρnEn+1qn

(
zn−l
zn+1

)α
+

∆ρnEn+1an+1(∆zn+1)α

zαn+1

−αρn+1Enan(∆zn)α+1

zα+1
n+1

, n ≥ N. (2.13)

In view of the fact that ∆zn > 0 for n ≥ N, it follows from (2.13) that

∆wn ≤ −MρnEn+1qn

(
zn−l
zn+1

)
+ ∆ρnEn+1an+1

(
∆zn+1

zn+1

)α
. (2.14)

Using (2.7) and the decreasing nature of { znRn }, (2.14) implies

∆wn ≤ −MρnEn+1qn

(
Rn−l
Rn+1

)α
+

∆ρn
Rαn+1

, n ≥ N. (2.15)

Summing the inequality (2.15) from N to n− 1, we have

n−1∑
s=N

(
MρsEs+1qs

(
Rs−l
Rs+1

)α
− ∆ρs
Rαs+1

)
≤ wN <∞.

Taking limit sup as n→∞ in the above inequality, we obtain a contradiction
with (2.8).



816 R. Srinivasan, C. Dharuman and E. Thandapani

Case (2): From the definition of zn and (H1), we have

xn−k >

(
−zn
b

)
. (2.16)

From equation (1.1), (2.2), (H4) and (2.16), we obtain

∆(anEn(∆zn)α)− M

bα
En+1qnz

α
n−l+k ≤ 0, n ≥ N.

Summing the last inequality from s to n− 1 for n > s+ 1, we have

anEn(∆zn)α − asEs(∆zs)α −
M

bα

n−1∑
t=s

Et+1qtz
α
t−l+k ≤ 0, n ≥ N,

it implies that

−∆zs ≤
M

1
α

b

(
1

asEs

n−1∑
t=s

Et+1qtz
α
t−l+k

) 1
α

, n ≥ N.

Again summing the last inequality from n− l + k to n− 1 for s, we obtain

zn−l+k − zn ≤
M

1
α

b
zn−l+k

n−1∑
s=n−l+k

(
1

asEs

n−1∑
t=s

Et+1qt

) 1
α

,

it implies that

b

M
1
α

≥
n−1∑

s=n−l+k

(
1

asEs

n−1∑
t=s

Et+1qt

) 1
α

.

Taking limit sup as n→∞, we obtain a contradiction to (2.9). This completes
the proof. �

Theorem 2.4. Let conditions (2.1), (2.2), α > β, and l > k be hold. If there
exists a positive nondecreasing sequence {ρn} such that, for all sufficiently
large N4 and for N > N4,

lim
n→∞

sup

n−1∑
s=N

[
MρsEs+1qs

(
Rs−l
Rs+1

)β
−
(
α

c1β

)α asEs(∆ρs)
α+1

(α+ 1)α+1pαsR
β−α
s+1

]
=∞

(2.17)
with c1 > 0 and

lim
n→∞

sup

n−1∑
s=n−l+k

(
1

asEs

n−1∑
t=s

Et+1qt

) 1
α

=∞, (2.18)

then every solution of equation (1.1) is oscillatory.
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Proof. Assume that there exists a nonoscillatory solution xn of equation (1.1),
say xn > 0, xn−k > 0 and xn−l > 0 for all n ≥ N ≥ n0, where N is chosen so
that two cases Lemma 2.1 hold for all n ≥ N.
Case(1): From the definition of zn and (H1), we have xn ≥ zn, and set

wn = ρn
Enan(∆zn)α

zβn
, n ≥ N. (2.19)

Then proceeding as in the proof of Theorem 2.3, we obtain

∆wn ≤ −MρnEn+1qn

(
zn−l
zn+1

)β
+

∆ρn
ρn+1

wn+1 −
βρnw

1+ 1
α

n+1

ρ
1+ 1

α
n+1 (anEn)

1
α

z
β
α
−1

n+1 . (2.20)

Since { znRn } is decreasing, we have zn ≤ cRn for c > 0 and n ≥ N , from (2.20)
we obtain

