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Abstract. In this paper, we proposed an implicit iteration process for a finite family of

asymptotically quasi-nonexpansive mappings and a finite family of asymptotically quasi-

nonexpansive mappings in the intermediate sense and establish some strong convergence

theorems in the setting of convex metric spaces. Also, we give some applications of our

result. Our results extend and generalize several results from the current existing literature.

1. Introduction and preliminaries

Throughout this paper, N denotes the set of numbers and J = {1, 2, . . . , N},
the set of first N natural numbers. Denote by F (T ) the set of fixed points of
T and by

F :=
(
∩Nj=1 F (Tj)

)
∩
(
∩Nj=1 F (Sj)

)
the set of common fixed points of two finite families of mappings {Tj : j ∈ J}
and {Sj : j ∈ J}.

Let us recall some definitions.
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Definition 1.1. [18] Let (X, d) be a metric space. A mapping W : X ×
X × [0, 1] → X is said to be a convex structure on X if for each (x, y, λ) ∈
X ×X × [0, 1] and u ∈ X,

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space X together with the convex structure W is called a convex
metric space.

Definition 1.2. Let X be a convex metric space. A nonempty subset F of
X is said to be convex if W (x, y, λ) ∈ F whenever (x, y, λ) ∈ F × F × [0, 1].

In 1982, Kirk [11] used the term ”hyperbolic type spaces” for convex met-
ric spaces, and studied iteration processes for nonexpansive mappings in this
abstract setting. Later on, many authors discussed the existence of the fixed
point and the convergence of the iterative process for various mappings in
convex metric spaces (see, for example, [1, 2, 3, 7, 9, 10, 13, 15, 16, 18]).

Recently, Yildirim and Khan [21] extend Definition 1.1 as follows:

Definition 1.3. A mapping W : X3 × [0, 1]3 → X is said to be a convex
structure on X, if it satisfies the following condition: For any (x, y, z; a, b, c) ∈
X3 × [0, 1]3 with a+ b+ c = 1, and u ∈ X:

d(W (x, y, z; a, b, c), u) ≤ ad(x, u) + bd(y, u) + cd(z, u).

If (X, d) is a metric space with a convex structure W , then (X, d) is called
a convex metric space.

Let (X, d) be a convex metric space. A nonempty subset E of X is said
to be convex if W (x, y, z; a, b, c) ∈ E, ∀ (x, y, z) ∈ E3, (a, b, c) ∈ [0, 1]3 with
a+ b+ c = 1.

Takahashi [18] has shown that open sphere B(x, r) = {y ∈ X : d(y, x) < r}
and closed sphere B[x, r] = {y ∈ X : d(y, x) ≤ r} are convex. All normed
spaces and their convex subsets are convex metric spaces. But there are many
examples of convex metric spaces which are not embedded in any normed
space (see [18]).

Remark 1.4. Every normed space is a special convex metric space with a
convex structure W (x, y, z;α, β, γ) = αx + β y + γ z, for all x, y, z ∈ X and
α, β, γ ∈ [0, 1] with α+ β + γ = 1. In fact,

d(u,W (x, y, z;α, β, γ)) = ‖u− (αx+ β y + γ z)‖
≤ α‖u− x‖+ β‖u− y‖+ γ‖u− z‖
= αd(u, x) + βd(u, y) + γd(u, z), ∀u ∈ X.

Definition 1.5. A mapping T : X → X is called:
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(1) Nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X.
(2) Quasi-nonexpansive if F (T ) 6= ∅ and d(Tx, p) ≤ d(x, p) for all x ∈ X

and p ∈ F (T ).
(3) Asymptotically nonexpansive [5] if there exists a sequence un ∈ [0,∞)

with limn→∞ un = 0 such that d(Tnx, Tny) ≤ (1 + un)d(x, y) for all
x, y ∈ X and n ∈ N.

(4) Uniformly L-Lipschitzian if there exists a constant L > 0 such that
d(Tnx, Tny) ≤ Ld(x, y) for all x, y ∈ X and n ∈ N.

