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Abstract. In this paper, we consider an initial and boundary value problem for a nonlinear
Carrier wave equation, with a source term containing four variables

f= f(w77§7u7/1 zu? (z,t)dz).

Motivated by recent results for Carrier equation, we establish here a high order iterative

scheme to obtain a convergent sequence at a rate of order V.

OReceived April 3, 2017. Revised September 19, 2017.

92010 Mathematics Subject Classification: 35C20, 35L05, 35120, 35L70, 35Q80.

9Keywords: Faedo-Galerkin method, nonlinear Carrier wave equation, the convergence of
order N.



842 L. H. K. Son, D. T. N. Quynh, L. T. P. Ngoc and N. A. Triet

1. INTRODUCTION

In this paper, we consider the following nonlinear Carrier wave equation in
the annular membrane

= (a0 )t ) = fo by () 2), p < <1, 0< 4 <, (L)
associated with Robin-Dirichlet conditions
u(p,t) = ug(1,t) + Cu(l,t) = 0, (1.2)
and initial conditions
u(z,0) = to(z), u(z,0)=a1(z), (1.3)

where u, f, 4, 41 are given functions, and p,  are given constants, with 0 <
p < 1. In equation (1.1), the nonlinear terms ,u(Hu(t)Hg) and f(z,t,u, ||u(t)H(2))
depend on the integral Hu(t)||(2) = fpl zu? (z,t) der. Equation (1.1) herein is
the bidimensional nonlinear wave equation describing nonlinear vibrations of
the annular membrane 0 = {(x,y) : p?> < 22 + y*> < 1}. In the vibration
processing, the area of the annular membrane and the tension at various points
change in time. The condition on the boundary I'y = {(x,y) : 22 +y? = 1},
that is uz(1,¢)4+Cu(1,t) = 0, describes elastic constraints where ¢ the constant
has a mechanical signification. Here, the boundary conditions onI'), = {(z,y) :
2?2 + y? = p?} requiring u(p,t) = 0, it means that the annular membrane is
fixed.

In [1], Carrier established the equation which models vibrations of an elastic
string when changes in tension are not small

1 EA
putt — ( + T )y
where u(x,t) is the x - derivative of the deformation, T} is the tension in the
rest position, E is the Young modulus, A is the cross - section of a string, L
is the length of a string and p is the density of a material.

In [10], a high order iterative scheme was established in order to get a
convergent sequence at a rate of order N (N > 1) to a local unique weak
solution of a nonlinear Carrier wave equation as follows

L
u2<y,t>dy) - (1.4)

1
Uy — ,u(Hu(t)Hg)(um + Eum) = f(z,t,u), p<x<l, 0<t<T,

associated with the Robin-Dirichlet conditions (1.2), where p € C1 (R;) and
there exist constants p > 1, pyx > 0, p1 > 0, uo > 0 such that

{ 0 < ps < p(z) < pp(l+ 2P), for all z >0,

|1/ (2)] < p2(1+ 2P71), for all z > 0. (1.5)
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Motivated by results for nonlinear wave equations in [3] and [4], where
recurrent sequences converge at a rate of order 1 or 2, we will construct a high
order iterative scheme to obtain a convergent sequence at a rate of order N
to a local weak solution of problems (1.1)-(1.3). This scheme is established
based on a high order method for solving operator equation F(z) = 0, it
also has been applied in [5]-[10], [14] and some other works. It is well known
that Newton’s method and its variants are used to solve nonlinear operator
equations, see [11] and references therein.

In this paper, we associate with equation (1.1) a recurrent sequence {u,,}
defined by
%u,, 9 (U, 10U,
e p(l[um (t)[5) 972 + T or

=Y Ayl — v (@I~ e @13

0<i+j<N—1

(1.6)

p<z<1,0<t<T, where Ajjflum 1] = 77 DyDIf(@,t, um1, [[um-1(1)[I3),
with w,, satisfying (1.2), (1.3) and ug = 0. If f € CV([p,1] x Ry x R x
R, ), then we prove that the sequence {u,,} converges at a rate of order N
to a local weak solution of problems (1.1)-(1.3). In our proofs, the Faedo -
Galerkin approximation method associated with a priori estimates, the weak
convergence, compactness techniques and a known fixed point theorem are
used. We would like to emphasize here that the assumptions for the function
p and its derivatives are bounded by a polynomials as in [4]-[6], [14] will be
ignored in the process of proving. Our results can be regarded as an extension
and improvement of the corresponding results of [3]-[10], [13] and [14].