∆wn ≤ −MρnEn+1qn

(
Rn−l
Rn+1

)β
+

∆ρn
ρn+1

wn+1 −
βc1R

β
α
−1

n+1 ρnw
1+ 1

α
n+1

ρ
1+ 1

α
n+1 (anEn)

1
α

, (2.21)

where we have used c1 = c
1− β

α
1 and { znRn } is decreasing. Now using the inequal-

ity Au− Bu1+ 1
α ≤ αα

(α+1)α+1
Aα+1

Bα for B > 0 with A = ∆ρn
ρn+1

, B =
βc1ρnR

β
α−1

n+1

ρ
1+ 1

α
n+1 (anEn)

1
α

in (2.21), we obtain

∆wn ≤ −MρnEn+1qn

(
Rn−l
Rn+1

)β
+

(
α

c1β

)α (∆ρn)α+1anEn

(α+ 1)α+1ραnR
β−α
n+1

, n ≥ N.

Summing the last inequality from N to n− l, we have

n−1∑
s=N

[
MρsEs+1qs

(
Rs−l
Rs+1

)β
−
(
α

c1β

)α (∆ρs)
α+1asEs

(α+ 1)α+1ραsR
β−α
s+1

]
≤ wN <∞.

Taking limit sup as n → ∞ in the last inequality, we obtain a contradiction
to (2.17).

Case(2): Proceeding as in Case (2) of Theorem 2.3, we have

anEn(∆zn)α − asEs(∆zs)α −
M

bβ

n−1∑
t=s

Et+1qtz
β
t−l+k ≤ 0, n ≥ N (2.22)

Let limn→∞ zn = c = 0. Summing (2.22) from n− l+ k to n− 1 for s, we have

zn−l+k − zn ≤
M

1
α

b
β
α

n−1∑
s=n−l+k

(
1

asEs

n−1∑
t=s

Et+1qt

) 1
α

z
β
α
n−l+k,



818 R. Srinivasan, C. Dharuman and E. Thandapani

it implies that

zn−l+k

z
β
α
n−l+k

≥ M
1
α

b
β
α

n−1∑
s=n−l+k

(
1

asEs

n−1∑
t=s

Et+1qt

) 1
α

. (2.23)

Since
zn−l+k

z
β
α
n−l+k

= |zn−l+k|1−
β
α and 1− β

α > 0, we have from (2.23) that

lim
n→∞

sup

n−1∑
s=n−l+k

(
1

asEs

n−1∑
t=s

Et+1qt

) 1
α

≤ 0,

which contradicts (2.18). Next assume that limn→∞ zn = c < 0. From (2.22),
we have

∆zs +
M

1
α

b
β
α

z
β
α
n

(
1

asEs

n−1∑
t=s

Et+1qt

) 1
α

.

Summing the last inequality from N to n− 1, we obtain

zN − zn ≤
M

1
α

b
β
α

z
β
α
n

n−1∑
s=N

(
1

asEs

n−1∑
t=s

Et+1qt

) 1
α

,

it implies that

b
β
α zN

M
1
α z

β
α
n

≥
n−1∑
s=N

(
1

asEs

n−1∑
t=s

Et+1qt

) 1
α

.

In view of c < 0, the term { b
β
α zN

M
1
α z

β
α
n

} has an upper bound, so

lim
n→∞

n−1∑
s=N

(
1

asEs

n−1∑
t=s

Et+1qt

) 1
α

<∞,

which again contradicts (2.18). This completes the proof. �

Theorem 2.5. Let conditions (2.1), (2.2), α ≥ β ≥ 1, and l > k be hold.
If there exists a positive nondecreasing sequence {ρn} such that, for all suffi-
ciently large integer N∗ and for N > N∗,

lim
n→∞

sup

n∑
s=N

[
MρsEs+1qs

(
Rs−l
Rs+1

)β
− c3(∆ρs)

