Nonlinear Functional Analysis and Applications Vol. 22, No. 4 (2017), pp. 865-887 ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2017 Kyungnam University Press

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A SEMI-SYMMETRIC METRIC CONNECTION

Dae Ho Jin

Department of Mathematics, Dongguk University Gyeongju 780-714, Republic of Korea e-mail: jindh@dongguk.ac.kr

Abstract. We study the geometry of generic lightlike submanifolds M of an indefinite trans-Sasakian manifold \overline{M} with a semi-symmetric metric connection subject such that the characteristic vector field ζ of \overline{M} is identical with structure vector field of \overline{M} and ζ is tangent to M. Under the same conditions, we also characterize the geometry of generic lightlike submanifolds of an indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_2)$.

1. INTRODUCTION

A linear connection $\overline{\nabla}$ on a semi-Riemannian manifold $(\overline{M}, \overline{g})$ is said to be a *semi-symmetric connection* if its torsion tensor \overline{T} satisfies

$$\bar{T}(\bar{X},\bar{Y}) = \theta(\bar{Y})\bar{X} - \theta(\bar{X})\bar{Y}, \qquad (1.1)$$

where θ is a 1-form associated with a smooth unit vector field ζ , which is called the *characteristic vector field*, by $\theta(\bar{X}) = \bar{g}(\bar{X}, \zeta)$. Moreover, if this connection $\bar{\nabla}$ is a metric connection, *i.e.*, it satisfies $\bar{\nabla}\bar{g} = 0$, then $\bar{\nabla}$ is called a *semi-symmetric metric connection*. The notion of semi-symmetric metric connection on a Riemannian manifold was introduced by Yano [14]. In the followings, we denote by \bar{X}, \bar{Y} and \bar{Z} the smooth vector fields on \bar{M} .

⁰Received April 24, 2017. Revised October 10, 2017.

⁰2010 Mathematics Subject Classification: 53C25, 53C40, 53C50.

⁰Keywords: Semi-symmetric metric connection, generic lightlike submanifold, indefinite trans-Sasakian manifold, indefinite generalized Sasakian space form.

Let $\widetilde{\nabla}$ be the Levi-Civita connection of the semi-Riemannian manifold $(\overline{M}, \overline{g})$ with respect to the metric \overline{g} . It is known that a linear connection $\overline{\nabla}$ on \overline{M} is a semi-symmetric metric connection if and only if it satisfies

$$\bar{\nabla}_{\bar{X}}\bar{Y} = \widetilde{\nabla}_{\bar{X}}\bar{Y} + \theta(\bar{Y})\bar{X} - \bar{g}(\bar{X},\bar{Y})\zeta.$$
(1.2)

A lightlike submanifold M of an indefinite almost contact manifold M is called *generic* if there exists a screen distribution S(TM) of M such that

$$J(S(TM)^{\perp}) \subset S(TM), \tag{1.3}$$

where $S(TM)^{\perp}$ is the orthogonal complement of S(TM) in the tangent bundle $T\overline{M}$ of \overline{M} , that is, $T\overline{M} = S(TM) \oplus_{orth} S(TM)^{\perp}$. The notion of generic lightlike submanifolds was introduced by Jin-Lee [9] and later, studied by Duggal-Jin [5], Jin [6, 7] and Jin-Lee [10]. The geometry of generic lightlike submanifolds is an extension of that of lightlike hypersurface and half light-like submanifold of codimension 2. Much of its theory will be immediately generalized in a formal way to general lightlike submanifolds.

The notion of a trans-Sasakian manifold of type (α, β) was introduced by Oubina [13]. Sasakian, Kenmotsu and cosymplectic manifolds are important kinds of the trans-Sasakian manifold such that α and β satisfy

$$\alpha = \epsilon, \ \beta = 0; \ \alpha = 0, \ \beta = \epsilon; \ \alpha = \beta = 0,$$

respectively, where $\epsilon = \pm 1$. If a trans-Sasakian manifold is a semi-Riemannian manifold, then it is called an *indefinite trans-Sasakian manifold*.

In this paper, we study the geometry of generic lightlike submanifolds of an indefinite trans-Sasakian manifold $(\overline{M}, J, \zeta, \theta, \overline{g})$ with a semi-symmetric metric connection $\overline{\nabla}$ in which the characteristic vector field ζ of \overline{M} is identical with the structure vector field ζ of $(\overline{M}, J, \zeta, \theta, \overline{g})$ and ζ is tangent to M. Under the same conditions, we also characterize generic lightlike submanifolds of an indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_3)$.

2. Semi-symmetric metric connections

An odd-dimensional semi-Riemannian manifold (M, \bar{g}) is called an *indefinite* almost contact metric manifold if there exists a set $\{J, \zeta, \theta, \bar{g}\}$, where J is a (1, 1)-type tensor field, ζ is a vector field and θ is a 1-form such that

$$J^2 \bar{X} = -\bar{X} + \theta(\bar{X})\zeta, \ \bar{g}(J\bar{X}, J\bar{Y}) = \bar{g}(\bar{X}, \bar{Y}) - \epsilon\theta(\bar{X})\theta(\bar{Y}), \ \theta(\zeta) = 1, \quad (2.1)$$

where $\epsilon = 1$ or -1 according as ζ is spacelike or timelike, respectively. The set $\{J, \zeta, \theta, \overline{g}\}$ is called an *indefinite almost contact metric structure*.

From (2.1), we show that

$$J\zeta = 0, \quad \theta \circ J = 0, \quad \theta(X) = \epsilon \overline{g}(X,\zeta), \quad \overline{g}(JX,Y) = -\overline{g}(X,JY).$$

In the entire discussion of this article, we shall assume that the structure vector field ζ is a spacelike one, *i.e.*, $\epsilon = 1$, without loss of generality.

Definition 2.1. An indefinite almost contact metric manifold $(\overline{M}, \overline{g})$ is said to be an *indefinite trans-Sasakian manifold* [13] if, for the Levi-Civita connection $\widetilde{\nabla}$, there exist two smooth functions α and β such that

$$(\widetilde{\nabla}_{\bar{X}}J)\bar{Y} = \alpha\{\bar{g}(\bar{X},\bar{Y})\zeta - \theta(\bar{Y})\bar{X}\} + \beta\{\bar{g}(J\bar{X},\bar{Y})\zeta - \theta(\bar{Y})J\bar{X}\}.$$

 $\{J, \zeta, \theta, \overline{g}\}$ is called an *indefinite trans-Sasakian structure*, of type (α, β) .

Let $\overline{\nabla}$ be a semi-symmetric metric connection on $\overline{M} = (\overline{M}, J, \zeta, \theta, \overline{g})$. By using (1.2), (2.1) and the facts that $J\zeta = 0$ and $\theta \circ J = 0$, we see that

$$(\bar{\nabla}_{\bar{X}}J)\bar{Y} = \alpha\{\bar{g}(\bar{X},\bar{Y})\zeta - \theta(\bar{Y})\bar{X}\}$$

$$+ (\beta+1)\{\bar{g}(J\bar{X},\bar{Y})\zeta - \theta(\bar{Y})J\bar{X}\}.$$

$$(2.2)$$

Replacing \bar{Y} by ζ to (2.2) and using $J\zeta = 0$ and $\theta(\bar{\nabla}_{\bar{X}}\zeta) = 0$, we obtain

$$\bar{\nabla}_{\bar{X}}\zeta = -\alpha J\bar{X} + (\beta+1)\{\bar{X} - \theta(\bar{X})\zeta\}.$$
(2.3)

Let (M, g) be an *m*-dimensional lightlike submanifold of an indefinite trans-Sasakian manifold \overline{M} of dimension (m + n). Then the radical distribution $Rad(TM) = TM \cap TM^{\perp}$ of M is a subbundle of the tangent bundle TMand the normal bundle TM^{\perp} , of rank $r (1 \leq r \leq \min\{m, n\})$. We say that M is *r*-lightlike submanifold [4] if $1 \leq r < \min\{m, n\}$. In the sequel, by saying that M is a lightlike submanifold we shall mean that it is an *r*-lightlike submanifold. For an *r*-lightlike submanifold M, there exist two complementary non-degenerate distributions S(TM) and $S(TM^{\perp})$ of Rad(TM) in TM and TM^{\perp} , respectively, which are called the *screen distribution* and the *co-screen distribution* of M, such that

$$TM = Rad(TM) \oplus_{orth} S(TM), \ TM^{\perp} = Rad(TM) \oplus_{orth} S(TM^{\perp})$$

where \oplus_{orth} denotes the orthogonal direct sum. Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E over M. Also denote by $(2.1)_i$ the *i*-th equation of (2.1). We use the same notations for any others. Let X, Y, Z and W be the vector fields on M, unless otherwise specified. We use the following range of indices:

$$i, j, k, \dots \in \{1, \dots, r\}, \quad a, b, c, \dots \in \{r + 1, \dots, n\}.$$

Let tr(TM) and ltr(TM) be complementary vector bundles to TM in $T\overline{M}_{|M}$ and TM^{\perp} in $S(TM)^{\perp}$, respectively, and let $\{N_1, \dots, N_r\}$ be a null basis of $ltr(TM)_{|\mathcal{U}}$, where \mathcal{U} is a coordinate neighborhood of M, such that

$$\bar{g}(N_i,\xi_j) = \delta_{ij}, \qquad \bar{g}(N_i,N_j) = 0,$$

where $\{\xi_1, \dots, \xi_r\}$ is a null basis of $Rad(TM)|_{\mu}$. Then we have

$$T\overline{M} = TM \oplus tr(TM) = \{Rad(TM) \oplus tr(TM)\} \oplus_{orth} S(TM)$$
$$= \{Rad(TM) \oplus ltr(TM)\} \oplus_{orth} S(TM) \oplus_{orth} S(TM^{\perp}).$$

We call tr(TM), ltr(TM) and N_i the transversal vector bundle, the lightlike transversal vector bundle and the null transversal vector fields of M with respect to the screen distribution S(TM), respectively. Hence the local quasiorthonormal field of frames on \overline{M} along M is given by

$$\{\xi_1, \dots, \xi_r, N_1, \dots, N_r, F_{r+1}, \dots, F_m, E_{r+1}, \dots, E_n\},\$$

where $\{F_{r+1}, \dots, F_m\}$ and $\{E_{r+1}, \dots, E_n\}$ are orthonormal bases of S(TM)and $S(TM^{\perp})$, respectively. Denote $\epsilon_a = \overline{g}(E_a, E_a)$. Then $\epsilon_a \delta_{ab} = \overline{g}(E_a, E_b)$.