2. PRELIMINARIES

Put Q = (p,1), Qr = Q2 x (0,7), T > 0. We will omit the definitions of
the usual function spaces and denote them by the notations LP = LP(€2),
H™ = H™(Q). Let {-,-) be either the scalar product in L? or the dual pairing
of a continuous linear functional and an element of a function space. The
notation ||-|| stands for the norm in L? and we denote by |||y the norm in
the Banach space X. We call X’ the dual space of X. We denote LP(0,T; X),
1 < p < oo the Banach space of real measurable functions u : (0,7) — X,
such that ||ull 1, r,x) < +0o0, with

1/
(o Iue) i de) ™, it 1 <p <o,

esssup [u(t)llx, i p=o.
o<t<T

HUHLP(O,T;X)
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0
For f € C¥([p,1] x Ry x R x Ry), f = f(x,t,y1,92), we put D1 f = c’%’
0 0
Dgf = 67{’ Dg_H'f = 87f with ¢ = 1,2, and Daf = D?l...DZMf, o = (041, ceey
Yi
o) €74, |o| = a1 + .+ 0y = k, DO f = f.
On H' = H' (Q), H? = H? (Q), we shall use the following norms
1
ol = (ol + o] ”) (2.1)
and
1
ol = (Il + sl + fosal?) (22)
respectively.

Note that L%, H', H? are also the Hilbert spaces with respect to the corre-
sponding scalar products

1
(u,v) = / zu(z)v(x)de, (u,v)+ (Ug,Vg), (U, V) + (Ug, Vz) + (Ugz, V),
p

(2.3)
respectively. The norms in L? and H! induced by the corresponding scalar
products (2.3) are denoted by |||y, ||-||; and |||y, respectively.

We put

V1={UEH1:U(,0):0}. (2.4)

Then, V; is a closed subspace of H' and two norms |[v||;: and |lv,| are
equivalent norms on Vi, and Vj is continuously and densely embedded in L?.
Identifying L? with (LQ), (the dual of L?), we have V; — L? — V/; On the
other hand, the notation (-,-) is used for the pairing between Vi and V7.

We then have the following lemmas.

Lemma 2.1. The following inequalities are fulfilled:
(i) 7ol < llollg < Ilol] for allv € L2,

(i) VBl < lolly < ol for all v e HY.

Lemma 2.2. The embedding V; — C° (ﬁ) is compact and for all v € Vi, we
have

@) lollgo@) = V1= pllvall,

.. 1—
(ii) [Jol] < 7 [[va ]l
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(iii) ol < T2 Ivelly s
(iv) flozlls +v* (1) > [lollf
V) o (V)] < V3ol -

Remark 2.3. Since two norms v — ||v|| and v — ||v||, are equivalent on L?,
two norms v — ||v||g and v — |||, are equivalent on H', and five norms

v ol v ol v ol v flvelly and v e y/lfvg]|§ + 0% (1) are
equivalent on V7.

Now, we define the bilinear form
1
a(u,v) =Cu(l)v(l)+ / Tugy () vy (x) dx, for all u, v € V7, (2.5)
p

where ( > 0 is a constant. We then have the following lemma.
Lemma 2.4. The symmetric bilinear form a (-,-) defined by (2.5) is continu-
ous on Vi x Vi and coercive on V1, i.e.,

(i) la (u,v)[ < Cylully o],

(i) a(v,v) > Co o7,

for all u, v € Vi, with Cy = %min{l, (liipp)g} and C1 =1+ 3C.

Remark 2.5. By Lemma 2.4, the norms v — ||v|| g1, v — [|v]l{, v = [va,

v sl v g/ lloallg + 02 (1) and v = [Joll, = V/a(v,v) = \/oallg + ¢v? (1)

are equivalent on V7.

Lemma 2.6. There exists the Hilbert orthonormal base {w;} of the space L*
consisting of eigenfunctions w; corresponding to eigenvalues \; such that

(i) O<)\1§)\2§-"§)\j§)\j+1§'”, limj_>+oo>\j=+oo,

(ii) a(wj,v) = Aj(wj,v) forallveVy, j=1,2,....
Furthermore, the sequence {w;/\/\;} is also the Hilbert orthonormal base of
Vi with respect to the scalar product a (-,-) .
On the other hand, w; satisfies the following boundary value problem
1 10 :
Awj = —Wjgy — ;wjx = (zwjz) = Ajwy, in Q,
wj (p) = wje(1) + Cw;(1) = 0, wj € C= ([p, 1]).