α(asEs)
1
α

4βRβ−1
s+1 ρs

]
=∞ (2.24)

with c3 > 0 and condition (2.18) holds, then every solution of equation (1.1)
is oscillatory.
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Proof. Assume that there exists a nonoscillatory solution xn of equation (1.1),
say xn > 0, xn−k > 0 and xn−l > 0 for all n ≥ N ≥ n0, where N is chosen so
that two cases of Lemma 2.1 hold for all n ≥ N.
Case(1): Proceeding exactly as in the proof of Theorem 2.4 (Case(1)), we
obtain (2.21) which can be rewritten as

∆wn ≤ −MρnEn+1qn

(
Rn−l
Rn+1

)β
+

∆ρn
ρn+1

wn+1 −
βc1ρnR

β
α
−1

n+1

ρ
1+ 1

α
n+1 (anEn)

1
α

w2
n+1w

1
α
−1

n+1 ,

(2.25)

for n ≥ N. From (2.19), we get

w
1
α
−1

n+1 = (ρn+1En+1an+1)
1
α
−1

(
(∆zn+1)α

zβn+1

) 1
α
−1

= (ρn+1En+1an+1)
1
α
−1

(
zn+1

∆zn+1

)α−1

z
(α−1)( β

α
−1)

n+1 . (2.26)

From (2.8), we have(
zn+1

∆zn+1

)α−1

≥ (En+1an+1)
α−1
α Rα−1

n+1, n ≥ N. (2.27)

Since { znRn } is decreasing and (α− 1)(βα − 1) ≤ 0, we obtain

z
(α−1)( β

α
−1)

n+1 ≥ c(α−1)( β
α
−1)

2 R
(α−1)( β

α
−1)

n+1 , n ≥ N. (2.28)

Substituting (2.27), and (2.28) into (2.26) gives

w
1
α
−1

n+1 ≥ ρ
1
α
−1

n+1 c
(α−1)( β

α
−1)

2 R
β− β

α
n+1 . (2.29)

Using (2.29) in (2.25), we obtain

∆wn ≤ −MρnEn+1qn

(
Rn−l
Rn+1

)β
+

∆ρn
ρn+1

wn+1

−
βRβ−1

n+1ρn

c3ρ2
n+1(anEn)

1
α

w2
n+1. (2.30)

Completing square with wn+1, it follows from (2.30) that

∆wn ≤ −MρnEn+1qn

(
Rn−l
Rn+1

)β
+

1

4

c3(∆ρn)2(anEn)
1
α

βRβ−1
n+1ρn

. (2.31)
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Summing the last inequality from N to n leads to

n∑
s=N

[
MρsEs+1qs

(
Rs−l
Rs+1

)β
− c3(∆ρs)

2(asEs)
1
α

4βRβ−1
s+1 ρs

]
≤ wN <∞

which contradicts condition (2.24).

Case(2): The proof is similar to that of Case (2) of Theorem 2.5 and the
proof of the theorem is completed. �

Theorem 2.6. Let conditions (2.1), (2.2) and α ≤ β be hold. If there exists
a positive nondecreasing sequence {ρn} such that, for all sufficiently large N∗
and for N > N∗

lim
n→∞

sup
n∑

s=N

[
MGs+1Es+1qs

(
Rs−l
Rs+1

)β
− cα−β

Rαs+1Es+1as+1

]
=∞ (2.32)

with c > 0 and Gn =
∑n−1

s=n0

1
asEs

, then every solution of equation (1.1) is
either oscillatory or tends to zero as n→∞.

Proof. Proceeding as in the proof of Theorem 2.4, we see that the two cases
of Lemma 2.1 hold for all n ≥ N ≥ n0.