(5) Asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a
sequence un ∈ [0,∞) with limn→∞ un = 0 such that d(Tnx, p) ≤
(1 + un)d(x, p) for all x ∈ X, p ∈ F (T ) and n ∈ N.

(6) Asymptotically quasi-nonexpansive in the intermediate sense [21] if
F (T ) 6= ∅ and the following inequality holds:

lim sup
n→∞

sup
p∈F (T ), y∈X

(
d(p, Tny)− d(p, y)

)
≤ 0. (1.1)

If we define

ρn = max{0, sup
p∈F (T ), y∈X

(d(p, Tny)− d(p, y))},

then ρn → 0 as n→∞. It follows that (1.1) reduced to

d(p, Tny) ≤ d(p, y) + ρn, (1.2)

for all p ∈ F (T ), y ∈ X, and n ∈ N.

Remark 1.6. From Definition 1.5, if F (T ) 6= ∅, then the following statements
are obvious:

(1) Every quasi-nonexpansive mapping is asymptotically quasi-nonexpansive.
(2) Every asymptotically quasi-nonexpansive mapping is asymptotically

quasi-nonexpansive in the intermediate sense.
(3) The converse of these statements may not be true in general.

In 2001, Xu and Ori [20] introduced the following implicit iteration process
for common fixed points of a finite family of nonexpansive mappings {Ti : i ∈
I} in Hilbert spaces:

xn = αnxn−1 + (1− αn)Tnxn, n ∈ N, (1.3)

where Tn = Tn(modN) and {αn} is a real sequence in (0, 1). They proved a
weak convergence theorem using this process.

In 2003, Sun [17] extended the process (1.3) to the following process for
common fixed points of a finite family of asymptotically quasi-nonexpansive
mappings {Ti : i ∈ I} in uniformly convex Banach spaces:

xn = αnxn−1 + (1− αn)T ki xn, n ∈ N, (1.4)
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where n = (k − 1)N + i, i ∈ I and {αn} is a real sequence in (0, 1).

Sun [17] studied the strong convergence of the process (1.4) for common
fixed points of the mappings {Ti : i ∈ I}, requiring only one member of the
family to be semicompact. The results of Sun [17] generalized and extended
the corresponding results of Xu and Ori [20].

In 2008, Khan et al. [6] studied the following n-step iterative processes for
a finite family of mappings {Ti : i = 1, 2, . . . , k}. Let x1 ∈ K and the iterative
sequence {xn} is defined as follows:

xn+1 = (1− αkn)xn + αknT
n
k y(k−1)n,

y(k−1)n = (1− α(k−1)n)xn + α(k−1)nT
n
k−1y(k−2)n,

...

y2n = (1− α2n)xn + α2nT
n
2 y1n,

y1n = (1− α1n)xn + α1nT
n
1 y0n, n ≥ 1,

(1.5)

where y0n = xn for all n ∈ N∪{0} and αin ∈ [0, 1], n ≥ 1 and i ∈ {1, 2, . . . , k}.
In 2010, Khan and Ahmed [7] considered the iteration process (1.5) in con-

vex metric spaces as follows:

xn+1 = W (Tnk y(k−1)n, xn;αkn),

y(k−1)n = W (Tnk−1y(k−2)n, xn;α(k−1)n),

...

y2n = W (Tn2 y1n, xn;α2n),

y1n = W (Tn1 y0n, xn;α1n), n ≥ 1,

(1.6)

where y0n = xn for all n ∈ N∪{0} and αin ∈ [0, 1], n ≥ 1 and i ∈ {1, 2, . . . , k}.
In 2010, Khan et al. [8] introduced an implicit iteration process for two

finite families of nonexpansive mappings as follows:
Let (E, ‖.‖) be Banach space and Si, Ti : E → E, (i ∈ I) be two families

of nonexpansive mappings. For any given x0 ∈ E, define an iteration process
{xn} as

xn = αnxn−1 + βnSnxn + γnTnxn, n ∈ N, (1.7)

where Tn = Tn(modN), Sn = Sn(modN) and {αn}, {βn}, {γn} are three se-
quences in (0, 1) such that αn + βn + γn = 1 for all n ∈ N.