(2.6)
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The proof of Lemma 2.6 can be found in [[12], p.87, Theorem 7.7], with
H =L?and V = Vi, and a(-,-) as defined by (2.5).

We also note that the operator A : V; — V/ in ( 2.6) is uniquely defined
by the Lax-Milgram’s lemma, i.e.,

a(u,v) = (Au,v) for all u,v € Vj. (2.7)
Lemma 2.7. Three norms

v ol

2 2 2

v flofly = \/HvHo +llvallo + llvezllo
2 2
v =/ lvzllp + 1 Av]g

are equivalent on Vi N H2.
Finally, we need the following lemma.

and

Lemma 2.8. Let g € C(Ry;R). if the function ®4 is defined as follows:

sup |g(w)|, >0,
D,(r) =< 0<usr (2.8)
l9(0)1, r=0,
then ®, € C(Ry;Ry) and 4 s nondecreasing such that
g(z) < y(x), for all z € R, (2.9)

The proof of Lemma 2.8 can be found in [[15], Appendix 1].
3. A HIGH ORDER ITERATIVE SCHEME

First, we say that u is a weak solution of problems (1.1)-(1.3) if
u€ L®0,T;Vi N H?), up € L®(0,T; V1), uw € L®(0,T;L%)},  (3.1)

and u satisfies the following variational equation

(war(8),0) + o (u(®)3) alu(t), v) = (o tu, [u®IR), o), (32)
for all v € V1, and a.e., t € (0,7, together with the initial conditions
u(0) = tg, u(0) = ay, (3.3)
where a(-,-) is the symmetric bilinear form on V; defined by (2.5).

Now, we make the following assumptions:
(Hl) ug € Vi ﬂHZ, uy; € Vi;
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(H3) p € C'(Ry), and there exists a constant p. > 0 such that u(z) >
s > 0, for all z > 0;

(Hs3) f € CO'([p,. 1] x Ry x R x Ry) such that f(p,¢,0,2z) =0, Vt, z > 0 and
(i) DiDJf € COp, 1] x Ry x Rx R4), 1 <i+j <N,

(ii) DIDLDIf € COp, 1] x Ry x RxRy), 0<i+j<N—1.

Remark 3.1. The following assumptions for the function y made in [10] are
not needed here: p € C! (R,) and there exist constants p > 1, . > 0, 1 > 0,
o > 0 such that

(1) 0 < s < pu(2) < pr(1 4 2P), for all z > 0,
(ii) |/ (2)] < po(1 + 2P~ 1Y), for all z > 0.
Fix T* > 0. For each M > 0 given, we set the constants Kps (1), Kar(f)
as follows:

Ky (p) = (s (n(2) + |1 (2)])

and

I

Ku(f) = _ max HDEDif’c(J(A*(M»

0<i+j<N-1

where HfHCO(A*(M)) = Sup{|f($,t,y,z)| : (x,t,y,z) € A* (M)}a and

e e
A, (M) = [p,1] x [0,T*] x [—\/pM, \/’)M] x [~M2 M?] .
p p
For each M > 0 and T € (0,T*], we put

W (M,T) ={ue L>®(0,T;Vi N H?) :uy € L* (0, T3 V1), uy € L*(Qr),
HUHLOO(O,T;VlﬁH?) <M, ||UtHL°<>(0,T;V1) <M, ||Utt||L2(QT) < M},
Wi (M, T) ={ueW (M,T) : uy € L (0,T;L?)}.

Now, we establish the following recurrent sequence {u,,}. The first term is
chosen as ug = 0, suppose that

Um—1 € Wl(M, T), (3.4)

we find u,, € W1 (M, T) (m > 1) satisfying the linear variational problem

{ (ul (£),0) + pm (t) a(um(t),v) = (Fy, (t) ,v), Yo € V4, (3.5)

um (0) = o, u;,(0) =,
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in which
o (8) = 1 (1em )13
Fuwt)= % A flwm) (= ) (Jlum @1 =m0

0<i+j<N-1

Aij fltm-1] = 7 DEDLF (2, tm 1, [ -1 (£)]3),
i,j€Zy,0<i+7j<N—1.

(3.6)
Now, we have the following theorem.