Case(1): Proceeding as in the proof of Theorem 2.4 (Case(1)), we have

∆(Enan(∆zn)α) +MEn+1qnz
β
n−l ≤ 0, n ≥ N. (2.33)

Define

wn = Gn
Enan(∆zn)α

zβn
, n ≥ N. (2.34)

Then wn > 0 for n ≥ N, and from (2.33), (2.34), we obtain

∆wn ≤ −MGn+1En+1qn

(
zn−l
zn+1

)β
+

(∆zn+1)α

zβn+1

≤ −MGn+1En+1qn

(
Rn−l
Rn+1

)β
+

(
∆zn+1

zn+1

)α
zα−βn+1 . (2.35)

Since {zn} is nondecreasing, we have zn ≥ c > 0, and from (2.8) we have(
∆zn+1

zn+1

)α
≤ 1

Rαn+1En+1an+1
, n ≥ N. (2.36)

Using (2.36) in (2.35), we obtain

∆wn ≤ −MGn+1En+1qn

(
Rn−l
Rn+1

)β
+

cα−β

Rαn+1En+1an+1
, n ≥ N.
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Summing the last inequality from N to n, we have
n∑

s=N

[
MGs+1Es+1qs

(
Rs−l
Rs+1

)β
− cα−β

Rαs+1Es+1as+1

]
≤ wN <∞

which contradicts (2.32).

Case(2): In this case we have zn < 0 and ∆zn > 0 for all n ≥ N. Then by
Lemma 1 of [7], one can see that limn→∞ xn = 0. This completes the proof. �

Remark 2.7. Theorems 2.3 and 2.4 improve and extend the results estab-
lished in [7] in the sense that our criteria ensure the oscillation of all solutions
of equation (1.1). Further the results established in the paper extend and
generalize that of in [4, 5, 6, 8, 9, 10, 11].

3. Examples

In this section, we provide two examples to illustrate the main results.

Example 3.1. Consider the second order neutral difference equation:

∆((∆(xn−
1

2
xn−2))3)+

1

n+ 1
(∆(xn−

1

2
xn−2))3+

n

n+ 1
x3
n−3 = 0, n ≥ 1. (3.1)

Here an = 1, pn = 1
n+1 , qn = n

n+1 , bn = 1
2 , l = 3, k = 2 and α = β = 3. So

En = n and Rn =
∑n−1

s=1
1

s1/3
and M = 1. Further Rn → ∞ as n → ∞ and

n− 1 ≥ Rn ≥ (n− 1)2/3. By taking ρn = 1, we see that

lim
n→∞

sup
n∑
s=1

(s+ 1)
s

s+ 1

(
Rs−3

Rs+1

)3

≥ lim
n→∞

sup
n∑
s=1

(s− 4)2

s2
=∞

and

lim
n→∞

sup
n−1∑
s=n−1

(
1

s

n−1∑
t=s

(t+ 1)
t

t+ 1

)
= lim

n→∞
sup

(
1

n− 1

)
(n− 1) = 1 >

1

2
.

Thus, all conditions of Theorem 2.3 are satisfied and hence every solution of
equation (3.1) is oscillatory. In fact {xn} = {(−1)n} is one such oscillatory of
equation (3.1).

Example 3.2. Consider the second order neutral difference equation:

∆(n(∆zn)3) + (n− 1)(∆zn)3 + n2xn−2 = 0, n ≥ 2. (3.2)

Where zn = xn − 1
3xn−1. Here an = n, pn = n − 1, qn = n2, bn = 1

3 , l =

2, k = 1, α = 3, and β = 1. So En = n2−n−2
2 , (n − 1)1/3 ≥ Rn ≥ (n−2

n−1) and
M = 1. Further Rn → ∞ as n → ∞ and by taking ρn = 1, we see that all
conditions of Theorem 2.4 are satisfied. Hence every solution of equation (3.2)
is oscillatory.
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4. Conclusion

In this paper we have established some new oscillation results which can be
easily extended to more general neutral type difference equations and neutral
dynamic equations on any time scales. Further note that the results in the
present paper will contribute to the studies on oscillatory and asymptotic
behavior of solutions of neutral type difference equations with damping term.
It is interesting to extend the results of this paper when the condition (2.1)
fails to hold or an − pn ≤ 0. This would be left to further research.
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