Recently, Yildirim and Khan [21] transformed iteration process (1.7) to the
case of two families of asymptotically quasi-nonexpansive mappings in convex
metric spaces as follows:
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Let (X, d,W ) be a convex metric space with convex structure W and
Ti, Si : X → X be two finite families of asymptotically quasi-nonexpansive
mappings. For any given x0 ∈ X, we define iteration process {xn} as follows.

x1 = W (x0, S1x1, T1x1;α1, β1, γ1)

x2 = W (x1, S2x2, T2x2;α2, β2, γ2)

...

xN = W (xN−1, SNxN , TNxN ;αN , βN , γN )

xN+1 = W (xN , S
2
1xN+1, T

2
1 xN+1;αN+1, βN+1, γN+1)

...

x2N = W (x2N−1, S
2
Nx2N , T

2
Nx2N ;α2N , β2N , γ2N )

x2N+1 = W (x2N , S
3
1x2N+1, T

3
1 x2N+1;α2N+1, β2N+1, γ2N+1)

...

This iteration process can be rewritten in the following form:

xn = W
(
xn−1, S

k
i xn, T

k
i xn;αn, βn, γn

)
, n ∈ N, (1.8)

where n = (k − 1)N + i, i ∈ I and {αn}, {βn}, {γn} are three sequences in
(0, 1) such that αn+βn+γn = 1 for all n ∈ N and they established some strong
convergence results which generalized some recent results of [7, 8, 17, 19, 20].

Notice that the iteration scheme (1.6) deals with one family and uses n-
steps whereas (1.8) deals with two families and uses only one step. Hence our
process is simpler than that used by [7] and is able to deal with two families
at the same time.

Motivated and inspired by [21] and some others, we introduce and study
the following iteration scheme:

Definition 1.7. Let (X, d,W ) be a convex metric space with convex structure
W , Sj : X → X be a finite family of asymptotically quasi-nonexpansive map-
pings and Tj : X → X be a finite families of asymptotically quasi-nonexpansive
mappings in the intermediate sense. For any given x0 ∈ X, we define iteration
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process {xn} as follows.

x1 = W (x0, S1x1, T1x1;α1, β1, γ1)

x2 = W (x1, S2x2, T2x2;α2, β2, γ2)

...

xN = W (xN−1, SNxN , TNxN ;αN , βN , γN )

xN+1 = W (xN , S
2
1xN+1, T

2
1 xN+1;αN+1, βN+1, γN+1)

...

x2N = W (x2N−1, S
2
Nx2N , T

2
Nx2N ;α2N , β2N , γ2N )

x2N+1 = W (x2N , S
3
1x2N+1, T

3
1 x2N+1;α2N+1, β2N+1, γ2N+1)

...

This iteration process can be rewritten in the following compact form:

xn = W
(
xn−1, S

k
i xn, T

k
i xn;αn, βn, γn

)
, n ∈ N, (1.9)

where n = (k − 1)N + j, j ∈ J and {αn}, {βn}, {γn} are three sequences
in (0, 1) such that αn + βn + γn = 1 for all n ∈ N and establish some strong
convergence results in the setting of convex metric spaces.

Lemma 1.8. ([12]) Let {pn}, {qn}, {rn} be three sequences of nonnegative
real numbers satisfying the following conditions:

pn+1 ≤ (1 + qn)pn + rn, n ≥ 0,
∞∑
n=0

qn <∞,
∞∑
n=0

rn <∞.

Then

(1) limn→∞ pn exists.
(2) In addition, if lim infn→∞ pn = 0, then limn→∞ pn = 0.

Remark 1.9. It is easy to verify that (2) in Lemma 1.8 holds under the
hypothesis lim supn→∞ pn = 0 as well. Therefore, the condition (2) in Lemma
1.8 can be reformulated as follows:

(2’) If either lim infn→∞ pn = 0 or lim supn→∞ pn = 0, then limn→∞ pn = 0.