Theorem 3.2. Let (Hy), (Hs), (Hs) hold. Then there exist a constant M > 0
depending on ug, U1, W, ¢, p and T > 0 depending on ug, 1, i, f, ¢,p such
that, for ug = 0, there exists a recurrent sequence {u,} C Wi(M,T) defined
by (3.5) and (3.6).

Proof. Step 1. Approzimating solutions. Consider the basis {w;} for Vi as
in Lemma 2.6. Put

k
®)(4) = ijl M (tyw;, (3.7)
(k)

where the coefficients c,, i satisfy the system of nonlinear differential equations

{ (i (8) ;) + g (1) alui () w3) = (B (8, wi)s J =Lk o
uln) (0) = dog, i (0) = T,
in which
Upg = 2?21 ag-k)wj — @i strongly in Vi N H?, (3.9)
e = 35, B w; — @y strongly in V4, '
and
k k 2
w0 =n (o))
k k i k 2 J
B0 = 5 Ayl =) ([0 - fena017)
0<i4j<N—1 0
(3.10)
with

1 i o o
Aijf[um—l] = Tj!DéDif(mauum—l? ||um—1(t)”g)7 1, J € Z+7 0< 147 < N—1.

(3.11)
The system (3.8), (3.9) can be written in the form
(0 + Apss) Ok (6) = (B (1), wy), 1<5 <k, -
®) oy () )y ah) (3.12)
cmy(0) = ;7 ¢,,5(0) = B
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It can see that, system (3.12) is equivalent to system of integral equations
t
k k k k
g = ol e = [l @13)

(= $)Fos ] (s) ds
+/O<t ) Fons 0] (5) ds,

1 < j <k, where

W10 = (o).

Fugle1 (1) = (FQ (1),wy), 1<j <k,
b = (cfﬂ,...,cgsl)g).

Note that by (3.4), it is not difficult to prove that the system (3.13) has a

unique solution c(k)( t), 1 < j <k on interval [0, T )] C [0, T, so let us omit
the details.

The following estimates allow one to take T,SfC )
k.

Step 2. A priori estimates. Put

= T independent of m and

SW (1) = X8 (1) + Y0 (¢ / H (3.14)

where
X0 = [l o+ u 0 Hu%) 2

k (k) |2 k k) o ||?
'(0) = [ )|+ i) @) | au @)
Then, it follows from (3.8), (3.14) and (3.15) that

SB ) = sW(0)+ / b ( [H ) (s)
+2 / UE® (s),alb) (5))ds + 2 / ta(Fgf) ()% (s)) ds
0 0

[ ol
= S (0 +Z_1

We shall estimate all the terms I; on the right-hand side of (3.16).
The term I;. By (3.10), we have

i 0 =2 <Hug;;><t)Hz> o <Hu§,’;><t)Hz> @) (1), aD(®).  (317)
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By using assumption (Hs) and the following inequalities:

||, <[, < \/1(70 ||| = \@\/&S’i) (),  (3.18)
(CRIO) RV O) (3.19)

we deduce from (2.9) and (3.17) that

o, )| \)H of, 6

(l0ol;) s e
w)@ o

~—

il 0| <

IA

B

A

=
/\/’\/_\

IN
V)
oA

Using the following inequality

S (£) > [H ") (¢ H +HAu H] (3.21)
2 “*Uﬁﬁ )+ o]

from (3.20), it leads to
" ® (| + || 4u® o)
L = /Oum (s) Hum (s)Ha—kHAu s) H ds (3.22)
¢ 1
< 2/ D, <s§,’§> 3) SW) () —8W) () ds
e\ o ()\/Cu ()u* (s)
t
= @ Sﬁf) s)) ds,
JRACC)
_2 /1 1
where ¢ (2) = i\ oo 220, (Cou* z).

The term I. Using the inequalities (a + b)? < 2P~! (a? + bP), for all a,
b>0,p>1;s1 <1+ P, forall s>0,lqe€ (0,p], we get from (3.10) that

[F®) (2,1)
S OSSO RG]
0<i+j<N-1 '

[0 = heaaol?]
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IN

IN

IA

IN

IN
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Kuh) ¥

0<i+j<N-1 .
< ([l )], + lms(o)) )QJ
Ku) ¥ o (b

0<i+j<N-1

) (O] + a1 (1))

+ Hum_l(w”co([p,l]))

Co([p1])
< ([, + -1 0l1)
K Y 5 (Viee) [V ] + 19umon)

