
Nonlinear Functional Analysis and Applications
Vol. 22, No. 4 (2017), pp. 865-887

ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2017 Kyungnam University Press

KUPress

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN
INDEFINITE TRANS-SASAKIAN MANIFOLD WITH

A SEMI-SYMMETRIC METRIC CONNECTION

Dae Ho Jin

Department of Mathematics, Dongguk University
Gyeongju 780-714, Republic of Korea

e-mail: jindh@dongguk.ac.kr

Abstract. We study the geometry of generic lightlike submanifolds M of an indefinite

trans-Sasakian manifold M̄ with a semi-symmetric metric connection subject such that the

characteristic vector field ζ of M̄ is identical with structure vector field of M̄ and ζ is

tangent to M . Under the same conditions, we also characterize the geometry of generic

lightlike submanifolds of an indefinite generalized Sasakian space form M̄(f1, f2, f2).

1. Introduction

A linear connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) is said to be
a semi-symmetric connection if its torsion tensor T̄ satisfies

T̄ (X̄, Ȳ ) = θ(Ȳ )X̄ − θ(X̄)Ȳ , (1.1)

where θ is a 1-form associated with a smooth unit vector field ζ, which is
called the characteristic vector field, by θ(X̄) = ḡ(X̄, ζ). Moreover, if this
connection ∇̄ is a metric connection, i.e., it saisfies ∇̄ḡ = 0, then ∇̄ is called
a semi-symmetric metric connection. The notion of semi-symmetric metric
connection on a Riemannian manifold was introduced by Yano [14]. In the
followings, we denote by X̄, Ȳ and Z̄ the smooth vector fields on M̄ .
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Let ∇̃ be the Levi-Civita connection of the semi-Riemannian manifold
(M̄, ḡ) with respect to the metric ḡ. It is known that a linear connection
∇̄ on M̄ is a semi-symmetric metric connection if and only if it satisfies

∇̄X̄ Ȳ = ∇̃X̄ Ȳ + θ(Ȳ )X̄ − ḡ(X̄, Ȳ )ζ. (1.2)

A lightlike submanifold M of an indefinite almost contact manifold M̄ is
called generic if there exists a screen distribution S(TM) of M such that

J(S(TM)⊥) ⊂ S(TM), (1.3)

where S(TM)⊥ is the orthogonal complement of S(TM) in the tangent bun-
dle TM̄ of M̄ , that is, TM̄ = S(TM) ⊕orth S(TM)⊥. The notion of generic
lightlike submanifolds was introduced by Jin-Lee [9] and later, studied by
Duggal-Jin [5], Jin [6, 7] and Jin-Lee [10]. The geometry of generic lightlike
submanifolds is an extension of that of lightlike hypersurface and half light-
like submanifold of codimension 2. Much of its theory will be immediately
generalized in a formal way to general lightlike submanifolds.

The notion of a trans-Sasakian manifold of type (α, β) was introduced by
Oubina [13]. Sasakian, Kenmotsu and cosymplectic manifolds are important
kinds of the trans-Sasakian manifold such that α and β satisfy

α = ε, β = 0; α = 0, β = ε; α = β = 0,

respectively, where ε = ±1. If a trans-Sasakian manifold is a semi-Riemannian
manifold, then it is called an indefinite trans-Sasakian manifold.

In this paper, we study the geometry of generic lightlike submanifolds of an
indefinite trans-Sasakian manifold (M̄, J, ζ, θ, ḡ) with a semi-symmetric metric
connection ∇̄ in which the characteristic vector field ζ of M̄ is identical with
the structure vector field ζ of (M̄, J, ζ, θ, ḡ) and ζ is tangent to M . Under
the same conditions, we also characterize generic lightlike submanifolds of an
indefinite generalized Sasakian space form M̄(f1, f2, f3).

2. Semi-symmetric metric connections

An odd-dimensional semi-Riemannian manifold (M̄, ḡ) is called an indefinite
almost contact metric manifold if there exists a set {J, ζ, θ, ḡ}, where J is a
(1, 1)-type tensor field, ζ is a vector field and θ is a 1-form such that

J2X̄ = −X̄ + θ(X̄)ζ, ḡ(JX̄, JȲ ) = ḡ(X̄, Ȳ )− εθ(X̄)θ(Ȳ ), θ(ζ) = 1, (2.1)

where ε = 1 or −1 according as ζ is spacelike or timelike, respectively. The
set {J, ζ, θ, ḡ} is called an indefinite almost contact metric structure.

From (2.1), we show that

Jζ = 0, θ ◦ J = 0, θ(X̄) = εḡ(X̄, ζ), ḡ(JX̄, Ȳ ) = −ḡ(X̄, JȲ ).
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In the entire discussion of this article, we shall assume that the structure
vector field ζ is a spacelike one, i.e., ε = 1, without loss of generality.