2. Main results

In this section, we prove some strong convergence theorems using iteration
scheme (1.9) in the framework of convex metric spaces. First, we shall need
the following lemma.
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Lemma 2.1. Let (X, d,W ) be a convex metric space with convex structure
W and {Sj : X → X} (j ∈ J) be a finite family of asymptotically quasi-
nonexpansive mappings with a sequence {un} ⊂ [0,∞) such that

∑∞
n=1 un <

∞ and {Tj : X → X} (j ∈ J) be a finite family of asymptotically quasi-
nonexpansive mappings in the intermediate sense. Suppose that F 6= ∅ and
that x0 ∈ X, {βn} ⊂ (s, 1−s) for some s ∈ (0, 12) and

∑∞
n=1 γn <∞. Suppose

that {xn} is as in (1.9). Put

An = max
{

max
1≤j≤N

sup
p∈F, y∈X

(
d(p, Tnj y)− d(p, y)

)
∨ 0
}

(2.1)

where n = (k − 1)N + j and j ∈ J such that
∑∞

n=1An <∞. Then we have:

(i) limn→∞ d(xn, p) exists for all p ∈ F .
(ii) limn→∞D(xn, F ) exists, where D(x, F ) = inf{d(x, y) : y ∈ F}.

(iii) If limn→∞D(xn, F ) = 0, then {xn} is a Cauchy sequence.

Proof. (i) Let p ∈ F and n = (k− 1)N + j, j ∈ J . Then from (1.9) and (2.1),
we have

d(xn, p) = d(W (xn−1, S
n
j xn, T

n
j xn;αn, βn, γn, p)

≤ αn d(xn−1, p) + βn d(Snj xn, p) + γn d(Tnj xn, p)

≤ αn d(xn−1, p) + βn(1 + un)d(xn, p) (2.2)

+γn[d(xn, p) +An]

≤ αn d(xn−1, p) + [βn(1 + un) + γn]d(xn, p) + γnAn
= αn d(xn−1, p) + (βn + γn)d(xn, p) + βnund(xn, p)

+γnAn.

Since limn→∞ γn = 0, there exists a natural number N1 such that n > N1,
γn ≤ s

2 . Therefore

1− βn − γn ≥ 1− (1− s)− s

2
=
s

2

for n > N1. Thus, from (2.3), we have

(1− βn − γn)d(xn, p) ≤ αn d(xn−1, p) + und(xn, p) + γnAn

so that

d(xn, p) ≤
αn

1− βn − γn
d(xn−1, p) +

un
1− βn − γn

d(xn, p)

+
γn

1− βn − γn
An

≤ d(xn−1, p) +
2

s
und(xn, p) +An. (2.3)
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Since limn→∞ un = 0, there exists a natural number N2 such tat n ≥ N2 and

un ≤
s

4
. (2.4)

From (2.3), we have

(
1− 2

s
un

)
d(xn, p) ≤ d(xn−1, p) +An.

That is,

d(xn, p) ≤
s

s− 2un
d(xn−1, p) +

s

s− 2un
An. (2.5)

Let

1 + ψn =
s

s− 2un
= 1 +

2un
s− 2un

.

But from (2.4), 2un ≤ s
2 , s − 2un ≥ s − s

2 = s
2 so that 1

s−2un ≤
2
s and so

ψn = 2un
s−2un ≤

4
sun. Thus, we have

∞∑
n=1

ψn =
∞∑
n=1

4

s
un <∞.

Now by (2.5), we have

d(xn, p) ≤ (1 + ψn)d(xn−1, p) + 2An. (2.6)

Since
∑∞

n=1 ψn < ∞ and
∑∞

n=1An < ∞, it follows from Lemma 1.8(i) that
limn→∞ d(xn, p) exists.

(ii) Taking infimum over all p ∈ F in equation (2.6), we have at

D(xn, F ) ≤ (1 + ψn)D(xn−1, F ) + 2An. (2.7)

Since
∑∞

n=1 ψn < ∞ and
∑∞

n=1An < ∞, it follows from Lemma 1.8(i) that
limn→∞D(xn, F ) exists.
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(iii) Note that, when x > 0, 1 + x ≤ ex. Thus from (2.6), we have

d(xn+m, p) ≤ (1 + ψn+m)d(xn+m−1, p) + 2An+m
≤ eψn+md(xn+m−1, p) + 2An+m
≤ e[ψn+m+ψn+m−1]d(xn+m−2, p)

+2e[ψn+m+ψn+m−1][An+m +An+m−1]
...