Let P be the projection morphism of TM on S(TM). Then the local Gauss-Weingarten formulae of M and S(TM) are given respectively by

$$\bar{\nabla}_X Y = \nabla_X Y + \sum_{i=1}^r h_i^\ell(X, Y) N_i + \sum_{a=r+1}^n h_a^s(X, Y) E_a, \qquad (2.4)$$

$$\bar{\nabla}_X N_i = -A_{N_i} X + \sum_{j=1}^r \tau_{ij}(X) N_j + \sum_{a=r+1}^n \rho_{ia}(X) E_a, \qquad (2.5)$$

$$\bar{\nabla}_X E_a = -A_{E_a} X + \sum_{i=1}^r \phi_{ai}(X) N_i + \sum_{b=r+1}^n \sigma_{ab}(X) E_b, \qquad (2.6)$$

$$\nabla_X PY = \nabla_X^* PY + \sum_{i=1}^r h_i^* (X, PY) \xi_i, \qquad (2.7)$$

$$\nabla_X \xi_i = -A_{\xi_i}^* X - \sum_{j=1}' \tau_{ji}(X) \xi_j, \qquad (2.8)$$

where ∇ and ∇^* are induced linear connections on TM and S(TM), respectively, h_i^{ℓ} and h_a^s are called the *local second fundamental forms* on TM, h_i^* are called the *local second fundamental forms* on S(TM). A_{N_i} , A_{E_a} and $A_{\xi_i}^*$ are called the *shape operators*, and τ_{ij} , ρ_{ia} , ϕ_{ai} and σ_{ab} are 1-forms on TM.

The connection ∇ is a semi-symmetric non-metric connection and satisfy

$$(\nabla_X g)(Y, Z) = \sum_{i=1}^r \{h_i^\ell(X, Y)\eta_i(Z) + h_i^\ell(X, Z)\eta_i(Y)\},$$
(2.9)

$$T(X,Y) = \theta(Y)X - \theta(X)Y, \qquad (2.10)$$

and the results: h_i^{ℓ} and h_a^s are symmetric, where η_i 's are 1-forms such that

$$\eta_i(X) = \bar{g}(X, N_i).$$

From the facts that $h_i^{\ell}(X,Y) = \bar{g}(\bar{\nabla}_X Y,\xi_i)$ and $\epsilon_a h_a^s(X,Y) = \bar{g}(\bar{\nabla}_X Y,E_a)$, we know that h_i^{ℓ} and h_a^s are independent of the choice of S(TM). The local second fundamental forms are related to their shape operators by

$$h_i^{\ell}(X,Y) = g(A_{\xi_i}^*X,Y) - \sum_{k=1}^r h_k^{\ell}(X,\xi_i)\eta_k(Y), \qquad (2.11)$$

$$\epsilon_a h_a^s(X, Y) = g(A_{E_a} X, Y) - \sum_{k=1}' \phi_{ak}(X) \eta_k(Y), \qquad (2.12)$$

$$h_i^*(X, PY) = g(A_{N_i}X, PY).$$
 (2.13)

Applying ∇_X to $g(\xi_i, \xi_j) = 0$, $\bar{g}(\xi_i, E_a) = 0$, $\bar{g}(N_i, N_j) = 0$, $\bar{g}(N_i, E_a) = 0$ and $\bar{g}(E_a, E_b) = \epsilon \delta_{ab}$ by turns and using (2.4) ~ (2.6), we obtain

$$h_i^{\ell}(X,\xi_j) + h_j^{\ell}(X,\xi_i) = 0, \qquad h_a^s(X,\xi_i) = -\epsilon_a \phi_{ai}(X), \eta_j(A_{N_i}X) + \eta_i(A_{N_j}X) = 0, \qquad \eta_i(A_{E_a}X) = \epsilon_a \rho_{ia}(X),$$
(2.14)

$$\epsilon_b \sigma_{ab} + \epsilon_a \sigma_{ba} = 0; \qquad h_i^{\ell}(X,\xi_i) = 0, \quad h_i^{\ell}(\xi_j,\xi_k) = 0, \quad A_{\xi_i}^*\xi_i = 0.$$

Definition 2.2. We say that a lightlike submanifold M of M is

- (1) *irrotational* [12] if $\overline{\nabla}_X \xi_i \in \Gamma(TM)$ for all $i \in \{1, \dots, r\}$,
- (2) solenoidal [11] if A_{E_a} and A_{N_i} are S(TM)-valued for all α and i.

Remark 2.3. From (2.4) and $(2.14)_2$, the item (1) is equivalent to

$$h_j^{\ell}(X,\xi_i) = 0, \quad h_a^s(X,\xi_i) = \phi_{ai}(X) = 0.$$
 (2.15)

By using $(2.14)_4$, the item (2) is equivalent to

$$\eta_j(A_{N_i}X) = 0, \quad \rho_{ia}(X) = \eta_i(A_{E_a}X) = 0. \tag{2.16}$$

3. Generic lightlike submanifolds

Let M be a generic lightlike submanifold of \overline{M} . From (1.3) we show that J(Rad(TM)), J(ltr(TM)) and $J(S(TM^{\perp}))$ are subbundles of S(TM). Now we shall assume that ζ is tangent to M. Călin [2] proved that if ζ is tangent to M, then it belongs to S(TM) which we assume in this paper. Then there exist two non-degenerate almost complex distributions H_o and H with respect to J, that is, $J(H_o) = H_o$ and J(H) = H, such that

$$S(TM) = \{J(Rad(TM)) \oplus J(ltr(TM))\} \oplus_{orth} J(S(TM^{\perp})) \oplus_{orth} H_o, H = Rad(TM) \oplus_{orth} J(Rad(TM)) \oplus_{orth} H_o.$$

In this case, the tangent bundle TM of M is decomposed as follow:

$$TM = H \oplus J(ltr(TM)) \oplus_{orth} J(S(TM^{\perp})).$$
(3.1)

Consider 2r local null vector fields U_i and V_i , (n - r) local non-null unit vector fields W_a on S(TM) and their 1-forms u_i , v_i and w_a defined by

$$U_i = -JN_i, \quad V_i = -J\xi_i, \quad W_a = -JE_a, \tag{3.2}$$

$$u_i(X) = g(X, V_i), \quad v_i(X) = g(X, U_i), \quad w_a(X) = \epsilon_a g(X, W_a).$$
 (3.3)

Denote by S the projection morphism of TM on H and by F the tensor field of type (1,1) globally defined on M by $F = J \circ S$. Then JX is expressed as

$$JX = FX + \sum_{i=1}^{r} u_i(X)N_i + \sum_{a=r+1}^{n} w_a(X)E_a.$$
 (3.4)

Applying J to (3.4) and using $(2.1)_1$ and (3.2), we have

$$F^{2}X = -X + \theta(X)\zeta + \sum_{i=1}^{r} u_{i}(X)U_{i} + \sum_{a=r+1}^{n} w_{a}(X)W_{a}.$$
 (3.5)

We say that the tensor field F is the structure tensor field of M and the vector fields U_i and W_a are the structure vector fields of M.