Definition 2.1. An indefinite almost contact metric manifold (M̄, ḡ) is said to
be an indefinite trans-Sasakian manifold [13] if, for the Levi-Civita connection

∇̃, there exist two smooth functions α and β such that

(∇̃X̄J)Ȳ = α{ḡ(X̄, Ȳ )ζ − θ(Ȳ )X̄}+ β{ḡ(JX̄, Ȳ )ζ − θ(Ȳ )JX̄}.

{J, ζ, θ, ḡ} is called an indefinite trans-Sasakian structure, of type (α, β).

Let ∇̄ be a semi-symmetric metric connection on M̄ = (M̄, J, ζ, θ, ḡ). By
using (1.2), (2.1) and the facts that Jζ = 0 and θ ◦ J = 0, we see that

(∇̄X̄J)Ȳ = α{ḡ(X̄, Ȳ )ζ − θ(Ȳ )X̄} (2.2)

+ (β + 1){ḡ(JX̄, Ȳ )ζ − θ(Ȳ )JX̄}.

Replacing Ȳ by ζ to (2.2) and using Jζ = 0 and θ(∇̄X̄ζ) = 0, we obtain

∇̄X̄ζ = −αJX̄ + (β + 1){X̄ − θ(X̄)ζ}. (2.3)

Let (M, g) be an m-dimensional lightlike submanifold of an indefinite trans-
Sasakian manifold M̄ of dimension (m + n). Then the radical distribution
Rad(TM) = TM ∩ TM⊥ of M is a subbundle of the tangent bundle TM
and the normal bundle TM⊥, of rank r (1 ≤ r ≤ min{m, n}). We say that
M is r-lightlike submanifold [4] if 1 ≤ r < min{m, n}. In the sequel, by
saying that M is a lightlike submanifold we shall mean that it is an r-lightlike
submanifold. For an r-lightlike submanifoldM , there exist two complementary
non-degenerate distributions S(TM) and S(TM⊥) of Rad(TM) in TM and
TM⊥, respectively, which are called the screen distribution and the co-screen
distribution of M , such that

TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where ⊕orth denotes the orthogonal direct sum. Denote by F (M) the algebra
of smooth functions on M and by Γ(E) the F (M) module of smooth sections
of a vector bundle E over M . Also denote by (2.1)i the i-th equation of (2.1).
We use the same notations for any others. Let X, Y, Z and W be the vector
fields on M , unless otherwise specified. We use the following range of indices:

i, j, k, ... ∈ {1, ... , r}, a, b, c, ... ∈ {r + 1, ... , n}.

Let tr(TM) and ltr(TM) be complementary vector bundles to TM in TM̄|M
and TM⊥ in S(TM)⊥, respectively, and let {N1, · · · , Nr} be a null basis of
ltr(TM)|U , where U is a coordinate neighborhood of M , such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0,
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where {ξ1, · · · , ξr} is a null basis of Rad(TM)|U . Then we have

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).

We call tr(TM), ltr(TM) and Ni the transversal vector bundle, the light-
like transversal vector bundle and the null transversal vector fields of M with
respect to the screen distribution S(TM), respectively. Hence the local quasi-
orthonormal field of frames on M̄ along M is given by

{ξ1, · · · , ξr , N1, · · · , Nr , Fr+1, · · · , Fm , Er+1, · · · , En},

where {Fr+1, · · · , Fm} and {Er+1, · · · , En} are orthonormal bases of S(TM)
and S(TM⊥), respectively. Denote εa = ḡ(Ea, Ea). Then εaδab = ḡ(Ea, Eb).

Let P be the projection morphism of TM on S(TM). Then the local
Gauss-Weingarten formulae of M and S(TM) are given respectively by

∇̄XY = ∇XY +
r∑
i=1

h`i(X,Y )Ni +
n∑

a=r+1

hsa(X,Y )Ea, (2.4)

∇̄XNi = −ANi
X +

r∑
j=1

τij(X)Nj +
n∑

a=r+1

ρia(X)Ea, (2.5)

∇̄XEa = −AEa
X +

r∑
i=1

φai(X)Ni +

n∑
b=r+1

σab(X)Eb, (2.6)

∇XPY = ∇∗XPY +
r∑
i=1

h∗i (X,PY )ξi, (2.7)

∇Xξi = −A∗ξiX −
r∑
j=1

τji(X)ξj , (2.8)

where ∇ and ∇∗ are induced linear connections on TM and S(TM), respec-
tively, h`i and hsa are called the local second fundamental forms on TM , h∗i are
called the local second fundamental forms on S(TM). ANi

, AEa
and A∗ξi are

called the shape operators, and τij , ρia, φai and σab are 1-forms on TM .
The connection ∇ is a semi-symmetric non-metric connection and satisfy

(∇Xg)(Y,Z) =
r∑
i=1

{h`i(X,Y )ηi(Z) + h`i(X,Z)ηi(Y )}, (2.9)