≤
(
e
∑n+m

k=n+1 ψk

)
d(xn, p) + 2

(
e
∑n+m

k=n+1 ψk

)( n+m∑
k=n+1

Ak
)

≤
(
e
∑∞

k=n ψk

)
d(xn, p) +

(
e
∑∞

k=n ψk

)( n+m∑
k=n+1

Ak
)

= R
(
d(xn, p) + 2

n+m∑
k=n+1

Ak
)

for all p ∈ F and n,m ∈ N and R = e
∑∞

k=n ψk . That is,

d(xn+m, p) ≤ R
(
d(xn, p) + 2

n+m∑
k=n+1

Ak
)
. (2.8)

Now we use (2.8) to prove that {xn} is a Cauchy sequence. From the
hypothesis limn→∞D(xn, F ) = 0 and

∑∞
k=n+1Ak < ∞, for each ε > 0 there

exists N3 ∈ N such that

D(xn, F ) <
ε

2(R+ 1)
, ∀n ≥ N3 (2.9)

and

∞∑
k=n+1

Ak <
ε

4R
, ∀ k ≥ N3. (2.10)

Thus, there exists q ∈ F such that

d(xn, q) <
ε

2(R+ 1)
, ∀n ≥ N3. (2.11)



834 G. S. Saluja and H. G. Hyun

Using (2.10) and (2.11) in (2.8), we obtain

d(xn+m, xn) ≤ d(xn+m, q) + d(xn, q)

≤ Rd(xn, q) + 2R
n+m∑
k=n+1

Ak + d(xn, q)

= (R+ 1)d(xn, q) + 2R
n+m∑
k=n+1

Ak

< (R+ 1).
( ε

2(R+ 1)

)
+ 2R.

( ε

4R

)
= ε,

for all n,m ≥ N3. Thus {xn} is a Cauchy sequence. This completes the
proof. �

Theorem 2.2. Let (X, d,W ) be a convex metric space with convex struc-
ture W and {Sj : X → X} (j ∈ J) be a finite family of asymptotically quasi-
nonexpansive mappings with a sequence {un} ⊂ [0,∞) such that

∑∞
n=1 un <

∞ and {Tj : X → X} (j ∈ J) be a finite family of asymptotically quasi-
nonexpansive mappings in the intermediate sense. Suppose that F 6= ∅ and
that x0 ∈ X, {βn} ⊂ (s, 1 − s) for some s ∈ (0, 12),

∑∞
n=1 γn < ∞ and An as

in Lemma 2.1. Suppose that {xn} is as in (1.9). Then

(A1) lim infn→∞D(xn, F ) = lim supn→∞D(xn, F ) = 0 if {xn} converges to
a unique point in F .

(A2) {xn} converges to a unique point in F if X is complete and either
lim infn→∞D(xn, F ) = 0 or lim supn→∞D(xn, F ) = 0.

Proof. (A1) Let {xn} be convergent to q. Then limn→∞ d(xn, q) = 0. So, for
a given ε > 0, there exists n0 ∈ N such that

d(xn, q) < ε,∀n ≥ n0.
Taking the infimum over q ∈ F , we obtain

D(xn, F ) < ε,∀n ≥ n0.
This means thar limn→∞D(xn, F ) = 0, so we have lim infn→∞D(xn, F ) =
lim supn→∞D(xn, F ) = 0.

(A2) Suppose thatX is complete and lim infn→∞D(xn, F ) = 0 or lim supn→∞
D(xn, F ) = 0. Then, we have from condition (ii) in Lemma 1.8 and Remark
1.9 that limn→∞D(xn, F ) = 0. From the completeness of X and Lemma 2.1,
we get that limn→∞ xn exists and equals u ∈ X (say). Moreover, since the set
F of common fixed points of two finite families of mixed mappings is closed,
u ∈ F from limn→∞D(xn, F ) = 0. This shows that u is a common fixed point
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of {Tj : j ∈ J} and {Sj : j ∈ J}. Hence {xn} converges to a unique point in
F . This completes the proof. �

3. Applications

As an application of Theorem 2.2, we establish some strong convergence
results as follows.