Replacing Y by ζ to (2.4) and using (2.3) and (3.4), we have

$$\nabla_X \zeta = -\alpha F X + (\beta + 1) \{ X - \theta(X) \zeta \}, \tag{3.6}$$

$$h_i^{\ell}(X,\zeta) = -\alpha u_i(X), \quad h_a^s(X,\zeta) = -\alpha w_a(X).$$
(3.7)

Applying $\overline{\nabla}_X$ to $\overline{g}(\zeta, N_i) = 0$ and using (2.3), (2.5) and (2.13), we get

a = r+1

$$h_i^*(X,\zeta) = -\alpha v_i(X) + (\beta + 1)\eta_i(X).$$
(3.8)

Applying $\overline{\nabla}_X$ to (3.2), (3.3) and (3.4) by turns and using (2.2), (2.4) ~ (2.8), (2.11) ~ (2.13) and (3.2) ~ (3.4), we have

$$h_{j}^{\ell}(X, U_{i}) = h_{i}^{*}(X, V_{j}), \quad \epsilon_{a}h_{i}^{*}(X, W_{a}) = h_{a}^{s}(X, U_{i}),$$

$$h_{j}^{\ell}(X, V_{i}) = h_{i}^{\ell}(X, V_{j}), \quad \epsilon_{a}h_{i}^{\ell}(X, W_{a}) = h_{a}^{s}(X, V_{i}), \quad (3.9)$$

$$\epsilon_{b}h_{b}^{s}(X, W_{a}) = \epsilon_{a}h_{a}^{s}(X, W_{b}),$$

$$\nabla_X U_i = F(A_{N_i}X) + \sum_{j=1}^r \tau_{ij}(X)U_j + \sum_{a=r+1}^n \rho_{ia}(X)W_a \qquad (3.10)$$
$$- \{\alpha \eta_i(X) + (\beta + 1)v_i(X)\}\zeta,$$

$$\nabla_X V_i = F(A_{\xi_i}^* X) - \sum_{j=1}^r \tau_{ji}(X) V_j + \sum_{j=1}^r h_j^\ell(X, \xi_i) U_j \qquad (3.11)$$
$$- \sum_{i=1}^n \epsilon_a \phi_{ai}(X) W_a - (\beta + 1) u_i(X) \zeta,$$

Generic lightlike submanifolds of an indefinite trans-Sasakian manifold 871

$$\nabla_X W_a = F(A_{E_a} X) + \sum_{i=1}^r \phi_{ai}(X) U_i + \sum_{b=r+1}^n \sigma_{ab}(X) W_b \quad (3.12)$$

$$(\nabla_{X}F)(Y) = \sum_{i=1}^{r} u_{i}(Y)A_{N_{i}}X + \sum_{a=r+1}^{n} w_{a}(Y)A_{E_{a}}X \qquad (3.13)$$

$$-\sum_{i=1}^{r} h_{i}^{\ell}(X,Y)U_{i} - \sum_{a=r+1}^{n} h_{a}^{s}(X,Y)W_{a}$$

$$+ \alpha\{g(X,Y)\zeta - \theta(Y)X\}$$

$$+ (\beta + 1)\{\bar{g}(JX,Y)\zeta - \theta(Y)FX\},$$

$$(\nabla_{X}u_{i})(Y) = -\sum_{j=1}^{r} u_{j}(Y)\tau_{ji}(X) - \sum_{a=r+1}^{n} w_{a}(Y)\phi_{ai}(X) \qquad (3.14)$$

$$- h_{i}^{\ell}(X,FY) - (\beta + 1)\theta(Y)u_{i}(X),$$

$$(\nabla_{X}v_{i})(Y) = \sum_{j=1}^{r} v_{j}(Y)\tau_{ij}(X) + \sum_{a=r+1}^{n} \epsilon_{a}w_{a}(Y)\rho_{ia}(X) \qquad (3.15)$$

$$- \sum_{j=1}^{r} u_{j}(Y)\eta_{j}(A_{N_{i}}X) - g(A_{N_{i}}X,FY)$$

$$- \{\alpha\eta_{i}(X) + (\beta + 1)v_{i}(X)\}\theta(Y).$$

Theorem 3.1. Let M be a generic lightlike submanifold of an indefinite trans-Sasakian manifold \overline{M} with a semi-symmetric metric connection. If U_i s are parallel with respect to the connection ∇ , then $\tau_{ij} = 0$, M is solenoidal and \overline{M} is an indefinite Kenmotsu manifold such that $\alpha = 0$ and $\beta = -1$.

Proof. Assume that U_i s are parallel with respect to ∇ . Taking the scalar product with ζ , V_j , U_j , W_a and N_j to (3.10) by turns, we get

$$\alpha = 0, \quad \beta = -1; \quad \tau_{ij} = 0, \quad \eta_j(A_{N_i}X) = 0, \quad \rho_{ia} = 0,$$
 (3.16)

$$h_i^*(X, U_j) = 0, (3.17)$$

respectively. As $\alpha = 0$ and $\beta = -1$, \overline{M} is an indefinite Kenmotsu manifold. As $\eta_j(A_{N_i}X) = 0$ and $\rho_{ia} = 0$, M is solenoidal.

Theorem 3.2. Let M be a generic lightlike submanifold of an indefinite trans-Sasakian manifold \overline{M} with a semi-symmetric metric connection. If V_i s are parallel with respect to the connection ∇ , then $\tau_{ij} = 0$, M is irrotational and \overline{M} is an indefinite Kenmotsu manifold such that $\alpha = 0$ and $\beta = -1$.

Proof. Assume that V_i s are parallel with respect to ∇ . Taking the scalar product with V_j , W_a , U_j , ζ and N_j to (3.11) by turns, we obtain

$$h_j^{\ell}(X,\xi_i) = 0, \quad \phi_{ai} = 0, \quad \tau_{ij} = 0, \quad \beta = -1,$$

 $h_i^{\ell}(X,U_k) = 0,$ (3.18)

respectively. As $h_i^{\ell}(X,\xi_i) = 0$ and $\phi_{ai} = 0, M$ is irrotational. Replacing X by ζ to (3.18) and using (3.7)₁, we have $\alpha = 0$. Thus

$$\alpha = 0, \quad \beta = -1, \quad \tau_{ij} = 0, \quad h_j^\ell(X, \xi_i) = 0, \quad \phi_{ai} = 0.$$
 (3.19)

As $\alpha = 0$ and $\beta = -1$, \overline{M} is an indefinite Kenmotsu manifold.

4. Recurrent and Lie recurrent submanifolds

Definition 4.1. ([8]) The structure tensor field F of M is said to be *recurrent* if there exists a 1-form ϖ on M such that

$$(\nabla_X F)Y = \varpi(X)FY.$$

A lightlike submanifold M of an indefinite trans-Sasakian manifold \overline{M} is called recurrent if it admits a recurrent structure tensor field F.

Theorem 4.2. Let M be a recurrent generic lightlike submanifold of an indefinite trans-Sasakian manifold \overline{M} with a semi-symmetric metric connection. Then we have the following results:

- (1) M is an indefinite Kenmotsu manifold, i.e., $\alpha = 0$ and $\beta = -1$,
- (2) F is parallel with respect to the induced connection ∇ on M,
- (3) M is irrotational and solenoidal.
- (4) H, J(ltr(TM)) and $J(S(TM^{\perp}))$ are parallel distributions on M,
- (5) M is locally a product manifold $M_r \times M_{n-r} \times M^{\sharp}$, where M_r , M_{n-r} and M^{\sharp} are leaves of J(ltr(TM)), $J(S(TM^{\perp}))$ and H, respectively.

Proof. From the above definition and (3.13), we obtain

$$\varpi(X)FY = \sum_{i=1}^{r} u_i(Y)A_{N_i}X + \sum_{a=r+1}^{n} w_a(Y)A_{E_a}X$$
(4.1)
$$-\sum_{i=1}^{r} h_i^{\ell}(X,Y)U_i - \sum_{a=r+1}^{n} h_a^s(X,Y)W_a$$
$$+ \alpha \{g(X,Y)\zeta - \theta(Y)X\}$$
$$+ (\beta + 1)\{\bar{g}(JX,Y)\zeta - \theta(Y)FX\}.$$

Replacing Y by ζ to (4.1) and using (2.1), (3.5) and (3.7), we get 0.

$$\alpha F^2 X - (\beta + 1)F X =$$

Taking $X = \xi_i$ to this and using the fact that $F\xi_i = -V_i$, we have

$$-\alpha\xi_i + (\beta + 1)V_i = 0.$$

Taking the scalar product with N_i and U_i to this by turns, we obtain

$$\alpha = 0, \quad \beta = -1. \tag{4.2}$$

Therefore, \overline{M} is an indefinite Kenmotsu manifold.

(2) Replacing Y by ξ_i to (4.1) and using (4.2), we have

$$\varpi(X)V_i = \sum_{j=1}^r h_j^{\ell}(X,\xi_i)U_j + \sum_{a=r+1}^n h_a^s(X,\xi_i)W_a$$

Taking the scalar product with U_i , V_k and W_b to this by turns, we get

$$\varpi = 0, \quad h_k^\ell(X,\xi_i) = 0, \quad h_b^s(X,\xi_i) = 0.$$
(4.3)

As $\varpi = 0$, F is parallel with respect to the induced connection ∇ .

(3) From $(4.3)_{2,3}$, we see that M is irrotational.

Taking the scalar product with N_j to (4.1), we obtain

$$\sum_{j=1}^{r} u_j(Y)\bar{g}(A_{N_j}X, N_i) + \sum_{a=r+1}^{n} w_a(Y)\bar{g}(A_{E_a}X, N_i) = 0$$

Taking $Y = U_k$ and $Y = W_b$ to this equation by turns, we have

$$\bar{g}(A_{N_k}X, N_i) = 0, \quad \bar{g}(A_{E_b}X, N_i) = 0.$$
 (4.4)

Thus, by Remark 2.3, we see that M is solenoidal.

