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Abstract. We study the geometry of generic lightlike submanifolds M of an indefinite
trans-Sasakian manifold M with a semi-symmetric metric connection subject such that the
characteristic vector field ¢ of M is identical with structure vector field of M and ¢ is
tangent to M. Under the same conditions, we also characterize the geometry of generic

lightlike submanifolds of an indefinite generalized Sasakian space form M(f1, fz, f2).

1. INTRODUCTION

A linear connection V on a semi-Riemannian manifold (M, g) is said to be
a semi-symmetric connection if its torsion tensor T satisfies

T(X,Y) =0(Y)X - 0(X)Y, (1.1)

where 0 is a 1-form associated with a smooth unit vector field ¢, which is
called the characteristic vector field, by 6(X) = g(X,¢). Moreover, if this
connection V is a metric connection, i.e., it saisfies Vg = 0, then V is called
a semi-symmetric metric connection. The notion of semi-symmetric metric
connection on a Riemannian manifold was introduced by Yano [14]. In the
followings, we denote by X,Y and Z the smooth vector fields on M.
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Let V be the Levi-Civita connection of the semi-Riemannian manifold
(M,g) with respect to the metric g. It is known that a linear connection
V on M is a semi-symmetric metric connection if and only if it satisfies

VgV =VgY +0(Y)X — g(X,Y)C. (1.2)

A lightlike submanifold M of an indefinite almost contact manifold M is

called generic if there exists a screen distribution S(T'M) of M such that

J(S(TM)*Y) c S(TM), (1.3)

where S(TM)* is the orthogonal complement of S(7T'M) in the tangent bun-
dle TM of M, that is, TM = S(TM) ©opip S(TM)*. The notion of generic
lightlike submanifolds was introduced by Jin-Lee [9] and later, studied by
Duggal-Jin [5], Jin [6, 7] and Jin-Lee [10]. The geometry of generic lightlike
submanifolds is an extension of that of lightlike hypersurface and half light-
like submanifold of codimension 2. Much of its theory will be immediately
generalized in a formal way to general lightlike submanifolds.

The notion of a trans-Sasakian manifold of type (a, ) was introduced by
Oubina [13]. Sasakian, Kenmotsu and cosymplectic manifolds are important
kinds of the trans-Sasakian manifold such that o and ( satisfy

a=¢ =0 a=0, B=¢ a=p=0,
respectively, where ¢ = 1. If a trans-Sasakian manifold is a semi-Riemannian
manifold, then it is called an indefinite trans-Sasakian manifold.

In this paper, we study the geometry of generic lightlike submanifolds of an
indefinite trans-Sasakian manifold (M, J, (, 6, g) with a semi-symmetric metric
connection V in which the characteristic vector field ¢ of M is identical with
the structure vector field ¢ of (M,.J,(,0,g) and C is tangent to M. Under
the same conditions, we also characterize generic lightlike submanifolds of an
indefinite generalized Sasakian space form M (f1, f2, f3).

2. Semi-symmetric metric connections

An odd-dimensional semi-Riemannian manifold (M, g) is called an indefinite
almost contact metric manifold if there exists a set {J, ¢, 0, g}, where J is a
(1, 1)-type tensor field, ¢ is a vector field and 6 is a 1-form such that

X =X +0(X)¢, g(JX,JY)=g(X,Y)—ed(X)0(Y), 6(¢) =1, (2.1)

where € = 1 or —1 according as ( is spacelike or timelike, respectively. The
set {J, (, 6, g} is called an indefinite almost contact metric structure.

From (2.1), we show that
JC=0, 60J=0, 0(X)=eqg(X,0), §(JX,¥)=—g(X,J7).
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In the entire discussion of this article, we shall assume that the structure
vector field ( is a spacelike one, i.e., ¢ = 1, without loss of generality.

Definition 2.1. An indefinite almost contact metric manifold (M, g) is said to
be an indefinite trans-Sasakian manifold [13] if, for the Levi-Civita connection
V, there exist two smooth functions « and S such that

(Vi)Y =afg(X,Y)¢ - 0(Y)X} + B{g(JX, V)¢ - 0(Y)JX}.
{J,¢, 0,3} is called an indefinite trans-Sasakian structure, of type («, f3).

Let V be a semi-symmetric metric connection on M = (M, J, ¢, 6, g). By
using (1.2), (2.1) and the facts that J{ =0 and 6 o J = 0, we see that

(V)Y = ofg(X.¥)C—0(7)K) (2.2)
+ (B+1){g(JX,Y)(—-6(Y)JX}.
Replacing Y by ¢ to (2.2) and using J¢ = 0 and 6(V () = 0, we obtain
V¢ =—aJX + B+ 1){X —0(X)(}. (2.3)

Let (M, g) be an m-dimensional lightlike submanifold of an indefinite trans-
Sasakian manifold M of dimension (m + n). Then the radical distribution
Rad(TM) = TM N'TM+* of M is a subbundle of the tangent bundle 7'M
and the normal bundle TM~, of rank r (1 < r < min{m, n}). We say that
M is r-lightlike submanifold [4] if 1 < r < min{m, n}. In the sequel, by
saying that M is a lightlike submanifold we shall mean that it is an r-lightlike
submanifold. For an r-lightlike submanifold M, there exist two complementary
non-degenerate distributions S(TM) and S(TM*) of Rad(TM) in TM and
T M, respectively, which are called the screen distribution and the co-screen
distribution of M, such that

TM = Rad(TM) ®opn S(TM), TM* = Rad(TM) ®ope, S(TM*),

where @4, denotes the orthogonal direct sum. Denote by F'(M) the algebra
of smooth functions on M and by I'(E) the F(M) module of smooth sections
of a vector bundle E over M. Also denote by (2.1); the i-th equation of (2.1).
We use the same notations for any others. Let X, Y, Z and W be the vector
fields on M, unless otherwise specified. We use the following range of indices:

i, j, ky o€ {1, ..., r}, a, b,c,...€ {r+1,..,n}.