Theorem 3.1. Let (X, d,W ) be a convex metric space with convex struc-
ture W and {Sj : X → X} (j ∈ J) be a finite family of asymptotically quasi-
nonexpansive mappings with a sequence {un} ⊂ [0,∞) such that

∑∞
n=1 un <

∞ and {Tj : X → X} (j ∈ J) be a finite family of asymptotically quasi-
nonexpansive mappings in the intermediate sense. Suppose that F 6= ∅ and
x0 ∈ X, {βn} ⊂ (s, 1 − s) for some s ∈ (0, 12),

∑∞
n=1 γn < ∞ and An as in

Lemma 2.1. Suppose that {xn} is as in (1.9). Assume that the following two
conditions hold:

(B1) limn→∞ d(xn, xn+1) = 0;
(B2) the sequence {yn} in X satisfying limn→∞ d(yn, yn+1) = 0 implies

lim infn→∞D(yn, F ) = 0 or lim supn→∞D(yn, F ) = 0.

Then {xn} converges to a unique point in F .

Proof. From conditions (B1) and (B2), we have

lim inf
n→∞

D(xn, F ) = 0 or lim sup
n→∞

D(xn, F ) = 0.

Therefore, we obtain from (A2) in Theorem 2.2 that the sequence {xn} con-
verges to a unique point in F . This completes the proof. �

Theorem 3.2. Let (X, d,W ) be a convex metric space with convex struc-
ture W and {Sj : X → X} (j ∈ J) be a finite family of asymptotically quasi-
nonexpansive mappings with a sequence {un} ⊂ [0,∞) such that

∑∞
n=1 un <

∞ and {Tj : X → X} (j ∈ J) be a finite family of asymptotically quasi-
nonexpansive mappings in the intermediate sense. Suppose that F 6= ∅ and
that x0 ∈ X, {βn} ⊂ (s, 1−s) for some s ∈ (0, 12),

∑∞
n=1 γn <∞ and An as in

Lemma 2.1. Suppose that {xn} is as in (1.9). Assume that limn→∞ d(xn, Sjxn) =
limn→∞ d(xn, Tjxn) = 0 for all j ∈ J . If there exists an Tj or Sj, j ∈ J , which
is semi-compact. Then the sequence {xn} converges to a point in F .

Proof. Without loss of generality, we can assume that T1 is semi-compact.
From Lemma 2.1, we know that the sequence {xn} is bounded and by hypoth-
esis of the theorem

lim
n→∞

d(xn, Sjxn) = 0 and lim
n→∞

d(xn, Tjxn) = 0,
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for all j ∈ J . Since T1 is semi-compact and limn→∞ d(xn, T1xn) = 0, there
exists a subsequence {xnr} of {xn} such that xnr → x∗ ∈ X. Thus

d(x∗, Tjx
∗) = lim

r→∞
d(xnr , Tjxnr) = 0

and

d(x∗, Sjx
∗) = lim

r→∞
d(xnr , Sjxnr) = 0

for all j ∈ J . Which implies that x∗ ∈ F and so

lim inf
n→∞

D(xn, F ) ≤ lim inf
r→∞

D(xnr , F ) ≤ lim
r→∞

d(xnr , x
∗) = 0.

It follows from Theorem 2.2 that {xn} converges strongly to a point in F .
This completes the proof. �

Theorem 3.3. Let (X, d,W ) be a convex metric space with convex struc-
ture W and {Sj : X → X} (j ∈ J) be a finite family of asymptotically quasi-
nonexpansive mappings with a sequence {un} ⊂ [0,∞) such that

∑∞
n=1 un <

∞ and {Tj : X → X} (j ∈ J) be a finite family of asymptotically quasi-
nonexpansive mappings in the intermediate sense satisfying limn→∞ d(xn, Sjxn)
= limn→∞ d(xn, Tjxn) = 0 for all j ∈ J . Suppose that F 6= ∅ and that x0 ∈ X,
{βn} ⊂ (s, 1− s) for some s ∈ (0, 12),

∑∞
n=1 γn <∞ and An as in Lemma 2.1.