(4) Taking the scalar product with V_i and W_a to (4.1) by turns, we obtain

$$h_i^{\ell}(X,Y) = \sum_{k=1}^r u_k(Y)u_i(A_{N_k}X) + \sum_{a=r+1}^n w_a(Y)u_i(A_{E_a}X),$$

$$h_a^s(X,Y) = \sum_{i=1}^r u_i(Y)w_a(A_{N_i}X) + \sum_{b=r+1}^n w_b(Y)w_a(A_{E_b}X).$$

Taking Y = V and $Y = FZ_o$, $Z_o \in \Gamma(H_o)$ to these equations by turns and using the results: $u_i(FZ_o) = w_a(FZ_o) = 0$ as $FZ_o = JZ_o \in \Gamma(H_o)$, we have

$$h_i^{\ell}(X, V_j) = 0, \ h_i^{\ell}(X, FZ_o) = 0, \ h_a^s(X, V_j) = 0, \ h_a^s(X, FZ_o) = 0.$$
 (4.5)

In general, by using (2.1), (2.8), (2.11), (3.4), (3.11) and (3.12), we derive

$$g(\nabla_X \xi_i, V_j) = -h_i^{\ell}(X, V_j), \quad g(\nabla_X \xi_i, W_a) = -h_i^{\ell}(X, W_a), \\ g(\nabla_X V_i, V_j) = h_j^{\ell}(X, \xi_i), \quad g(\nabla_X V_i, W_a) = -\phi_{ai}(X), \\ g(\nabla_X Z_o, V_i) = b_i^{\ell}(X, FZ_o), \quad g(\nabla_X Z_o, W_a) = b_a^s(X, FZ_o).$$

From these equations and $(3.9)_4$, (4.3) and (4.5), we see that

$$\nabla_X Y \in \Gamma(H), \quad \forall X \in \Gamma(TM), \quad \forall Y \in \Gamma(H).$$

It follows that H is a parallel distribution on M.

Taking $Y = U_i$ and $Y = W_a$ to (4.1) by turns and using (4.2), we have

$$A_{N_i}X = \sum_{\substack{j=1\\r}}^{r} h_j^{\ell}(X, U_i)U_j + \sum_{\substack{a=r+1\\n}}^{n} h_a^s(X, U_i)W_a.$$
 (4.6)

$$A_{E_a}X = \sum_{i=1}^r h_j^\ell(X, W_a)U_i + \sum_{b=r+1}^n h_b^s(X, W_a)W_b.$$
 (4.7)

Applying F to (4.6) and (4.7) by turns and using $FU_i = FW_a = 0$, we get

$$F(A_{\scriptscriptstyle N_i}X)=0, \quad F(A_{\scriptscriptstyle E_a}X)=0.$$

Using this result and $(4.2)\sim(4.4)$, Eq.s (3.10) and (3.12) are reduced to

$$\nabla_X U_i = \sum_{j=1}^r \tau_{ij}(X) U_j, \quad \nabla_X W_a = \sum_{b=r+1}^n \sigma_{ab}(X) W_b. \tag{4.8}$$

Thus J(ltr(TM)) and $J(S(TM^{\perp}))$ are also parallel distributions on M.

(5) As H, J(ltr(TM)) and $J(S(TM^{\perp}))$ are parallel distributions and satisfy the decomposition form (3.1), by the de Rham's decomposition theorem [3], M is locally a product manifold $M_r \times M_{n-r} \times M^{\sharp}$, where M_r , M_{n-r} and M^{\sharp} are leaves of J(ltr(TM)), $J(S(TM^{\perp}))$ and H, respectively.

Definition 4.3. ([8]) The structure tensor field F of M is said to be *Lie* recurrent if there exists a 1-form ϑ on M such that

$$(\mathcal{L}_X F)Y = \vartheta(X)FY,$$

where \mathcal{L}_X denotes the Lie derivative on M with respect to X. In case $\vartheta = 0$, we say that F is *Lie parallel*. A lightlike submanifold M is called *Lie recurrent* if it admits a Lie recurrent structure tensor field F.

Theorem 4.4. Let M be a Lie recurrent generic lightlike submanifold of an indefinite trans-Sasakian manifold \overline{M} with a semi-symmetric metric connection. Then we have the following results:

- (1) $\alpha = 0$ and \overline{M} is an indefinite β -Kenmotsu manifold,
- (2) F is Lie parallel,
- (3) τ_{ij} and ρ_{ia} are satisfied $\tau_{ij} \circ F = 0$ and $\rho_{ia} \circ F = 0$. Moreover,

$$\tau_{ij}(X) = \sum_{k=1}^{r} u_k(X) g(A_{N_k} V_j, N_i) - \beta \delta_{ij} \theta(X).$$

Proof. (1) Using (2.10), (3.13) and the fact that $\theta \circ F = 0$, we get

$$\vartheta(X)FY = -\nabla_{FY}X + F\nabla_{Y}X$$

$$+ \sum_{i=1}^{r} u_{i}(Y)A_{N_{i}}X + \sum_{a=r+1}^{n} w_{a}(Y)A_{E_{a}}X$$

$$- \sum_{i=1}^{r} h_{i}^{\ell}(X,Y)U_{i} - \sum_{a=r+1}^{n} h_{a}^{s}(X,Y)W_{a}$$

$$+ \alpha\{g(X,Y)\zeta - \theta(Y)X\}$$

$$+ (\beta + 1)\bar{g}(JX,Y)\zeta - \beta\theta(Y)FX.$$

$$(4.9)$$

Taking $Y = \xi_i$ and $Y = V_i$ to (4.9) by turns, we have

$$-\vartheta(X)V_{j} = \nabla_{V_{j}}X + F\nabla_{\xi_{j}}X + (\beta + 1)u_{j}(X)\zeta \qquad (4.10)$$
$$-\sum_{i=1}^{r}h_{i}^{\ell}(X,\xi_{j})U_{i} - \sum_{a=r+1}^{n}h_{a}^{s}(X,\xi_{j})W_{a},$$
$$\vartheta(X)\xi_{j} = -\nabla_{\xi_{j}}X + F\nabla_{V_{j}}X + \alpha u_{j}(X)\zeta \qquad (4.11)$$
$$-\sum_{i=1}^{r}h_{i}^{\ell}(X,V_{j})U_{i} - \sum_{a=r+1}^{n}h_{a}^{s}(X,V_{j})W_{a}.$$

Taking the scalar product with ζ to (4.11) such that $X = U_j$ and using (3.10), we obtain $\alpha = 0$. Thus \overline{M} is an indefinite β -Kenmotsu manifold.

(2) Taking the product with U_i to (4.10) and N_i to (4.11), we obtain

$$-\delta_{ij}\vartheta(X) = g(\nabla_{V_j}X, U_i) - \bar{g}(\nabla_{\xi_j}X, N_i), \qquad (4.12)$$

$$\delta_{ij}\vartheta(X) = g(\nabla_{V_j}X, U_i) - \bar{g}(\nabla_{\xi_j}X, N_i),$$

respectively. From these equations, we get $\vartheta = 0$. Thus F is Lie parallel.

(3) Taking the scalar product with N_i to (4.10) such that $X = W_a$ and using (2.12), (2.14)₄ and (3.12), we get $h_a^s(U_i, V_j) = \rho_{ia}(\xi_j)$. Also, taking the scalar product with W_a to (4.11) such that $X = U_i$ and using (3.10), we have $h_a^s(U_i, V_j) = -\rho_{ia}(\xi_j)$. Thus $\rho_{ia}(\xi_j) = 0$ and $h_a^s(U_i, V_j) = 0$.

Taking the scalar product with U_i to (4.10) such that $X = W_a$ and using (2.14)_{2,4} and (3.12), we get $\epsilon_a \rho_{ia}(V_j) = \phi_{aj}(U_i)$. Also, taking the scalar product with W_a to (4.10) such that $X = U_i$ and using (2.14)₂ and (3.10), we get $\epsilon_a \rho_{ia}(V_j) = -\phi_{aj}(U_i)$. Thus $\rho_{ia}(V_j) = 0$ and $\phi_{aj}(U_i) = 0$.

Taking the scalar product with V_i to (4.10) such that $X = W_a$ and using (2.14)₂, (3.9)₄ and (3.12), we obtain $\phi_{ai}(V_j) = -\phi_{aj}(V_i)$. Also, taking the scalar product with W_a to (4.10) such that $X = V_i$ and using (2.14)₂ and (3.11), we have $\phi_{ai}(V_j) = \phi_{aj}(V_i)$. Thus we obtain $\phi_{ai}(V_j) = 0$.

Taking the scalar product with W_a to (4.10) such that $X = \xi_i$ and using (2.8), (2.11) and (2.14)₂, we get $h_i^{\ell}(V_j, W_a) = \phi_{ai}(\xi_j)$. Also, taking the scalar product with V_i to (4.11) such that $X = W_a$ and using (3.12), we have $h_i^{\ell}(V_j, W_a) = -\phi_{ai}(\xi_j)$. Thus $\phi_{ai}(\xi_j) = 0$ and $h_i^{\ell}(V_j, W_a) = 0$.