Let tr(T'M) and ltr(TM) be complementary vector bundles to TM in T'M

and TM~ in S(TM)*, respectively, and let {Ny, ---, N,.} be a null basis of
ltr(T'M),,,, where U is a coordinate neighborhood of M, such that

G(Ni, &) = dij, g(Ni, N;) =0,
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where {&1, -+, &} is a null basis of Rad(T'M)),.
TM = TM @ tr(TM) = {Rad(TM) @ tr(TM)} ®optn S(TM)
— {Rad(TM) & ltr(TM)} ©oran S(TM) ©orap, S(TM).
We call tr(TM), ltr(TM) and N; the transversal vector bundle, the light-
like transversal vector bundle and the null transversal vector fields of M with

respect to the screen distribution S(T'M), respectively. Hence the local quasi-
orthonormal field of frames on M along M is given by

{517"'757‘7 Nla'”aN’l‘v FT’+17"'7Fm7 E’/‘+17'”7En}7

where {F,41,--+, Fy} and {Er41, -+, E,} are orthonormal bases of S(T'M)
and S(T M), respectively. Denote ¢, = §(Eq, E,). Then ¢,64 = §(E,, Ep).

Let P be the projection morphism of TM on S(TM). Then the local
Gauss-Weingarten formulae of M and S(T'M) are given respectively by

Then we have

VxY = VxY + ) h(X,Y)N;+ > hi(X,Y)E, (2.4)

=1 a=r+1
VxNi = —Ay X+ m(X)Nj+ Y pia(X)Eq, (2.5)
j=1 a=r+1
vX’E’ = _AEGX+Z¢a1(X)NZ+ Z Ua,b(X)Eba (26)
i=1 b=r+1
VxPY = VYPY + ) hi(X,PY)&, (2.7)
=1
Vx& = —ALX - ZTN )&, (2.8)

where V and V* are induced linear connections on 7'M and S(T'M), respec-
tively, hﬁ and hy, are called the local second fundamental forms on T M, h} are
called the local second fundamental forms on S(TM). A, , A, and A* are
called the shape operators, and 7;;, pia, ¢ai and ogy are 1- forms on TM.

The connection V is a semi-symmetric non-metric connection and satisfy

(Vxg)(Y, Z) Z{hg (X, Y)mi(Z) + Wi (X, Z)mi(Y)}, (2.9)
=1
T(X,Y)=0(Y)X — 0(X)Y, (2.10)

and the results: hf and h$ are symmetric, where 7;’s are 1-forms such that

ni(X) = g(X, Ny).
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From the facts that h{(X,Y) = g(VxY,&) and e, (X,Y) = g(VxY, E,),
we know that hf{ and h$ are independent of the choice of S(T'M). The local
second fundamental forms are related to their shape operators by

hi(X,Y) = g(AL X, Y) = ) hi(X, &)mu(Y), (2.11)
k=1

eahi(X,Y) = g(A, X,Y) Zm (2.12)

hi(X,PY) = g(Ay X, PY). (2.13)

Applylng vX to g(&la&]) = 07 g(&ian) = 07 g(NMN]) = 07 g(N’hEa) =0 and
9(Eq, Ep) = €45 by turns and using (2.4) ~ (2.6), we obtain

(X&) + h5(X,6) =0, hi(X,&) = —cadbai(X),

0j(Ay, X) +ni(Ay, X) =0, 0i(Ap, X) = €apia(X), (2.14)

a

(
€b0ab + €a0ba = 0;  E(X,&) =0, Bi(&),&) =0, AL& = 0.

Definition 2.2. We say that a lightlike submanifold M of M is
(1) irrotational [12] if Vx& € T(TM) for alli € {1, ---, 1},
(2) solenoidal [11] if A, and A, are S(T'M)-valued for all a and i.

Remark 2.3. From (2.4) and (2.14)2, the item (1) is equivalent to
l _ s — —
h](Xv fl) =0, ha(Xa El) - ¢al(X) =0. (215)
By using (2.14)4, the item (2) is equivalent to
Ni(Ay, X) =0, pia(X) =n;(Az, X) = 0. (2.16)

3. GENERIC LIGHTLIKE SUBMANIFOLDS

Let M be a generic lightlike submanifold of M. From (1.3) we show that
J(Rad(TM)), J(itr(TM)) and J(S(T M= )) are subbundles of S(T'M). Now
we shall assume that ¢ is tangent to M. Calin [2] proved that if ¢ is tangent
to M, then it belongs to S(T'M) which we assume in this paper. Then there
exist two non-degenerate almost complex distributions H, and H with respect
to J, that is, J(H,) = H, and J(H) = H, such that

S(TM) = {J(Rad(TM)) & J(ltr(TM))} @ortn J(S(TM™Y)) @ore, Ho,
H = Rad(TM) @oren, J(Rad(TM)) @ortn, Ho.
In this case, the tangent bundle T'M of M is decomposed as follow:

TM = H & J(tr(TM)) @ope, J(S(TM?1)). (3.1)
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Consider 2r local null vector fields U; and V;, (n — r) local non-null unit
vector fields W, on S(T'M) and their 1-forms w;, v; and w, defined by

U =—-JN;, Vi=-J&, W,=-JE,, (3.2)

UZ(X):g(X7‘/Z)7 UZ(X):Q(X7U1)7 wa(X):eag(X,Wa) (33)

Denote by S the projection morphism of TM on H and by F' the tensor field
of type (1, 1) globally defined on M by F' = J o S. Then JX is expressed as