0<i+j<N-1

([, + s 0)
Kulf) ¥ a5 (\/1pp)l(HW%)HO+HVum_mt)HoY

0<i+j<N-1

< (0, + fen-s)”
fun Y (VS2) (o], + i)

0<i+j<N—-1
< ([, + lum o)
Fn) 5 (52) (], +temeacon)™
ST =
o Y w5 0 )
" 0<i+j§N71i!j! P Copt

(
< |
Ku(f) Y Z1,< 1_”>Z (3.23)
|
(
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NS Al i RS LIRSS + 1+ M?N-2

_ - 1 i—p\'
< Eu(H+m22) 3 Z.,.,< p)
0<itjen—1 "7 p
N-—1
o S(k) (t)
x 220 1 4 [ P2
|: ( CO,UJ*
. 1\ V! 1 o\’
< Ku(f)(Q+m?N—2 1+( ) ,,( )
) ) Copt 0§z‘+gz‘§:N—1 ilj! p
. . N-1
X212 {1 + (s,g’ﬁ (t)) ] .
Hence

S (D B D

0<i+j<N—1

— & (M, p) [1 + (sﬁ,’f’ (t))N_l} , (3.24)

R L DY EE
Cotx 2

1 I—p\'
_ _ i+2j
> z‘!j!( p>2 '

0<i+j<N—1

where

&(M,p) = K (f)(1+M*N7?)

It implies from (3.15) and (3.24) that

I = 2 /(]t<Fgf> (s),ug’;>(s)>ds (3.25)



A high order iterative scheme associated with a Dirichlet - Robin problem 853

where ®5 (2) = 2& (M, p) (1 + 2V~1) \/z. The term I3. By (3.10), we have
VE® (1,1)
= Diflum-1] + D3 flum—1]Vum—1
+ > (DiAiflwm1] + D3 A flum-1]Vin-1) (ulf) = 1)’

1<i+j<N-1
k 2 ) J
< (]} = oo 012) (5.26)
+ Z Aljf[um—l]z(ugf) - Um—l)ifl(Vugi) - Vum_l)
1<i+j<N-1

X <Hu5,’:)(t)HZ - llum_l(t)H%)j,

)
‘vp,gp (m,t)‘
< |Diflum—1] + D3 fltm—1]Vtm—1]

DY

1<i+j<N-1

< ([0, - tum-rton

(D1 A flum—1] + D3 A flum—1]Vm—1) (qui) - umfl)

J

> AT i) = ) (V) — V)
1<i+j<N-1

(oo - uum_lawé)j

< Ku () (1 + [Vug-1])
— 1
1 (k) _
+EKu (f) Z Z.!.!(1+|Vum_1])‘um T
1<i+j<N-1

Hug’?(t)Hz — Nfetma ()]

(3.27)

i

J
X

— ?
+K (f) Z - ‘U,(q{f) — Umn—1
1<i+j<N-1

<[] = lumse12

< Ku () (1 + [Vug-1])
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PR () g 0 V) (W)

1<itj<N-1
< ([[vu @], + v H)(H 00, + s 0l)”
i 5 v | (55)

o ey X R

Hence we have

HV}«;&P (t)HO (3.28)

K (f) (\/1_27“'%7”_1"0>
Kl S é(ﬁ*”wm‘lw <\/7>

1<i+j<N-1

(a0l + tonao) (@], + vemsco)”

T 8 plento- vl (57

IN

1<itj<
< ([ )]+ - 1t>||1) ([, + o)

< Ru(h) (|52 .y +Eu(f) > ,1 ( 1_p2+M>
2 1<itj<N-1 ! 2

IN
=
=
=
—
+ A
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i+2j
= i N s @)
+K o (f) Z Z']'<\/;> ( COM*—'_M)

1<i+j<N-1

< Ku(f)(1+M)
if [st e
FINF () 1+ M) Y h( 1) Su () 5
1<itjen—1 T AV P Copix
if [g e
< INKu(H)a+M) Y '1'< 1) S’ (8) 5
0<itjen—1 NV P Co
< 2NKy (f) (1 + M) Z % <\/T> oit+2j—1
0<itj<N—1 " P
i+2§
(k)
S (#) »
— + Mt
( COM* )
< o2NEKuy (f)(1+ M)
1 1 i S(k)(t) N-1
X Z o <\/7> 21+2J*1 1+ g +1+M2N72
o<itjen—1 NV P 04
< 2NEKu (f) (14 M) (1+ M*N7?)
i (k) N—-1
W) e ()
o<itien—1 PPV P Cots
< —
< 2NKun (f)(1+ M) (1+M*N72) |1+ <Cw*) ]
1 T\" Iy N-1
D P <\f> 9i+2] {1+ (s ) ]
o<itj<n—1 "7 P
N-1
= a0nn 1+ (s )",
where