Summarizing the above results, we obtain

$$\rho_{ia}(\xi_j) = 0, \ \rho_{ia}(V_j) = 0, \ \phi_{ai}(U_j) = 0, \ \phi_{ai}(V_j) = 0, \ \phi_{ai}(\xi_j) = 0, \ (4.13)$$
$$h_a^s(U_i, V_j) = h_j^\ell(U_i, W_a) = 0, \ h_i^\ell(V_j, W_a) = h_a^s(V_j, V_i) = 0.$$

Taking the scalar product with N_i to (4.9) and using (2.14)₄, we have

$$-\bar{g}(\nabla_{FY}X, N_i) + g(\nabla_YX, U_i) - \beta\theta(Y)v_i(X)$$

$$+ \sum_{k=1}^r u_k(Y)\bar{g}(A_{N_k}X, N_i) + \sum_{a=r+1}^n \epsilon_a w_a(Y)\rho_{ia}(X) = 0.$$
(4.14)

Taking $X = V_j$ and $X = \xi_j$ by turns and using (2.8) and (3.11), we get

$$h_{j}^{\ell}(FX, U_{i}) + \tau_{ij}(X) + \beta \delta_{ij}\theta(X) = \sum_{k=1}^{r} u_{k}(X)\bar{g}(A_{N_{k}}V_{j}, N_{i}), \quad (4.15)$$

$$h_j^{\ell}(X, U_i) = \sum_{k=1}^r u_k(X)\bar{g}(A_{N_k}\xi_j, N_i) + \tau_{ij}(FX), \qquad (4.16)$$

due to $(4.13)_{1,2}$. Taking $X = U_k$ to (4.16), we have

$$h_i^*(U_k, V_j) = h_j^\ell(U_k, U_i) = \bar{g}(A_{N_k}\xi_j, N_i).$$
(4.17)

Replacing X by U_i to (4.9) and using (2.13), (3.3), (3.5), (3.8), (3.9)_{1,2}, (3.10) and the fact that $\alpha = 0$, we obtain

$$\sum_{k=1}^{r} u_k(Y) A_{N_k} U_i + \sum_{a=r+1}^{n} w_a(Y) A_{E_a} U_i - A_{N_i} Y + (\beta + 1) \eta_i(Y) \zeta \qquad (4.18)$$
$$- F(A_{N_i} FY) - \sum_{j=1}^{r} \tau_{ij}(FY) U_j - \sum_{a=r+1}^{n} \rho_{ia}(FY) W_a = 0.$$

Taking the scalar product with V_j to (4.18) and using (2.12), (2.13), (2.14)₃, (3.9)₁ and (4.17), we get

$$h_j^{\ell}(X, U_i) = -\sum_{k=1}^r u_k(X)\bar{g}(A_{N_k}\xi_j, N_i) - \tau_{ij}(FX).$$

Comparing this equation with (4.16), we obtain

$$\tau_{ij}(FX) + \sum_{k=1}^{r} u_k(X)\bar{g}(A_{N_k}\xi_j, N_i) = 0.$$

Replacing X by U_h to this equation, we have $\bar{g}(A_{N_k}\xi_j, N_i) = 0$. Thus

$$\tau_{ij}(FX) = 0, \qquad h_j^\ell(X, U_i) = 0.$$
 (4.19)

Taking X = FY to $(4.19)_2$, we get $h_j^{\ell}(FX, U_i) = 0$. Thus (4.15) reduces

$$\tau_{ij}(X) = \sum_{k=1}^{r} u_k(X)\bar{g}(A_{N_k}V_j, N_i) - \beta\delta_{ij}\theta(X).$$
(4.20)

Replacing Y by W_a to (4.18), we obtain $A_{N_i}W_a = A_{E_a}U_i$. Taking the scalar product with U_j to this and using (2.12), (2.13) and (3.9)₂, we have

$$h_i^*(W_a, U_j) = \epsilon_a h_a^s(U_i, U_j) = \epsilon_a h_a^s(U_j, U_i) = h_i^*(U_j, W_a).$$
(4.21)

Taking the scalar product with W_a to (4.18) and using (2.12), we have

$$\epsilon_a \rho_{ia}(FY) = -h_i^*(Y, W_a) + \sum_{k=1}^r u_k(Y) h_k^*(U_i, W_a) + \sum_{b=r+1}^n \epsilon_b w_b(Y) h_b^s(U_i, W_a).$$

Taking the scalar product with U_i to (4.9) and then, taking $X = W_a$ and using (2.12), (2.13), (2.14)₄, (3.9)₂, (3.12) and (4.21), we obtain

$$\epsilon_a \rho_{ia}(FY) = h_i^*(Y, W_a) - \sum_{k=1}^r u_k(Y) h_k^*(U_i, W_a) - \sum_{b=r+1}^n \epsilon_b w_b(Y) h_b^s(U_i, W_a).$$

Comparing the last two equations, we obtain $\rho_{ia}(FY) = 0$.

5. INDEFINITE GENERALIZED SASAKIAN SPACE FORMS

Definition 5.1. An indefinite trans-Sasakian manifold \overline{M} is called *indefinite* generalized Sasakian space form and denoted by $\overline{M}(f_1, f_2, f_3)$ if there exist three smooth functions f_1 , f_2 and f_3 on \overline{M} such that

$$\begin{split} R(\bar{X},\bar{Y})\bar{Z} &= f_1\{\bar{g}(\bar{Y},\bar{Z})\bar{X} - \bar{g}(\bar{X},\bar{Z})\bar{Y}\} \\ &+ f_2\{\bar{g}(\bar{X},J\bar{Z})J\bar{Y} - \bar{g}(\bar{Y},J\bar{Z})J\bar{X} + 2\bar{g}(\bar{X},J\bar{Y})J\bar{Z}\} \\ &+ f_3\{\theta(\bar{X})\theta(\bar{Z})\bar{Y} - \theta(\bar{Y})\theta(\bar{Z})\bar{X} \\ &+ \bar{g}(\bar{X},\bar{Z})\theta(\bar{Y})\zeta - \bar{g}(\bar{Y},\bar{Z})\theta(\bar{X})\zeta\}, \end{split}$$
(5.1)

where \widetilde{R} denote the curvature tensor of the Levi-Civita connection $\widetilde{\nabla}$ on \overline{M} .

Generalized Sasakian space form was introduced by Alegre et. al. [1]. Sasakian space form, Kenmotsu space form and cosymplectic space form are important kinds of generalized Sasakian space forms such that

$$f_1 = \frac{c+3}{4}, f_2 = f_3 = \frac{c-1}{4}; \quad f_1 = \frac{c-3}{4}, f_2 = f_3 = \frac{c+1}{4}; \quad f_1 = f_2 = f_3 = \frac{c}{4}$$

respectively, where c is a constant J-sectional curvature of each space forms.

By directed calculations from (1.1) and (1.2), we see that

$$\bar{R}(\bar{X},\bar{Y})\bar{Z} = \tilde{R}(\bar{X},\bar{Y})\bar{Z} + \bar{g}(\bar{X},\bar{Z})\bar{\nabla}_{\bar{Y}}\zeta - \bar{g}(\bar{Y},\bar{Z})\bar{\nabla}_{\bar{X}}\zeta
+ \{(\bar{\nabla}_{\bar{X}}\theta)(\bar{Z}) - \bar{g}(\bar{X},\bar{Z})\}\bar{Y} - \{(\bar{\nabla}_{\bar{Y}}\theta)(\bar{Z}) - \bar{g}(\bar{Y},\bar{Z})\}\bar{X},$$
(5.2)

where \bar{R} is the curvature tensor of the semi-symmetric metric connection $\bar{\nabla}$.

Denote by R and R^* the curvature tensors of the induced linear connection ∇ and ∇^* on M and S(TM) respectively. Using the Gauss-Weingarten formulae, we obtain Gauss equations for M and S(TM), respectively:

$$\begin{split} \bar{R}(X,Y)Z &= R(X,Y)Z + \sum_{i=1}^{r} \{h_{i}^{\ell}(X,Z)A_{N_{i}}Y - h_{i}^{\ell}(Y,Z)A_{N_{i}}X\} \\ &+ \sum_{a=r+1}^{n} \{h_{a}^{s}(X,Z)A_{E_{a}}Y - h_{a}^{s}(Y,Z)A_{E_{a}}X\} \\ &+ \sum_{i=1}^{r} \{(\nabla_{X}h_{i}^{\ell})(Y,Z) - (\nabla_{Y}h_{i}^{\ell})(X,Z) \\ &+ \sum_{j=1}^{r} [\tau_{ji}(X)h_{j}^{\ell}(Y,Z) - \tau_{ji}(Y)h_{j}^{\ell}(X,Z)] \\ &+ \sum_{a=r+1}^{n} [\phi_{ai}(X)h_{a}^{s}(Y,Z) - \phi_{ai}(Y)h_{a}^{s}(X,Z)] \\ &- \theta(X)h_{i}^{\ell}(Y,Z) + \theta(Y)h_{i}^{\ell}(X,Z)\}N_{i} \\ &+ \sum_{a=r+1}^{n} \{(\nabla_{X}h_{a}^{s})(Y,Z) - (\nabla_{Y}h_{a}^{s})(X,Z) \\ &+ \sum_{i=1}^{r} [\rho_{ia}(X)h_{i}^{\ell}(Y,Z) - \rho_{ia}(Y)h_{i}^{\ell}(X,Z)] \\ &+ \sum_{b=r+1}^{n} [\sigma_{ba}(X)h_{b}^{s}(Y,Z) - \sigma_{ba}(Y)h_{b}^{s}(X,Z)] \\ &+ \sum_{b=r+1}^{n} [\sigma_{ba}(X)h_{b}^{s}(Y,Z) - \sigma_{ba}(Y)h_{b}^{s}(X,Z)] \\ &- \theta(X)h_{a}^{s}(Y,Z) + \theta(Y)h_{a}^{s}(X,Z)\}E_{a} \end{split}$$

and

$$R(X,Y)PZ = R^*(X,Y)PZ + \sum_{i=1}^r \{h_i^*(X,PZ)A_{\xi_i}^*Y - h_i^*(Y,PZ)A_{\xi_i}X\}$$