JX =FX+Y wi(X)Ni+ > wa(X)E,. (3.4)
=1 a=r+1

Applying J to (3.4) and using (2.1); and (3.2), we have

F2X = - X +0(X g+zuz VUi + Zwa W,. (3.5)
a=r+1

We say that the tensor field F' is the structure tensor field of M and the vector
fields U; and W, are the structure vector fields of M.
Replacing Y by ¢ to (2.4) and using (2.3) and (3.4), we have

Vx(=—aF X+ (B+1){X —0(X)(}, (3.6)
hi(X,0) = —aui(X), h3(X,¢) = —aw,(X). (3.7)

Applying Vx to g(¢, N;) = 0 and using (2.3), (2.5) and (2.13), we get
hi (X, ¢) = —avi(X) + (6 + 1)ni(X). (3.8)

Applying Vx to (3.2), (3.3) and (3.4) by turns and using (2.2), (2.4) ~ (2.8),
(2.11) ~(2.13) and (3.2) ~(3.4), we have

WX, Up) = hE(X,V)),  eahf (X, Wa) = h3(X,Uy),
hﬁ(x, Vi) = hE(X, V),  eahf(X,W,) = hi(X,V;), (3.9)
ehs (X, W,) = eahs(X, Wb)

VxUi = F(Ay X) +Zm VUj + Z pia(X)W,  (3.10)

7j=1 a=r+1
— {ami(X) + (ﬁ+1)vi(X)}C7
VxVi = F(ALX Zm X)V;+ > KX, &)U, (3.11)
j=1

n

- Z €a¢ai(X)Wa - (5 + 1)UZ(X)<7

a=r+1
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VxW, = F(AEaX)—I-i(]Sai(X)Ui—F i oap(X)Wy  (3.12)

=1 b=r+1
- 60,(6 + 1)wa(X)C
(VxF)(Y Zul Y)Ay X + Z wa(Y)A, X (3.13)
a=r+1
—thXYU— Z he (X, Y)W,
a=r+1

+ Oé{g(X,Y)C —-0(Y)X}
(5 + D{g(J X, Y)C - 6(Y)FX},

n

(VXUZ ZUJ 7]1 Z wa(Y)¢ai(X) (314)

a=r+1
—h‘f(X FY)—(ﬁJrl) (Y)ui(X),

T

(val)(Y) = Z TZ] + Z ana pla ) (315)

7=1 a=r+1

- Zuj ni(Ay, X) — g(Ay X, FY)

- {am( )+ (B4 Doi(X)}0(Y).

Theorem 3.1. Let M be a generic lightlike submanifold of an indefinite trans-
Sasakian manifold M with a semi-symmetric metric connection. If U;s are
parallel with respect to the connection V, then 7;; = 0, M is solenoidal and M
s an indefinite Kenmotsu manifold such that « =0 and f = —1.

Proof. Assume that U;s are parallel with respect to V. Taking the scalar
product with ¢, V;, U;j, W, and N; to (3.10) by turns, we get

Oé:O, ﬁ: —1; Tij :0, nj(ANiX) :0, ,Oia:(), (3.16)
respectively. As o = 0 and 8 = —1, M is an indefinite Kenmotsu manifold.
As n;j(Ay, X) =0 and p;o =0, M is solenoidal. O

Theorem 3.2. Let M be a generic lightlike submanifold of an indefinite trans-
Sasakian manifold M with a semi-symmetric metric connection. If Vs are
parallel with respect to the connection V, then 7;; = 0, M s irrotational and
M is an indefinite Kenmotsu manifold such that o = 0 and B = —1.
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Proof. Assume that V;s are parallel with respect to V. Taking the scalar
product with V;, Wy, U, ¢ and N; to (3.11) by turns, we obtain

/l
h](Xa gz) = 07 ¢(Li = 07 Tij = 07 B = _17

hE(X,Up) = 0, (3.18)
respectively. As h§ (X,&) =0 and ¢q; = 0, M is irrotational. Replacing X by
¢ to (3.18) and using (3.7)1, we have a = 0. Thus

a=0, B=-1, 7;=0, hi(X,&) =0, ¢u=0. (3.19)
As o =0and 3= —1, M is an indefinite Kenmotsu manifold. O

4. RECURRENT AND LIE RECURRENT SUBMANIFOLDS

Definition 4.1. ([8]) The structure tensor field F' of M is said to be recurrent
if there exists a 1-form w on M such that
(VxF)Y = w(X)FY.

A lightlike submanifold M of an indefinite trans-Sasakian manifold M is called
recurrent if it admits a recurrent structure tensor field F.

Theorem 4.2. Let M be a recurrent generic lightlike submanifold of an in-
definite trans-Sasakian manifold M with a semi-symmetric metric connection.
Then we have the following results:

(1) M is an indefinite Kenmotsu manifold, i.e., « =0 and B = —1,

(2) F is parallel with respect to the induced connection ¥V on M,

(3) M is irrotational and solenoidal,

(4) H, J(Iltr(TM)) and J(S(TM*1)) are parallel distributions on M,

(5) M is locally a product manifold M, x M, _, x M¥ where M,, M,_,
and M* are leaves of J(itr(TM)), J(S(TM™1Y)) and H, respectively.

Proof. From the above definition and (3.13), we obtain

=(X)FY = iui(Y)ANiX+ zn: wa(Y)A, X (4.1)
=1 a=r+1

- ihf(X7Y)Uz - i hZ(X7Y>Wa
=1 a=r+1

+o{g(X, V)¢ —0(Y) X}
+ B+ 1){g(JX,Y)(—-0(Y)FX}.
Replacing Y by ( to (4.1) and using (2.1), (3.5) and (3.7), we get
aF?X — (B+1)FX =0.
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Taking X = &; to this and using the fact that F§; = —V;, we have
—a&+ (B+1)V;=0.
Taking the scalar product with INV; and U; to this by turns, we obtain
a=0, fB=-1 (4.2)
Therefore, M is an indefinite Kenmotsu manifold.