&(M,p) = 2NKu (f)(1+ M) (1+M>N"2)

()]s ()

0<i+j<N-1

X
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On the other hand, (3.24) and (3.28) give

o], = Yool « [eroe; (329
< [rol,+ |vavol

0
< o) a0 |1+ (s 0)" ).

Hence, it follows from (3.15) and (3.29) that

Iy = 2/Ota<F7§f> (s),u®) (s )) ds (3.30)

<= o), /s (syas
0
< j%[@(M o)+ & (M. p)] /0 {H(sﬁ,’?(s))“] %) (s)ds

- /0 @5 (S (5)) ds,

where @3 (2) = 2L (6 (M, p) + & (M, p)] (L +2V71) V2.
The term I,. Equation (3.8) can be rewritten as follows:
(@59 (1), wj) + i) (8) (Aulp) (8), wy) = (D (#) ,wy), =1,k (3.31)

Thus, it follows after replacing w; with Ugf)(t) and integrating that

L = /H (3.32)

< [l HAu @+ s
< 2 [ () Ao a2 [ 0| as
Y+ 1.
2)

We shall estimate step by step two integrals Iil), Ii .

FEstimate Iﬁl). By using (Hs) and (2.9), we deduce from (3.10) and (3.18),
that

0] = (o0 ) < o0 (o) < . (ﬁ:ﬁ?)- 539)
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Therefore, we obtain from (3.21) and (3.33) that

g = 2 [ () o

t S(k)(s)
< 2/ @, 22| s (s)ds. 3.34
< /Ou<cou* 0 (s)ds (339

Estimate I f). We again use the inequality (3.24), we have

2 = /HF H ds (3.35)
2

26 (0p) [ L (s )"

IN

0
< 43 (M, p) /t [1+ (syp (s))w_l)] ds.
0

It follows from (3.32), (3.34) and (3.35) that

t (k)
L < 2 / o, <Sm(°°’)> S®) (s)ds (3.36)
0 Cofix

1462 (M, p) /0 t [1 + (S},’f) (s))Q(N_I)] ds

- | 0 (S (s)) ds,

) +4& (M, p) (1 + zQ(N’U) .
Now, we need an estimate on the term Sk (0). We have
S0 (0) = el + el 2 + o (Ioell?) [Ionl? + | Adorl3] . (3.37)

By means of the convergences (3.9), we can deduce the existence of a constant
M > 0 independent of k and m such that

where &4 (2) = 229, (Cou

2
S (0) < MT. (3.38)
Combining (3. 16) ( 2), (3.25), (3.30), (3.36) and (3.38), it leads to
S (¢ / ds for 0 <t <TW <T, (3.39)

4
U(z) = Zz’:l D, (z), ¥ € C(R+;R4) and ¥ is nondecreasing. (3.40)
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Then we can show that there exists a constant 7' > 0 independent of £ and m
such that

SW) (1) < M? vt €[0,T), for all k and m € N. (3.41)
M2 t (k) w dz
Indeed, put y(t) = - + [; ¥ (Sm (S)) ds and G(w) = [, T ()’ we have

Hence

O tyl(s))ds
cwe-con = [ g = [Fo st e

By (3.40), we can deduce the existence of a constant C, = Cy(M) > 0 such
that
U(z) > Cu(M)(1 +27),
for all z > 0. SoGoo:fooﬁ<ooandw>—>G(w):fw£isa
- 0 W (2) 0 ()
continuous and nondecreasing function on R, it leads to the function G~ :
[0, Goo) — Ry is defined and continuous, nondecreasing on [0, G).

Choose T' € (0,7%] such that T' < f]\]‘;lg \;L = G(M?) — G(M). Then we

(2)

obtain
G(y(t)) <t+G(My) < T+ G(My) < G(M?) < Goo, Vt € [0, T,
it means that
S (1) < y(t) < GTIG(M?) = M2,

Hence we can take constant Ty(,f ) — T for all k and m. Therefore, we have

uk) € W (M,T), for all k and m € N. (3.43)

Step 3. Convergence. From (3.43), we can extract from {u,(fff)} a subsequence
(ki)
{um'’} such that

ulki) U, in L (0,T; Vi N H?) weak*,

W) ! in L% (0, T; Vi) weak™, (3.44)
TGN u” in L? (Qr) weak, '
um € W (M,T).