Generic lightlike submanifolds of an indefinite trans-Sasakian manifold 879

$$+ \sum_{i=1}^{r} \{ (\nabla_X h_i^*)(Y, PZ) - (\nabla_Y h_i^*)(X, PZ) + \sum_{k=1}^{r} [\tau_{ik}(Y)h_k^*(X, PZ) - \tau_{ik}(X)h_k^*(Y, PZ)] - \theta(X)h_i^*(Y, PZ) + \theta(Y)h_i^*(X, PZ) \} \xi_i.$$
(5.4)

Taking the scalar product with ξ_i and N_i to (5.2) by turns and then, substituting (5.3) and (5.1) and using (2.3), (2.14)₄ and (5.4), we get

$$(\nabla_{X}h_{i}^{\ell})(Y,Z) - (\nabla_{Y}h_{i}^{\ell})(X,Z) + \sum_{j=1}^{r} \{\tau_{ji}(X)h_{j}^{\ell}(Y,Z) - \tau_{ji}(Y)h_{j}^{\ell}(X,Z)\} + \sum_{a=r+1}^{n} \{\phi_{ai}(X)h_{a}^{s}(Y,Z) - \phi_{ai}(Y)h_{a}^{s}(X,Z)\} - \theta(X)h_{i}^{\ell}(Y,Z) + \theta(Y)h_{i}^{\ell}(X,Z) + \alpha\{u_{i}(Y)g(X,Z) - u_{i}(X)g(Y,Z)\} = f_{2}\{u_{i}(Y)\bar{g}(X,JZ) - u_{i}(X)\bar{g}(Y,JZ) + 2u_{i}(Z)\bar{g}(X,JY)\}$$
(5.5)

and

$$\begin{aligned} (\nabla_X h_i^*)(Y, PZ) &- (\nabla_Y h_i^*)(X, PZ) \\ &+ \sum_{j=1}^r \left\{ \tau_{ij}(Y) h_j^*(X, PZ) - \tau_{ij}(X) h_j^*(Y, PZ) \right\} \\ &+ \sum_{j=1}^r \left\{ h_j^\ell(X, PZ) \eta_i(A_{N_j}Y) - h_j^\ell(Y, PZ) \eta_i(A_{N_j}X) \right\} \\ &+ \sum_{a=r+1}^n \epsilon_a \{ \rho_{ia}(Y) h_a^s(X, PZ) - \rho_{ia}(X) h_a^s(Y, PZ) \} \\ &- \theta(X) h_i^*(Y, PZ) + \theta(Y) h_i^*(X, PZ) \\ &- \{ (\bar{\nabla}_X \theta)(PZ) + \beta g(X, PZ) \} \eta_i(Y) \\ &+ \{ (\bar{\nabla}_Y \theta)(PZ) + \beta g(Y, PZ) \} \eta_i(X) \\ &+ \alpha \{ v_i(Y) g(X, PZ) - v_i(X) g(Y, PZ) \} \\ &= f_1 \{ g(Y, PZ) \eta_i(X) - g(X, PZ) \eta_i(Y) \} \\ &+ f_2 \{ v_i(Y) \bar{g}(X, JPZ) - v_i(X) \bar{g}(Y, JPZ) + 2v_i(PZ) \bar{g}(X, JY) \} \\ &+ f_3 \{ \theta(X) \eta_i(Y) - \theta(Y) \eta_i(X) \} \theta(PZ). \end{aligned}$$

Theorem 5.2. Let M be a generic lightlike submanifold of an indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_3)$ with a semi-symmetric metric connection. Then the functions α , β , f_1 , f_2 and f_3 satisfy

- (1) α is a constant on M,
- (2) $\alpha\beta = 0$,

(3) $f_1 - f_2 = \alpha^2 - \beta^2$ and $f_1 - f_3 = \alpha^2 - \beta^2 - \zeta\beta$.

Proof. Applying ∇_X to $h_j^{\ell}(Y, U_i) = h_i^*(Y, V_j)$ and using (2.1), (2.11), (2.13), (3.2), (3.3), (3.4), (3.7)_1, (3.8), (3.9)_{1,2,4}, (3.10) and (3.11), we have

$$\begin{split} (\nabla_X h_j^{\ell})(Y,U_i) &= (\nabla_X h_i^*)(Y,V_j) - \sum_{k=1}^r \{\tau_{kj}(X)h_k^{\ell}(Y,U_i) + \tau_{ik}(X)h_k^*(Y,V_j)\} \\ &- \sum_{a=r+1}^n \{\phi_{aj}(X)h_a^s(Y,U_i) + \epsilon_a\rho_{ia}(X)h_a^s(Y,V_j)\} \\ &+ \sum_{k=1}^r \{h_i^*(Y,U_k)h_k^{\ell}(X,\xi_j) + h_i^*(X,U_k)h_k^{\ell}(Y,\xi_j)\} \\ &- g(A_{\xi_j}^*X,F(A_{N_i}Y)) - g(A_{\xi_j}^*Y,F(A_{N_i}X)) \\ &- \sum_{k=1}^r h_j^{\ell}(X,V_k)\eta_k(A_{N_i}Y) \\ &+ \alpha(\beta+1)\{u_j(X)v_i(Y) - u_j(Y)v_i(X)\} \\ &- \alpha^2 u_j(Y)\eta_i(X) + (\beta+1)^2 u_j(X)\eta_i(Y). \end{split}$$

Substituting this into (5.5) such that replace i by j and Z by U_i , we have

$$\begin{aligned} (\nabla_X h_i^*)(Y, V_j) &- (\nabla_Y h_i^*)(X, V_j) \\ &- \sum_{k=1}^r \{\tau_{ik}(X) h_k^*(Y, V_j) - \tau_{ik}(Y) h_k^*(X, V_j)\} \\ &- \sum_{a=r+1}^n \epsilon_a \{h_a^s(Y, V_j) \rho_{ia}(X) - h_a^s(X, V_j) \rho_{ia}(Y)\} \\ &- \sum_{k=1}^r \{h_k^\ell(Y, V_j) \eta_i(A_{N_k}X) - h_k^\ell(X, V_j) \eta_i(A_{N_k}Y)\} \\ &- \theta(X) h_i^*(Y, V_j) + \theta(Y) h_i^*(X, V_j)\} \\ &- \theta(2\beta + 1) \{u_j(Y) v_i(X) - u_j(X) v_i(Y)\} \\ &- \{\alpha^2 + (\beta + 1)^2\} \{u_j(X) \eta_i(Y) - u_j(Y) \eta_i(X)\} \\ &= f_2 \{u_j(Y) \eta_i(X) - u_j(X) \eta_i(Y) + 2\delta_{ij} \bar{g}(X, JY)\}. \end{aligned}$$

Applying $\overline{\nabla}_X$ to $\theta(V_i) = 0$ and using (2.4) and (3.11), we obtain

$$(\overline{\nabla}_X \theta)(V_i) = (\beta + 1)u_i(X). \tag{5.8}$$

Comparing (5.7) and (5.6) with $Z = V_j$ and using (2.14)₃ and (3.9)₃, we get

$$\{f_1 - f_2 - \alpha^2 + \beta^2\} [u_j(Y)\eta_i(X) - u_j(X)\eta_i(Y)]$$

= $2\alpha\beta\{u_j(Y)v_i(X) - u_j(X)v_i(Y)\}.$

Taking $X = \xi_i, Y = U_j$ and $X = V_i, Y = U_j$ to this by turns, we obtain

$$f_1 - f_2 = \alpha^2 - \beta^2, \qquad \alpha \beta = 0.$$
 (5.9)

Applying $\overline{\nabla}_X$ to $\theta(\zeta) = 1$ and using (2.3), we obtain

$$(\bar{\nabla}_X \theta)(\zeta) = 0. \tag{5.10}$$

Applying $\overline{\nabla}_X$ to $\eta_i(Y) = \overline{g}(Y, N_i)$ and using (2.5), we have

$$(\nabla_X \eta_i)Y = -g(A_{N_i}X,Y) + \sum_{j=1}^r \tau_{ij}(X)\eta_j(Y).$$

Applying ∇_X to (3.8) and using (2.13) and (3.6) and (3.8), (3.16), we have

$$\begin{split} (\nabla_X h_i^*)(Y,\zeta) &= -(X\alpha)v_i(Y) + (X\beta)\eta_i(Y) \\ &- \alpha \{\sum_{j=1}^r v_j(Y)\tau_{ij}(X) + \sum_{a=r+1}^n w_a(Y)\rho_{ia}(X) \\ &- \sum_{j=1}^r u_j(Y)\eta_j(A_{N_i}X) - g(A_{N_i}X,FY) - g(A_{N_i}Y,FX) \\ &- \alpha\theta(Y)\eta_i(X) + \theta(X)v_i(Y) - \theta(Y)v_i(X) \} \\ &+ (\beta+1)\{\sum_{j=1}^r \tau_{ij}(X)\eta_j(Y) + (\beta+1)\theta(X)\eta_i(Y) \\ &- g(A_{N_i}X,Y) - g(A_{N_i}Y,X) \}. \end{split}$$