Suppose that {xn} is as in (1.9). If one of the following condition is true, then
the sequence {xn} defined by (1.9) converges to a unique point in F .

(C1) If there exists a nondecreasing function g1 : [0,∞)→ [0,∞) with g1(0) =
0, g1(t) > 0 for all t ∈ (0,∞) such that either d(xn, Tjxn) ≥ g1(D(xn, F ))
or d(xn, Sjxn) ≥ g1(D(xn, F )) for all n ∈ N and j ∈ J . (See Condition
A′ of [4]).

(C2) There exists a function g2 : [0,∞) → [0,∞) which is right continuous
at 0, g2(0) = 0 and g2(d(xn, Tjxn)) ≥ D(xn, F ) or g2(d(xn, Sjxn)) ≥
D(xn, F ) for all n ∈ N and j ∈ J .

Proof. First suppose that (C1) holds. Then

lim
n→∞

g1(D(xn, F )) ≤ lim
n→∞

d(xn, Tjxn) = 0

or

lim
n→∞

g1(D(xn, F )) ≤ lim
n→∞

d(xn, Sjxn) = 0.

In both the cases, we obtain

lim
n→∞

g1(D(xn, F )) = 0.

Since g1 : [0,∞) → [0,∞) is a nondecreasing function satisfying g1(0) = 0,
g1(t) > 0 for all t ∈ (0,∞), therefore we have

lim
n→∞

D(xn, F ) = 0.
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Thus all the conditions of Theorem 2.2 are satisfied, therefore by its conclusion
the sequence {xn} converges to a point in F .

Next, assume that (C2) holds. Then either

lim
n→∞

D(xn, F ) ≤ lim
n→∞

g2(d(xn, Tjxn)) = g2( lim
n→∞

d(xn, Tjxn) = g2(0) = 0

or

lim
n→∞

D(xn, F ) ≤ lim
n→∞

g2(d(xn, Sjxn)) = g2( lim
n→∞

d(xn, Sjxn) = g2(0) = 0.

Again in both the cases, limn→∞D(xn, F ) = 0. Thus, lim infn→∞D(xn, F ) =
0 or lim supn→∞D(xn, F ) = 0. Hence by Theorem 2.2, the sequence {xn}
converges to a point in F . This completes the proof. �

Now, we give an example in support of our result: take two mappings
T1 = T2 = · · · = TN = T and S1 = S2 = · · · = SN = S as follows:

Example 3.4. Let X = [0, 1] with the usual metric d(x, y) = |x − y|. For
each x ∈ X, define two mappings T, S : X → X by

T (x) =

{
x
2 sin 1

x , if x 6= 0,
0, if x = 0

and

S(x) =

{
x
3 , if x 6= 0,
0, if x = 0.

Then S is an asymptotically quasi-nonexpansive mapping with constant se-
quence {kn} = {1} for all n ∈ N and uniformly L-Lipschtzian mappings with
L = supn≥1{kn} and T is also an asymptotically quasi-nonexpansive mapping
with constant sequence {kn} = {1} for all n ∈ N and hence is an asymptoti-
cally quasi-nonexpansive mappings in the intermediate sense by Remark 1.4.
Also F (S) = {0} is the unique fixed point of S and F (T ) = {0} is the unique
fixed point of T , that is, F = F (S) ∩ F (T ) = {0} is the unique common fixed
point of S and T .

4. Concluding remarks

In this paper, we proposed and study an implicit iteration process for a
finite family of asymptotically quasi-nonexpansive mappings and a finite family
of asymptotically quasi-nonexpansive mappings in the intermediate sense in
convex metric spaces and establish some strong convergence results. Also,
we give some applications of our result in the setting of convex metric spaces.
The results presented in this paper are extensions and improvements of several
corresponding results from the current existing literature (see, for example,
[7, 8, 14, 17, 19, 20, 21] and many others).

Acknowledgments: This work was supported by Kyungnam University Re-
search Fund 2017.
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