By the compactness lemma of Lions ([2], p. 57) and applying the theorem of

Fischer-Riesz, from (3.44), one has a subsequence of {ugf)}, denoted by the
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same symbol satisfying

ugf) — Uy, strongly in L2(0,T; V1) and a.e. in Qr, (3.45)
al u! strongly in L?(Qr) and a.e. in Q7. '
From (3.45) and dominated convergence theorem, we obtain
F%®) — F,, strongly in L*(Qr). (3.46)
On the other hand, we have
2
W0 =] = Ju(0]) = (huntl)]  an

IN

2M Koy (1) [0l (€)= un (0| -
Hence, from (3.44) and (3.47), we get
15 =, strongly in L2(0, 7). (3.48)

Passing to limit in (3.8), (3.9), we have u,, satisfying (3.5), (3.6) in L%(0,T).
On the other hand, it follows from (3.5) and (3.44) that

ull = —pim (t) Aty + Fy € L2(0,T; L?). (3.49)
Therefore, u,, € Wi(M,T) and Theorem 3.2 is proved. O

Next, to obtain the main result, we put
Wi(T) = {v € L>®(0,T; V1) : v/ € L=(0,T; L*)},
then W1 (7T) is a Banach space with respect to the norm

HU”I/Vl(T) = H”HLoo(o,T;Vl) + HUIHLOO(O,T;H)'

Theorem 3.3. Let (Hy)-(Hs) hold. Then, there exist constants M > 0 and
T > 0 such that

(i) Problem (1.1)-(1.3) has a unique weak solution uw € Wy (M, T).

(ii) The recurrent sequence {un}, defined by (3.5) and (3.6) converges at
a rate of order N to the solution u strongly in the space W1(T) in the
snse

llum — u||W1(T) < Clum—1 — U”%(T) J (3.50)

for all m > 1, where C is a suitable constant. On the other hand, the
estimate is fulfilled

[m = ully, (1) < CrpY", for allm €N, (3.51)

where Ct and 0 < By < 1 are the constants depending only on T.
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Proof. Ezistence. We can prove that {u,,} is a Cauchy sequence in Wi (T).
Indeed, let wyp, = wmy1 — Upm. Then wy, satisfies the variational problem

(Wi, (£),0) + st (8) alwm (1), ) + [t () = pm ()] (A (2), 0)
= (Fpt1(t) — F(t),v), Yo € V7,
Wi (0) = w!,(0) = 0.
(3.52)
Taking v = w/,(t) in (3.52)1, after integrating in ¢, we get

Znlt) = /0 s (5) [ (5)]2 ds (3.53)
2 / i1 (5) — pim (5)] (At (8), wly (5)}ds
0

¢
+2/ (Frns1(8) = Fo(s),wh,(s)) ds
0
= J1+ Jo+ J3,

where

[l (D] + pmee () [[win(2)]2 (3.54)
[t (|2 + pos [ (2)]|2
i (B)[[2 + p1Co wm ()1}

2\/}700 Hw;n(t)Ho [wm (D)1l ,

and all integrals on the right - hand side of (3.53) are estimated as follows.
Estimating Jy. It follows from (3.44) that

a0 = 2| (e I2)] [ (0), e (1)) (3.55)
2Bnr (1) i ()l 11 )]

Zm(t)

AV AVARRLY,

2

IN

< 2K (1) [[um () (|1 ()]
< 2]\42—[~<'M (,U’)?
this implies that
t 2 _ t
J1 :/0 ﬂ;n—l-l (s) ||wm(3)‘|§d5 < ;M2KM (H)/O Zm(s)ds. (3.56)

Estimating Jo.
a1 (&) =t O = | (lumar O1F) = 1 (lum (@) (3.57)
< Rt () [lum 2 ()13 = m 13
< 2M K (1) [wn ()
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Thus

J o= -2 /O tmt1 (5) = fm (8)] (Atim (5), wip (5))ds (3.58)

UM Ry (1) /O ()l | At ()]l ||l (5)]|, ds

IN

< 4M2KM (u)/o me(s)Hle;n(s)HOdS
P - !
\//TC'OM K ('u)/o Zm(s)ds.