(2) Replacing Y by &; to (4.1) and using (4.2), we have

X)WV =Y KX, &)U+ > hi(X, &)W,

j=1 a=r+1
Taking the scalar product with U;, Vi, and W}, to this by turns, we get
@ =0, h(X,&) =0, hi(X,&) =0 (4.3)
As w =0, F is parallel with respect to the induced connection V.

(3) From (4.3)2, 3, we see that M is irrotational.
Taking thescalar product with N; to (4.1), we obtain

n

Zu] 9(Ay, X, N;) + > wa(Y)g(Ag, X, N;) = 0.

a=r+1
Taking Y = Uk and Y = W, to this equation by turns, we have
g(Ay, X, N;) =0, g(A, X,N;)=0. (4.4)
Thus, by Remark 2.3, we see that M is solenoidal.
(4) Taking the scalar product with V; and W, to (4.1) by turns, we obtain

n

RA(X,Y) Zuk X)+ > wa(YV)ui(A,, X),
a=r+1

n
he(X,Y) Zul Jwa(Ay, X)+ > wp(Y)wa(A, X).
b=r+1
Taking Y = V and Y = FZ,, Z, € I'(H,) to these equations by turns and
using the results: w;(FZ,) = w,(FZ,) =0as FZ,=JZ, € I'(H,), we have

RE(X,V;) =0, hi(X,FZ,) =0, hi(X,V;) =0, hi(X,FZ,) =0.  (4.5)
In general, by using (2.1), (2.8), (2.11), (3.4), (3.11) and (3.12), we derive
9(Vx&,Vj) = —hi(X, V), 9(Vx&, Wa) = —hi(X, Wa),
9(VxVi, V) = (X, &), g(VxVi,Wa) = —¢ai(X),
9(VxZo, Vi) = b(X, FZ,),  g(VxZo, Wa) = b3(X, FZ,).
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From these equations and (3.9)4, (4.3) and (4.5), we see that
VxY el'(H), VXel'(TM), VY eI'(H).

It follows that H is a parallel distribution on M.
Taking Y = U; and Y = W, to (4.1) by turns and using (4.2), we have

Ay X =D WX UU + > hi(X, U)W (4.6)
7j=1 a=r+1

Ap X =) RAX,Wa)Ui + Y hi(X, Wa) W, (4.7)
=1 b=r+1

Applying F' to (4.6) and (4.7) by turns and using FU; = FW, = 0, we get
F(A, X)=0, F(4, X)=0.
Using this result and (4.2)~(4.4), Eq.s (3.10) and (3.12) are reduced to

VxUi =Y 1;(X)Uj, VxWa= Y oap(X)W,. (4.8)
7=1 b=r+1

Thus J(Itr(TM)) and J(S(TM™)) are also parallel distributions on M.

(5) As H, J(itr(TM)) and J(S(TM~)) are parallel distributions and satisfy
the decomposition form (3.1), by the de Rham’s decomposition theorem [3],
M is locally a product manifold M, x M,,_, X M?*, where M,, M,_, and M?*
are leaves of J(ltr(TM)), J(S(TM=)) and H, respectively. O

Definition 4.3. ([8]) The structure tensor field F' of M is said to be Lie
recurrent if there exists a 1-form ¥ on M such that

(L F)Y =9(X)FY,

where £, denotes the Lie derivative on M with respect to X. In case ¥ = 0,
we say that F'is Lie parallel. A lightlike submanifold M is called Lie recurrent
if it admits a Lie recurrent structure tensor field F'.

Theorem 4.4. Let M be a Lie recurrent generic lightlike submanifold of an
indefinite trans-Sasakian manifold M with a semi-symmetric metric connec-
tion. Then we have the following results:

(1) a =0 and M is an indefinite 3-Kenmotsu manifold,

(2) F is Lie parallel,

(3) Tij and piq are satisfied T;; 0 F =0 and pio o F = 0. Moreover,

7 (X) =Y ur(X)g(Ay, Vi, Ni) — B6;50(X).
k=1
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Proof. (1) Using (2.10), (3.13) and the fact that 6 o F' = 0, we get

NX)FY = —prX—i-FVyX (4.9)
+Zuz Y)Ay X + Z wa(Y)A,, X
a=r+1
—ZMXYU— Z he (X, Y)W,
a=r+1

+ a{g(X7 Y)(-0(Y)X}
+ (B+1)g(JX,Y)¢ — BO(Y)FX.

Taking Y = &; and Y =V} to (4.9) by turns, we have

—H(X)V; = VV.X+FV§.X+(B+1)UJ-(X)C (4.10)
—ZhengU— Z he (X, &)W,
I(X)E; = —Vg.X + FVV.Xa—i—r;;j(X)C (4.11)
—thXV VUi — Z hs (X, V)W,
o=t

Taking the scalar product with ¢ to (4.11) such that X = U; and using (3.10),
we obtain o = 0. Thus M is an indefinite S-Kenmotsu manifold.

(2) Taking the product with U; to (4.10) and N; to (4.11), we obtain
respectively. From these equations, we get 9 = 0. Thus F' is Lie parallel.

(3) Taking the scalar product with N; to (4.10) such that X = W, and
using (2.12), (2.14)4 and (3.12), we get h(U;, V;) = pia(&;). Also, taking the
scalar product with W, to (4.11) such that X = U; and using (3.10), we have
B (Uss Vi) = —pial&;). Thus pia(&;) = 0 and h3(Us, Vi) = 0.