Substituting this and (3.7) into (5.5) with $PZ = \zeta$ and using (5.9), we get

$$-(X\alpha)v_i(Y) + (Y\alpha)v_i(X) + (X\beta)\eta_i(Y) - (Y\beta)\eta_i(X) = (f_1 - f_3 - \alpha^2 + \beta^2)\{\theta(Y)\eta_i(X) - \theta(X)\eta_i(Y)\}.$$

Taking $Y = \zeta$, $X = \xi_i$ and $Y = U_j$, $X = V_i$ to this by turns, we obtain

$$f_1 - f_3 = \alpha^2 - \beta^2 - \zeta \beta, \quad U_i \alpha = 0.$$

Applying ∇_Y to $(3.7)_1$ and using (3.6), $(3.7)_1$ and (3.14), we have

$$\begin{aligned} (\nabla_X h_i^{\ell})(Y,\zeta) &= -(X\alpha)u_i(Y) + \alpha \{h_i^{\ell}(X,FY) + h_i^{\ell}(Y,FX) \\ &+ \sum_{j=1}^r u_j(Y)\tau_{ji}(X) + \sum_{a=r+1}^n w_a(Y)\phi_{ai}(X) \\ &+ \theta(Y)u_i(X) - \theta(X)u_i(Y)\} - (\beta+1)h_i^{\ell}(X,Y). \end{aligned}$$

Substituting this and $(3.7)_1$ into (5.5) with $Z = \zeta$ and using (3.7), we get

$$(X\alpha)u_i(Y) = (Y\alpha)u_i(X).$$

Taking $Y = U_i$ to this, we get $X\alpha = 0$. Thus α is a constant on M.

Definition 5.3. (1) A screen distribution S(TM) is called *totally umbilical* [5] if there exist smooth functions γ_i on a neighborhood \mathcal{U} such that

$$h_i^*(X, PY) = \gamma_i g(X, PY).$$

In case $\gamma_i = 0$, we say that S(TM) is totally geodesic in M.

(2) A generic lightlike submanifold M is said to be *screen conformal* [5] if there exist non-vanishing smooth functions φ_i on \mathcal{U} such that

$$h_i^*(X, PY) = \varphi_i h_i^\ell(X, PY). \tag{5.11}$$

Theorem 5.4. Let M be a generic lightlike submanifold of an indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_3)$ with a semi-symmetric metric connection. If one of the following five conditions is satisfied,

- (1) M is recurrent,
- (2) S(TM) is totally umbilical,
- (3) M is screen conformal,
- (4) $U_i s$ is parallel with respect to the induced connection ∇ ,
- (5) $V_i s$ is parallel with respect to the induced connection ∇ ,

then $\overline{M}(f_1, f_2, f_3)$ is an indefinite Kenmotsu space form such that

$$\alpha = 0, \quad \beta = -1; \quad f_1 = -1, \quad f_2 = f_3 = 0.$$
 (5.12)

Proof. (1) As M is recurrent, by Theorem 4.2, we obtain $\alpha = 0$, $\beta = -1$ and the fact that M is irrotational and solenoidal, *i.e.*, (2.15) and (2.16) are satisfied. By directed calculation from $(4.8)_1$, we obtain

$$R(X,Y)U_i = \sum_{j=1}^{r} 2d\tau_{ij}(X,Y)U_j.$$
(5.13)

On the other hand, since $\alpha = 0$ and $\beta = -1$, we have $\overline{\nabla}_X \zeta = 0$ by (2.3) and $f_1 + 1 = f_2 = f_3$ by Theorem 5.2. Comparing the tangential components

of the right and left terms of (5.2) and using (5.1) and (5.3), we obtain

$$\begin{aligned} R(X,Y)Z &= \sum_{i=1}^{'} \{h_{i}^{\ell}(Y,Z)A_{N_{i}}X - h_{i}^{\ell}(X,Z)A_{N_{i}}Y\} \\ &+ \sum_{a=r+1}^{n} \{h_{a}^{s}(Y,Z)A_{E_{a}}X - h_{a}^{s}(X,Z)A_{E_{a}}Y\} \\ &+ (\bar{\nabla}_{X}\theta)(Z)Y - (\bar{\nabla}_{Y}\theta)(Z)X \\ &+ (f_{1}+1)\{g(Y,Z)X - g(X,Z)Y\} \\ &+ f_{2}\{\bar{g}(X,JZ)FY - \bar{g}(Y,JZ)FX + 2\bar{g}(X,JY)FZ\} \\ &+ f_{3}\{\theta(X)\theta(Z)Y - \theta(Y)\theta(Z)X \\ &+ \bar{g}(X,Z)\theta(Y)\zeta - \bar{g}(Y,Z)\theta(X)\zeta\}. \end{aligned}$$
(5.14)

Applying $\overline{\nabla}_X$ to $\theta(U_i) = 0$ and using (2.4) and (3.10), we obtain

$$(\bar{\nabla}_X \theta)(U_i) = \alpha \eta_i(X) + (\beta + 1)v_i(X).$$
(5.15)

Replacing Z by U_i to (5.14) and using (5.13) and (5.15), we get

$$\sum_{j=1}^{r} 2d\tau_{ij}(X,Y)U_{j} = \sum_{j=1}^{r} \{h_{j}^{\ell}(Y,U_{i})A_{N_{j}}X - h_{j}^{\ell}(X,U_{i})A_{N_{j}}Y\} + \sum_{a=r+1}^{n} \{h_{a}^{s}(Y,U_{i})A_{E_{a}}X - h_{a}^{s}(X,U_{i})A_{E_{a}}Y\} + (f_{1}+1)\{v_{i}(Y)X - v_{i}(X)Y\} + f_{2}\{\eta_{i}(X)FY - \eta_{i}(Y)FX\} + f_{3}\{v_{i}(X)\theta(Y) - v_{i}(Y)\theta(X)\}\zeta.$$

Taking the scalar product with N_j and using (2.15) and (2.16), we get

$$f_2\{v_i(Y)\eta_j(X) - v_i(X)\eta_j(Y)\} + f_2\{v_j(Y)\eta_i(X) - v(X)\eta_i(Y)\} = 0.$$

Taking $Y = V_i$ and $X = \xi_j$, we get $f_2 = 0$. Thus $f_1 = -1$ and $f_2 = f_3 = 0$.

(2) Assume that S(TM) is totally umbilical. Then (3.8) is reduced to

$$\gamma_i \theta(X) = -\alpha v_i(X) + (\beta + 1)\eta_i(X).$$

Taking $X = \zeta$, $X = V_i$ and $X = \xi_i$ by turns, we have $\gamma_i = 0$, $\alpha = 0$ and $\beta = -1$. As $\gamma_i = 0$, S(TM) is totally geodesic and, from $(3.9)_{1,2}$. we have

$$h_j^{\ell}(X, U_i) = 0, \qquad h_a^s(X, U_i) = 0.$$
 (5.16)

As $\alpha = 0$ and $\beta = -1$, \overline{M} is an indefinite Kenmotsu manifold and $f_1 + 1 = f_2 = f_3$ by Theorem 5.2. Taking $PZ = U_j$ to (5.6) such that $h_i^* = 0$ and using

(5.15), (5.16) and the fact that $f_1 + 1 = f_2$, we get

$$f_2\{[v_j(Y)\eta_i(X) - v_j(X)\eta_i(Y)] + [v_i(Y)\eta_j(X) - v_i(X)\eta_j(Y)]\} = 0.$$

Taking $X = \xi_i$ and $Y = V_j$ to this equation, we get $f_2 = 0$. Thus $\overline{M}(f_1, f_2, f_3)$ is an indefinite Kenmotsu space form satisfying (5.12).

(3) Taking $PY = \zeta$ to (5.11) and using (3.7)₁ and (3.8), we get

$$\alpha v_i(X) - (\beta + 1)\eta_i(X) = \alpha \varphi u_i(X).$$

Taking $X = V_i$ and $X = \xi_i$ by turns, we have $\alpha = 0$ and $\beta = -1$ respectively. Thus \overline{M} is an indefinite Kenmotsu manifold such that $f_1 + 1 = f_2 = f_3$.