Estimating Js. By using Taylor’s expansion for the function f (az, ty U, ||um, H(Z))

around the point (x, ty U1, ||um_1||g) up to order N, we obtain
flum] = f [tm—1]
A G ) A CX Ry P (3.59)
_ i 2 2\7
= > Ayl wh @) (e @R Jem @13

1<i+j<N-1
i 2 2\’
+ >0 A [l oy (@) (lm O = lum-1 (0)15)”
i+j=N
where

T = (w1 + 91,0 g + (1= 0) Jum1[5) , 0< 0 < 1.

Hence, it follows from (3.6), (3.59) that

Frnsa(t) = Fn(t) - (360)
= Ayf i wh () (e O — Jum 1)
1<i+j<N-1
+ Y Al why @) (e O — e 0)13)
i+j=N
From (3.60), it yields
s (8) = Fon (8)]g | (3.61)
_ 1 I—p ' i
< Ru) ¥ (\/ — s <t>uo) (ltms1 Dllg + lm (1))

X (lume1 ()l = lum ()llo)
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Rl S (\/ - T>) (e Bl + st ()
l+j J:
X ([lum (O)llg = llum—1 (#)lo)’
_ 1 I-p\' i
< Ku(f) D, 5l —) lwme @l M) fJwm ()]
ilj! )
1<i+j<N-1
_ 1 T\ ; A
+Eum(f) Z a5 [wm—1llw, (1) M) w1 (B)]]
i+j=N " P
7 1 1—P i+j—1
< Ku(f) DY, W/ —- (QM) [[wm (N7 [lwm @)
ilj! p
1<i+j<N-1
_ 1 i—p i ; .
) X o (F50) Tmorli, 20y
i+j=N
_ 1 1—p ' ; i i
< Ku(f) ), M( p> 2T M lwn, (1)l
1<i+j<N-1
_ 1 . i .
) ¥ o (F50) @0 ol
i+j=N
= ar|lwn @)y + a7 |wmn-1llw, )
where
7z 1 1—p L i+2j—1
ar = KM(f) Z o — | 22 M
& ilj! p
1<i+j<N-1
_ - 1 1—p ' j
ar = Ku(f) D 45/ ——) @M).
i+j=N " p
It leads to
t
J3 = 2 / (Frn41(8) = Fin(s),wy,(s)) ds (3.62)
< 2 [ 1Fss(5) = Fulo)l [t (s) s
<2f (aanm( >||1+aT||wm_1HéVV1(T>) ot (5] s
<

t t
207 /0 [ ()] tn(s)]| s + 237 /0 lewm 11, 2y [t (5)]] s
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t
_ ar _
< Tap ||wm—1 2V +< +aT>/ Zm(s)ds.
Jom 135y + (e + 1) | Zmls)

Then, we deduce, from (3.53), (3.56), (3.58) and (3.62) that

t
Zn(t) < Ty l[wm A2 oy + Br / Zon(s)ds, (3.63)
0

_ 2 . 2 ~
where BTZIMZKM(,UJ)-F M2KM(/L)+< nL +dT).

By using Gronwall’s lemma, we obtain from (3.63) that

N
||wm||W1(T) § 1% ||wm71||W1(T) 5 (364)
with pr = (1 + \/;11*700) V/Tar exp(TBr). Then, it follows from (3.64) that
_ =1 m
([t = tmspllwy(ry < (1= Br) ™" (ur) =1 B3, (3.65)

for all m and p.

Taking T > 0 small enough, such that 8r = (,uT)ﬁ M < 1. It follows that
{um} is the Cauchy sequence in Wi(T'). Then there exists u € Wi(T') such
that

Uy, — u strongly in Wi (T). (3.66)

Uniqueness. Applying a similar argument used in the proof of Theorem 3.2,
u € W1(M,T) is a unique local weak solution of problem (1.1)-(1.3). Taking
the limit in (3.65) as p — +oo for fixed m, we get (3.51). Also with a similar
argument, (3.50) follows. Theorem 3.3 is proved. O

Remark 3.4. In order to construct a N- order iterative scheme, we need the
condition (Hs). Then, we get a convergent sequence at a rate of order N to a
unique local weak solution of the problem. This condition of f can be relaxed
if we only consider the existence of solutions (see [3], [14]).

Acknowledgments: The authors wish to express their sincere thanks to the
referees for the suggestions and valuable comments..
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