Taking the scalar product with U; to (4.10) such that X = W, and using
(2.14)2,4 and (3.12), we get €,pia(Vj) = ¢4 (U;). Also, taking the scalar prod-
uct with W, to (4.10) such that X = U; and using (2 14)2 and (3.10), we get
eapm( ) %g( ) Thus pza(V) =0 and (z)aj(Ui) = 0.

Taklng the scalar product with V; to (4.10) such that X = W, and using
(2.14)2, (3.9)4 and (3.12), we obtain ¢q;(V;) = —¢q;(Vi). Also, taking the
scalar product with W, to (4.10) such that X = V; and using (2.14)2 and
(3.11), we have ¢qi(V;) = ¢q;j(Vi). Thus we obtain ¢q;(V;) = 0.
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Taking the scalar product with W, to (4.10) such that X = & and us-
ing (2.8), (2.11) and (2.14)2, we get hf(V;, W,) = ¢ai(&;). Also, taking the
scalar product with V; to (4.11) such that X = W, and using (3.12), we have
RE(Vi, Wa) = —¢ai(€). Thus ¢ei(&5) = 0 and hf(V;, W,) = 0.

Summarizing the above results, we obtain

pia(&§5) =0, pia(Vj) = 0, ¢4i(U;) =0, ¢ai(Vj) =0, ¢ai(§;) =0, (4.13)

ha(Uis Vi) = WU Wa) =0, (Vs Wa) = V5, V;) = 0.

Taking the scalar product with N; to (4.9) and using (2.14)4, we have

_g(vFYX N;i) +9(Vy X, U;) — BO(Y )vi(X) (4.14)
—|—Zuk 9( Ay, X, N+ > cqwa(Y)pia(X) = 0.
a=r+1

Taking X = V; and X = ¢; by turns and using (2.8) and (3.11), we get
T

WS(FX,U) + 7i5(X) + B030(X) = Y ur(X)g(Ay, Vi, Ni), (4.15)
k=1

he(X,Uy) Zuk 9(Ay, & Ni) + 75 (FX), (4.16)

due to (4.13)1,2. Taking X = U}, to (4.16), we have
h; Uk, Vj) = h5(Ux, Us) = (A, &5, Ni). (4.17)

Replacing X by U; to (4.9) and using (2.13), (3.3), (3.5), (3.8), (3.9)1,2,
(3.10) and the fact that o = 0, we obtain

Zuk Y)Ay, Ui+ Z wa(Y)A, Ui = Ay Y + (B+ Dmi(Y)¢  (4.18)
a=r+1

— F(AyFY) =Y m;(FY)U; — > pia(FY)W, =0.
7j=1 a=r+1

Taking the scalar product with V; to (4.18) and using (2.12), (2.13), (2.14)3,
(3.9)1 and (4.17), we get

WX, U;) Zuk )3(Ay, & Ni) — 7i5(FX).
Comparing this equation Wlth (4 16), we obtain

7i;(FX) +Zuk )3(Ay, &, Ni) = 0.
k=1
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Replacing X by Uy, to this equation, we have g(ANk &, N;) = 0. Thus
7;(FX) =0, hi(X,U;) = 0. (4.19)
Taking X = FY to (4.19)2, we get hg(FX, Ui) = 0. Thus (4.15) reduces

i (X Z ur(X)g(Ay, Vj, Ni) — 6:0(X). (4.20)

Replacing Y by W, to (4.18), we obtain A, W, = A, U;. Taking the scalar
product with U; to this and using (2.12), (2.13) and (3.9)2, we have

hi (Wa, Uj) = €ahig(Us, Uj) = €alig (U, Ui) = hi (Uj, Wa). (4.21)
Taking the scalar product with W, to (4.18) and using (2.12), we have

n

capia(FY) = =i (Y, Wa) Zuk V(U Wa) + > eswp (V)i (Ui, W)
b=r+1

Taking the scalar product with U; to (4.9) and then, taking X = W, and using
(2.12), (2.13), (2.14)4, (3.9)2, (3.12) and (4.21), we obtain

n

apia(FY) = hE(Y,W,) Zuk Wi (U Wa) — > eowp (V) (U, Wa).
b=r+1

Comparing the last two equations, we obtain p;,(FY) = 0. O
5. INDEFINITE GENERALIZED SASAKIAN SPACE FORMS

Definition 5.1. An indefinite trans-Sasakian manifold M is called indefinite
generalized Sasakian space form and denoted by M(f1, fa, f3) if there exist
three smooth functions f1, fo and f3 on M such that
+ f2{g(X JZ) -9,
+ 1510(X)0(2)Y ~0(V)6
+9(X, 2)0(Y)¢ - g(Y, 2)0(X ><}

where R denote the curvature tensor of the Levi-Civita connection V on M.

(5.1)

\_/

Y}

J )JX +2g(X,JY)JZ}
(Z

Z)0

Generalized Sasakian space form was introduced by Alegre et. al. [1]. Sasakian
space form, Kenmotsu space form and cosymplectic space form are important
kinds of generalized Sasakian space forms such that

h= fa=fi=% A=L a=fi=<% fi=fo=f=%
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respectively, where ¢ is a constant J-sectional curvature of each space forms.
By directed calculations from (1.1) and (1.2), we see that
R(X,Y)Z = R(X,Y)Z+ §(X,Z)Vy( — 9V, Z)V (¢ (5.2)
+{(Vx0)(2) —3(X, 2)}Y = {(Vy0)(2) —g(Y, 2)} X,
where R is the curvature tensor of the semi-symmetric metric connection V.