Denote by $\mu_i, i \in \{1, \dots, r\}$ the r-th vector fields on S(TM) such that $\mu_i = U_i - \varphi_i V_i$. Then $J\mu_i = N_i - \varphi_i \xi_i$. Using $(3.9)_{1,2,3,4}$, we get

$$h_j^{\ell}(X,\mu_i) = 0, \quad h_a^s(X,\mu_i) = 0.$$
 (5.17)

Applying ∇_Y to (5.11), we have

$$(\nabla_X h_i^*)(Y, PZ) = (X\varphi_i)h_i^\ell(Y, PZ) + \varphi_i(\nabla_X h_i^\ell)(Y, PZ).$$

Substituting this equation and (5.11) into (5.6) and using (5.5), we have

$$\begin{split} &\sum_{j=1}^{r} \{ (X\varphi_{i})\delta_{ij} - \varphi_{i}\tau_{ji}(X) - \varphi_{j}\tau_{ij}(X) - \eta_{i}(A_{N_{j}}X) \} h_{j}^{\ell}(Y,PZ) \\ &- \sum_{j=1}^{r} \{ (Y\varphi_{i})\delta_{ij} - \varphi_{i}\tau_{ji}(Y) - \varphi_{j}\tau_{ij}(Y) - \eta_{i}(A_{N_{j}}Y) \} h_{j}^{\ell}(X,PZ) \\ &- \sum_{a=r+1}^{n} \{ \epsilon_{a}\rho_{ia}(X) + \varphi_{i}\phi_{ai}(X) \} h_{a}^{s}(Y,PZ) \\ &+ \sum_{a=r+1}^{n} \{ \epsilon_{a}\rho_{ia}(Y) + \varphi_{i}\phi_{ai}(Y) \} h_{a}^{s}(X,PZ) \\ &- \{ (\bar{\nabla}_{X}\theta)(PZ) - g(X,PZ) \} \eta_{i}(Y) \\ &+ \{ (\bar{\nabla}_{Y}\theta)(PZ) - g(Y,PZ) \} \eta_{i}(X) \\ &= f_{1}\{ g(Y,PZ)\eta_{i}(X) - g(X,PZ)\eta_{i}(Y) \} \\ &+ f_{2}\{ g(Y,\mu_{i})\bar{g}(X,JPZ) - g(X,\mu_{i})\bar{g}(Y,JPZ) \\ &+ 2g(PZ,\mu_{i})\bar{g}(X,JY) \} \\ &+ f_{3}\{\theta(X)\eta_{i}(Y) - \theta(Y)\eta_{i}(X) \} \theta(PZ). \end{split}$$

Replacing PZ by μ_i to this and using (5.8), (5.15) and (5.17), we obtain

$$f_{2}\{[v_{k}(Y)\eta_{i}(X) - v_{k}(X)\eta_{i}(Y) + v_{i}(Y)\eta_{k}(X) - v_{i}(X)\eta_{k}(Y)] - \varphi_{k}[u_{k}(Y)\eta_{i}(X) - u_{k}(X)\eta_{i}(Y)] + \varphi_{i}[u_{i}(Y)\eta_{k}(X) - u_{i}(X)\eta_{k}(Y)] + 2[\varphi_{k}\delta_{ki} - \varphi_{i}\delta_{ki}]\bar{g}(X, JY)\} = 0.$$

Taking $X = \xi_i$ and $Y = V_k$, we get $f_2 = 0$. Thus $\overline{M}(f_1, f_2, f_3)$ is an indefinite Kenmotsu space form satisfying (5.12).

(4) If U_i s is parallel with respect to ∇ , then we have (3.16) and (3.17). As $\alpha = 0$ and $\beta = 0$, we get $f_1 + 1 = f_2 = f_3$ by Theorem 5.2.

Applying ∇_Y to (3.17) and using the fact that $\nabla_X U_i = 0$, we obtain

$$(\nabla_X h_i^*)(Y, U_j) = 0.$$

Substituting this equation and (3.17 into (5.6) such that $PZ = U_j$ and using (5.15), (3.16) and the fact that $f_1 + 1 = f_2$, we have

$$f_2\{[v_j(Y)\eta_i(X) - v_j(X)\eta_i(Y)] + [v_i(Y)\eta_j(X) - v_i(X)\eta_j(Y)]\} = 0.$$

Taking $X = \xi_i$ and $Y = V_j$ to this equation, we get $f_2 = 0$. Thus $\overline{M}(f_1, f_2, f_3)$ is an indefinite Kenmotsu space form satisfying (5.12).

(5) If V_i s is parallel with respect to the connection ∇ , then we have (3.18) and (3.19). As $\alpha = 0$ and $\beta = -1$, we get $f_1 + 1 = f_2 = f_3$ by Theorem 5.2. From (3.9)₁ and (3.18), we have

$$h_i^*(Y, V_j) = 0.$$

Applying ∇_X to this equation and using the fact that $\nabla_X V_i = 0$, we have

$$(\nabla_X h_i^*)(Y, V_j) = 0.$$

Substituting these two equations into (5.6) such that $PZ = V_j$, we obtain

$$\sum_{k=1}^{r} \{h_{k}^{\ell}(X, V_{j})\eta_{i}(A_{N_{k}}Y) - h_{k}^{\ell}(Y, V_{j})\eta_{i}(A_{N_{k}}X)\} + \sum_{a=r+1}^{n} \epsilon_{a}\{\rho_{ia}(Y)h_{a}^{s}(X, V_{j}) - \rho_{ia}(X)h_{a}^{s}(Y, V_{j})\} = f_{2}\{u_{j}(Y)\eta_{i}(X) - u_{j}(X)\eta_{i}(Y) + 2\delta_{ij}\bar{g}(X, JY)\}.$$

Taking $X = \xi_i$ and $Y = U_j$ to this and using (3.18), (3.19) and the fact that $h_a^s(U_j, V_j) = \epsilon_a h_i^\ell(U_j, W_a) = 0$ due to (3.9)₄ and (3.18), we get $f_2 = 0$. Thus $\overline{M}(f_1, f_2, f_3)$ is an indefinite Kenmotsu space form satisfying (5.12).

Theorem 5.5. Let M be a Lie recurrent generic lightlike submanifold of an indefinite generalized Sasakian space form $\overline{M}(f_1, f_2, f_3)$ with a semi-symmetric

metric connection. Then $\overline{M}(f_1, f_2, f_3)$ is a space form with an indefinite β -Kenmotsu structure such that

$$f_1 = -\beta^2$$
, $f_2 = 0$, $f_3 = \zeta\beta$.

Proof. If M is Lie recurrent, then, by Theorem 4.4 we get $\alpha = 0$ and

$$h_i^{\ell}(X, U_j) = 0.$$
 (5.18)

Applying ∇_Y to (5.18) and using (3.7)₁ and (3.10), we have

$$(\nabla_X h_i^{\ell})(Y, U_j) = -h_i^{\ell}(Y, F(A_{N_j}X)) - \sum_{a=r+1}^n \rho_{ja}(X)h_i^{\ell}(Y, W_a).$$

Substituting the last two equations into (5.5) with $Z = U_i$, we have

$$\begin{split} h_i^\ell(X, F(A_{N_j}Y)) &- h_i^\ell(Y, F(A_{N_j}X)) \\ &+ \sum_{a=r+1}^n \{\rho_{ja}(Y)h_i^\ell(X, W_a) - \rho_{ja}(X)h_i^\ell(Y, W_a)\} \\ &+ \sum_{a=r+1}^n \{\phi_{ai}(X)h_a^s(Y, U_j) - \phi_{ai}(Y)h_a^s(X, U_j)\} \\ &= f_2\{u_i(Y)\eta_j(X) - u_i(X)\eta_j(Y) + 2\delta_{ij}\bar{g}(X, JY)\}. \end{split}$$

Taking $Y = U_i$ and $X = \xi_j$ to this and using $(2.14)_2$, $(3.9)_4$, $(4.13)_{1,3,4,5}$ and (5.18), we have $f_2 = 0$. As $f_2 = 0$, we have $f_1 = -\beta^2$ and $f_3 = \zeta\beta$.

References

- P. Alegre, D. E. Blair and A. Carriazo, *Generalized Sasakian space form*, Israel J. Math., 141 (2004), 157-183.
- [2] C. Călin, Contributions to geometry of CR-submanifold, Thesis, University of Iasi (Romania), (1998).
- [3] G. de Rham, Sur la réductibilité d'un espace de Riemannian, Comm. Math. Helv., 26 (1952), 328-344.
- K.L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- [5] K.L. Duggal and D.H. Jin, Generic lightlike submanifolds of an indefinite Sasakian manifold, Int. Elec. J. Geo., 5(1) (2012), 108-119.
- [6] D.H. Jin, Indefinite generalized Sasakian space form admitting a generic lightlike submanifold, Bull. Korean Math. Soc., 51(6) (2014), 1711-1726.
- [7] D.H. Jin, Generic lightlike submanifolds of an indefinite trans-Sasakian manifold of a quasi-constant curvature, Appl. Math. Sci., 9(60) (2015), 2985-2997.
- [8] D.H. Jin, Special lightlike hypersurfaces of indefinite Kaehler manifolds, Filomat, 30(7) (2016), 1919-1930.
- [9] D.H. Jin and J.W. Lee, Generic lightlike submanifolds of an indefinite cosymplectic manifold, Math. Probl. in Engin., 2011, Art ID 610986, 1-16.

- [10] D.H. Jin and J.W. Lee, Generic lightlike submanifolds of an indefinite Kaehler manifold, Inter. J. Pure and Appl. Math., 101(4) (2015), 543-560.
- [11] D.H. Jin and J.W. Lee, A semi-Riemannian manifold of quasi-constant curvature admits lightlike submanifolds, Inter. J. of Math. Analysis, 9(26) (2015), 1215-1229.
- [12] D.N. Kupeli, Singular Semi-Riemannian Geometry, Kluwer Academic, 366, 1996.
- [13] J.A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985), 187-193.
- [14] K. Yano, On semi-symmetric metric connection, Rev. Roum. Math. Pures et Appl., 15 (1970), 1579-1586.