Denote by R and R* the curvature tensors of the induced linear connec-
tion V and V* on M and S(T'M) respectively. Using the Gauss-Weingarten
formulae, we obtain Gauss equations for M and S(T'M), respectively:

R(X,Y)Z = R(X,Y)Z+Y {hi(X,Z2)A,Y —hi(Y,2)A, X}
=1

+ Y AR(X,2)A, Y —h(Y, Z)A,, X}
a=r+1

- i{(vth)(Y, Z) — (Vyh)(X, Z)

=1

+ Z[rﬂ(X)hﬁ.(y, Z) — i (V)RA(X, Z)]

+ Z [6ai (X)5(Y, Z) — $ai(Y)R3(X, Z)]

a=r+1
—0(X)hi (Y, Z) + 6(Y)hi(X, Z)}N; (5.3)
+ > A(Vxh)(Y. Z) = (Vyhi) (X, Z)

a=r+1

r

+ Z pza he Y Z) pia(y)hf(X7 Z)]

n

+ ) [o0a(X)R(Y, Z) — o (V)03(X, Z)]
b=r+1
—0(X)he (Y, 2) + 0(Y)he(X, Z)} E,

and

R(X,Y)PZ = R*(X,Y)PZ+ Y {h}(X,PZ)ALY — hi(Y,PZ)A¢ X}
i=1
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+ > A(Vxh)(Y, PZ) — (Vyh})(X, PZ)
=1

+ Z Tik(Y)hp(X, PZ) — 7 X)BE(Y, PZ)] (5.4)
9( VhE(Y,PZ) + 0(Y)h! (X, PZ)}:.

Taking the scalar product with & and N; to (5.2) by turns and then, sub-
stituting (5.3) and (5.1) and using (2.3), (2.14)4 and (5.4), we get

(vxh%(Y Z) — (Vyh)(X, Z)

+ Z{rﬂ LY, 2) — m(Y)R(X, 2)}
+ Z {0ai(X)DE(Y, Z) = dai(Y)N3(X, Z)} (5.5)
a=r+1

— 0(X)hi(Y, Z) + 0(Y)hi(X, 2)
+ o{ui(Y)g(X, Z) — ui(X)g(Y, Z)}
= flu(V)g(X,JZ) —uwi(X)g(Y, ] Z) + 2ui(Z)g(X, JY )}

and

(Vxh*)(Y PZ) - (Vyhi)(X, PZ)

+ Z {ri;(Y)h5(X, PZ) — 735(X)hI(Y, PZ)}

+ Z {hf(X, PZ)Th‘(ANjY) - h?(}f, PZ)Ui(ANjX)}
7j=1

+ Z ealpia(Y)hi(X, PZ) = pia(X)h3(Y, PZ)}
a=r+1

— 0(X)h;(Y,PZ) + 0(Y)h}(X,PZ)
—{(Vx0)(PZ) + Bg(X, PZ)}n;(Y) (5.6)
+{(Vy0)(PZ) + Bg(Y, PZ)}ni(X)
+a{vi(Y)g(X, PZ) —vi(X)g(Y, PZ)}

= S{g(Y, PZ)ni(X) = g(X, PZ)ni(Y)}
+ folui(V)§(X, JPZ) — vi(X)§(Y, JPZ) + 2v,(PZ)§(X, JY)}
+ f3{0(X)mi(Y) — 0(YV)mi(X)}0(PZ).
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Theorem 5.2. Let M be a generic lightlike submanifold of an indefinite gen-
eralized Sasakian space form M (f1, fa, f3) with a semi-symmetric metric con-
nection. Then the functions «, B, f1, fo and f3 satisfy

(1) « is a constant on M,

(2) a8 =0,

B) fi—fo=a®=p% and fi—fz=0a>—p>—(B.
Proof. Applying Vx to h?(Y, U;) = hi(Y,V;) and using (2.1), (2.11), (2.13),
(3.2), (3.3), (3.4), (3.7)1, (3.8), (3.9)1,2,4, (3.10) and (3.11), we have

(Vxh)(Y.Ui) = (Vxh})(Y Z{% I (Y, Us) + 7 (X)RE(Y, V5)}

- Z {¢aj (X (Y, Ui) + €apia(X)ha(Y, Vj)}

a=r+1

+ > {0 (VUi (X, &) + b (X, U hi (Y, £5)}
k=1
—g(AL X, F(A,Y)) = g(ALY, F(A, X))

=Y R, Vi)mk(Ay,Y)
k=1

+a(B 4+ D{u;(X)vi(Y) — u;(Y)vi(X)}
—a®u; (YV)n;(X) + (8 + 1)u; (X)mi(Y).

Substituting this into (5.5) such that replace i by j and Z by U;, we have
(Vxh*)(Y Vi) = (Vyhi) (X, Vj)

—Z{Tm Vg (Y, Vi) — i (Y) Ry (X, V)

n

= > cdhi (Y Vi)pia(X) = (X, V)pia(Y)}

a=r+1

= SR Vimi(Ay, X) — BE(X Vim(Ay, Y)Y (5.7)
k=1

— B(X)MF (Y, V) + 6(Y)hE (X, V)

— (2B + D{u(V)ui(X) — u(X)wi(Y)}

— {0+ (B4 DPHuy (Xmi(Y) — oy (V)mi(X)}

= Lofuy (V)m(X) = u;(X)mi(Y) + 25,9(X. TV )}.
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Applying Vx to 6(V;) = 0 and using (2.4) and (3.11), we obtain
(Vx0)(Vi) = (8 + )ui(X). (5.8)
Comparing (5.7) and (5.6) with Z =V} and using (2.14)3 and (3.9)3, we get

{1 = f2 = 0 + B}y (V)mi(X) — s (X)ms (V)]
— 208{u; (V)0 (X) — us(X)ui(Y)}.

Taking X = ¢&;,Y =U; and X =V;, Y = U; to this by turns, we obtain

fi—fo=a"—p3 af =0. (5.9)
Applying Vx to 6(¢) = 1 and using (2.3), we obtain
(Vx8)(C) =0, (5.10)

Applying Vx to n;(Y) = g(Y, N;) and using (2.5), we have

(Vxm)Y = —g(Ay X, Y) + Y 7i;(X)n;(Y).

j=1
Applying Vx to (3.8) and using (2.13) and (3.6) and (3.8), (3.16), we have
(Vxh)(Y,¢) = —(Xa)u(Y) + (XB)ni(Y)
—a{D_v(V)r(X) + D wa(Y)pia(X)
7=1 a=r+1

- Z wi(Vnj(A,, X) — g(Ay, X, FY) — g(A, Y, FX)
) (X)) — OV (X))
+(8+ 1>{i r (O (Y) + (8 + DO mi(Y)
- g(ANZ.Xin — (A, Y, X)),
Substituting this and (3.7) into (5.5) with PZ = ¢ and using (5.9), we get

—(Xa)vi(Y) + (Ya)oi(X) + (XB)mi(Y) — (Y B)mi(X)
= (fi—fs—a®+ B0 )m(X) — 0(X)ni(Y)}.
Taking Y = (, X =& and Y = U;, X = V; to this by turns, we obtain

fi—fz=a*=p*—(B, Uaa=0.
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Applying Vy to (3.7); and using (3.6), (3.7); and (3.14), we have

(Vxhi)(Y,¢) = —(on)uz'( V) + afh{(X,FY) + hi(Y,FX)
+ Zuj T(X)+ Y wa(Y)gai(X)
a=r+1

+ 9( Jui(X) — (X )ui(Y)} — (B + 1)hS(X,Y).
Substituting this and (3.7); into (5.5) with Z = ¢ and using (3.7), we get
(Xa)u;(Y) = (Ya)u;(X).
Taking Y = U; to this, we get Xa = 0. Thus « is a constant on M. O

Definition 5.3. (1) A screen distribution S(T'M) is called totally umbilical
[5] if there exist smooth functions ~; on a neighborhood U such that

In case 7; = 0, we say that S(T'M) is totally geodesic in M.

(2) A generic lightlike submanifold M is said to be screen conformal [5] if
there exist non-vanishing smooth functions ¢; on U such that

hi(X, PY) = @;hf (X, PY). (5.11)

Theorem 5.4. Let M be a generic lightlike submanifold of an indefinite gen-
eralized Sasakian space form M (f1, fa, f3) with a semi-symmetric metric con-
nection. If one of the following five conditions is satisfied,

(1) M is recurrent,

(2) S(T'M) is totally umbilical,

(3) M s screen conformal,

(4) Ujs is parallel with respect to the induced connection V,
(5) Vis is parallel with respect to the induced connection V,
n

then M(f1, fo, f3) is an indefinite Kenmotsu space form such that
a=0, B=-1; fi=-1, fo=[f3=0. (5.12)

Proof. (1) As M is recurrent, by Theorem 4.2, we obtain « = 0, § = —1
and the fact that M is irrotational and solenmdal, i.e., (2.15) and (2.16) are
satisfied. By directed calculation from (4.8);, we obtain

R(X,Y)U, 22(1% (X, )U;. (5.13)

7=1

On the other hand, since a = 0 and 8 = —1, we have Vx( = 0 by (2.3)
and f1 +1 = fo = f3 by Theorem 5.2. Comparing the tangential components
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of the right and left terms of (5.2) and using (5.1) and (5.3), we obtain

R(X,Y)Z = i{hf(Y,Z)ANZ_X—hf(X,Z)ANiY} (5.14)

=1

+ zn: {ha(Y, 2)A, X —h3(X,Z)A, Y}
a=r+1

+ (Vx0)(2)Y = (Vy0)(2)X

+ (i +D{g(Y, 2)X —g(X, 2)Y}

+ £{G(X, JZ)FY — (Y, JZ)FX + 2§(X, JY)FZ}

+ [{0(X)0(2)Y —0(Y)0(2)X

+9(X, 2)0(Y)¢ = g(Y, 2)6(X)C}-
Applying Vx to 6(U;) = 0 and using (2.4) and (3.10), we obtain

(Vx0)(Us) = ami(X) + (B + Dvi(X). (5.15)
Replacing Z by U; to (5.14) and using (5.13) and (5.15), we get

D 2dn(X,Y)U; = Y (RS, U Ay X — (X, U)A, Y}
j=1 Jj=1

+ Y R (Y U)AL, X — b3 (X, U)A,, YY)
a=r+1
+ (i + D{wi(V)X —vi(X)Y}
+ fo{ni(X)FY —ni(Y)FX}
+ f3{vi(X)O(Y) — vi(YV)0(X)}C.
Taking the scalar product with N; and using (2.15) and (2.16), we get
Jo{wi(Y)n; (X) = vi(X)n; (V) } + fof{v;(V)mi(X) — o(X)m(Y)} = 0.
Taking Y = V; and X = ¢, we get fo = 0. Thus f; = -1 and fo = f3 =0.
(2) Assume that S(TM) is totally umbilical. Then (3.8) is reduced to
7i0(X) = —awi(X) + (6 + 1)mi(X).

Taking X = (, X = V; and X = & by turns, we have 7 = 0, « = 0 and
f=—-1. As v =0, S(T'M) is totally geodesic and, from (3.9)1,2. we have

l _ s _
hS(X,U;) =0, hE(X,U;) = 0. (5.16)

As a =0 and B = —1, M is an indefinite Kenmotsu manifold and f; + 1 =
f2 = f3 by Theorem 5.2. Taking PZ = Uj to (5.6) such that A} = 0 and using
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(5.15), (5.16) and the fact that f1 +1 = fo, we get
fo{vi (Y)ni(X) — 0 (X)ni(Y)] + [vi(Y)n; (X) — vi(X)n;(Y)]} = 0.

Taking X = & and Y =V to this equation, we get fo = 0. Thus M(f1, f2, f3)
is an indefinite Kenmotsu space form satisfying (5.12).

(3) Taking PY = ¢ to (5.11) and using (3.7); and (3.8), we get
avi(X) = (B4 1)ni(X) = apui(X).
Taking X = V; and X = ¢; by turns, we have o = 0 and 8 = —1 respectively.
Thus M is an indefinite Kenmotsu manifold such that fi +1 = fo = fs.
Denote by pi, i € {1, ---, r} the r-th vector fields on S(T'M) such that
pi = Ui — Vi, Then Jp; = Ny — €. Using (3.9)1,2,3,4, we get
L _ S —
hj(X, ﬂz) = 07 ha(X, ,u,) =0. (517)
Applying Vy to (5.11), we have
(Vxh)(Y,PZ) = (X@i)hi(Y. PZ) + ¢i(Vxh) (Y, PZ).

Substituting this equation and (5.11) into (5.6) and using (5.5), we have

> A(X@i)dij — @imii(X) — 57 (X) —mi( Ay, X)M0S(Y, P2Z)

j=1
- Z{(YSOi)dij = @iTji(Y) — 7i(Y) — ni(ANj Y)}hﬁ(X, PZ)
j=1
— > {ewpia(X) + pidai( X) Y5 (Y, PZ)
a=r+1
+ D {eapialY) + pidai(Y) I (X, P2)
a=r+1
—{(Vx0)(PZ) — (X, PZ)}n;(Y)
+{(Vy0)(PZ) — g(Y, PZ)}n;(X)

= fi{g(Y, PZ)ni(X) — g(X, PZ)ni(Y)}
+ fo{9(Y, 1i)g(X, JPZ) — g(X, p1:)g(Y, JPZ)
+29(PZ, 11:)g(X, JY)}
+ f3{0(X)n:(Y) — 0(Y)n:(X)}0(PZ).
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Replacing PZ by p; to this and using (5.8), (5.15) and (5.17), we obtain
So{loe(Y)1i(X) = 0e(X)0i (V) + 03 (Y )7ie(X) — 03 (X )i (V)]
— @rur(Y)mi(X) = wp(X)ni (V)] + @ilui (Y )ne (X) — us(X)mi(Y)]
+ 2[90k:5ki — goiéki]g(X, JY)} = 0.

Taking X = & and Y = Vi, we get fo = 0. Thus M(f1, fo, f3) is an indefinite
Kenmotsu space form satisfying (5.12).

(4) If U;s is parallel with respect to V, then we have (3.16) and (3.17). As
a=0and 8 =0, we get fi +1 = fo = f3 by Theorem 5.2.
Applying Vy to (3.17) and using the fact that VxU; = 0, we obtain

(Vxh})(Y,Uj) = 0

Substituting this equation and (3.17 into (5.6) such that PZ = U; and using
(5.15), (3.16) and the fact that f1 +1 = fo, we have

So{lwi(Y)mi(X) = v (X)mi(Y)] + [0i(Y)n; (X) — vi(X)n;(Y)]} = 0.

Taking X = & and Y = V; to this equation, we get fo = 0. Thus M (f1, f2, f3)
is an indefinite Kenmotsu space form satisfying (5.12).

(5) If Vis is parallel with respect to the connection V, then we have (3.18)
and (3.19). Asa =0 and = —1, we get f1 +1 = fo = f3 by Theorem 5.2.
From (3.9); and (3.18), we have

BE(Y, V) =0

Applying Vx to this equation and using the fact that VxV; = 0, we have
(Vxh})(Y. V) = 0.

Substituting these two equations into (5.6) such that PZ =V}, we obtain

D AKX, Vimi(Ay,Y) = hi(Y, Vi)m(Ay, X))}
k=1

+ Z €aipia(Y)ho (X, V) Pia(X) (Y, ‘/3)}
a=r+1

= folw;(Y)mi(X) — w(X)ni(Y) + 26559(X, JY) .
Taking X = & and Y = U; to this and using (3.18), (3.19) and the fact that
ha(Uj, Vj) = eahf(Uj, W,) = 0 due to (3.9)4 and (3.18), we get f» = 0. Thus
M(f1, f2, f3) is an indefinite Kenmotsu space form satisfying (5.12). O

Theorem 5.5. Let M be a Lie recurrent generic lightlike submanifold of an
indefinite generalized Sasakian space form M(f1, fa, f3) with a semi-symmetric
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metric connection. Then M (f1, fa, f3) is a space form with an indefinite 3
Kenmotsu structure such that

h==B f2=0, f3=(p
Proof. If M is Lie recurrent, then, by Theorem 4.4 we get o = 0 and

hi(X,Uj) = 0. (5.18)
Applying Vy to (5.18) and using (3.7); and (3.10), we have
(Vxh)(Y,Uj) = =hi(Y, F(Ay, X)) = Y pia(X)R(Y, Wa).
a=r+1

Substituting the last two equations into (5.5) with Z = U}, we have
hi(X, F(AyY)) = hi(Y, F(A,, X))

+ Z {Pia(Y)E(X, Wa) — pja(X)R{(Y, Wa)}
a= 7“+1

+ Z {6ai(X)N5(Y,U)) — ¢ai(Y)R5(X,U;)}

a=r+1
= fofui(Y)n;(X) — wi(X)n; (V) + 20;59(X, JY)}.

Taking Y = U; and X = &; to this and using (2.14)2, (3.9)4, (4.13)1,3,4,5 and
(5.18), we have fo = 0. As fo = 0, we have f; = —3% and f3 = (B. O
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