T (X,Y ) = θ(Y )X − θ(X)Y, (2.10)

and the results: h`i and hsa are symmetric, where ηi’s are 1-forms such that

ηi(X) = ḡ(X,Ni).
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From the facts that h`i(X,Y ) = ḡ(∇̄XY, ξi) and εah
s
a(X,Y ) = ḡ(∇̄XY,Ea),

we know that h`i and hsa are independent of the choice of S(TM). The local
second fundamental forms are related to their shape operators by

h`i(X,Y ) = g(A∗ξiX,Y )−
r∑

k=1

h`k(X, ξi)ηk(Y ), (2.11)

εah
s
a(X,Y ) = g(AEa

X,Y )−
r∑

k=1

φak(X)ηk(Y ), (2.12)

h∗i (X,PY ) = g(ANi
X,PY ). (2.13)

Applying ∇̄X to g(ξi, ξj) = 0, ḡ(ξi, Ea) = 0, ḡ(Ni, Nj) = 0, ḡ(Ni, Ea) = 0 and
ḡ(Ea, Eb) = εδab by turns and using (2.4)∼ (2.6), we obtain

h`i(X, ξj) + h`j(X, ξi) = 0, hsa(X, ξi) = −εaφai(X),

ηj(ANi
X) + ηi(ANj

X) = 0, ηi(AEa
X) = εaρia(X), (2.14)

εbσab + εaσba = 0; h`i(X, ξi) = 0, h`i(ξj , ξk) = 0, A∗ξiξi = 0.

Definition 2.2. We say that a lightlike submanifold M of M̄ is

(1) irrotational [12] if ∇̄Xξi ∈ Γ(TM) for all i ∈ {1, · · · , r},
(2) solenoidal [11] if AEa

and ANi
are S(TM)-valued for all α and i.

Remark 2.3. From (2.4) and (2.14)2, the item (1) is equivalent to

h`j(X, ξi) = 0, hsa(X, ξi) = φai(X) = 0. (2.15)

By using (2.14)4, the item (2) is equivalent to

ηj(ANi
X) = 0, ρia(X) = ηi(AEa

X) = 0. (2.16)

3. Generic lightlike submanifolds

Let M be a generic lightlike submanifold of M̄ . From (1.3) we show that
J(Rad(TM)), J(ltr(TM)) and J(S(TM⊥)) are subbundles of S(TM). Now
we shall assume that ζ is tangent to M . Cǎlin [2] proved that if ζ is tangent
to M , then it belongs to S(TM) which we assume in this paper. Then there
exist two non-degenerate almost complex distributions Ho and H with respect
to J , that is, J(Ho) = Ho and J(H) = H, such that

S(TM) = {J(Rad(TM))⊕ J(ltr(TM))} ⊕orth J(S(TM⊥))⊕orth Ho,

H = Rad(TM)⊕orth J(Rad(TM))⊕orth Ho.

In this case, the tangent bundle TM of M is decomposed as follow:

TM = H ⊕ J(ltr(TM))⊕orth J(S(TM⊥)). (3.1)
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Consider 2r local null vector fields Ui and Vi, (n − r) local non-null unit
vector fields Wa on S(TM) and their 1-forms ui, vi and wa defined by

Ui = −JNi, Vi = −Jξi, Wa = −JEa, (3.2)

ui(X) = g(X,Vi), vi(X) = g(X,Ui), wa(X) = εag(X,Wa). (3.3)

Denote by S the projection morphism of TM on H and by F the tensor field
of type (1, 1) globally defined on M by F = J ◦ S. Then JX is expressed as

JX = FX +
r∑
i=1

ui(X)Ni +
n∑

a=r+1

wa(X)Ea. (3.4)

Applying J to (3.4) and using (2.1)1 and (3.2), we have

F 2X = −X + θ(X)ζ +

r∑
i=1

ui(X)Ui +

n∑
a=r+1

wa(X)Wa. (3.5)

We say that the tensor field F is the structure tensor field of M and the vector
fields Ui and Wa are the structure vector fields of M .

Replacing Y by ζ to (2.4) and using (2.3) and (3.4), we have

∇Xζ = −αFX + (β + 1){X − θ(X)ζ}, (3.6)

h`i(X, ζ) = −αui(X), hsa(X, ζ) = −αwa(X). (3.7)

Applying ∇̄X to ḡ(ζ,Ni) = 0 and using (2.3), (2.5) and (2.13), we get

h∗i (X, ζ) = −αvi(X) + (β + 1)ηi(X). (3.8)

Applying ∇̄X to (3.2), (3.3) and (3.4) by turns and using (2.2), (2.4)∼ (2.8),
(2.11)∼ (2.13) and (3.2)∼ (3.4), we have

h`j(X,Ui) = h∗i (X,Vj), εah
∗
i (X,Wa) = hsa(X,Ui),

h`j(X,Vi) = h`i(X,Vj), εah
`
i(X,Wa) = hsa(X,Vi), (3.9)

εbh
s
b(X,Wa) = εah

s
a(X,Wb),

∇XUi = F (ANi
X) +

r∑
j=1

τij(X)Uj +
n∑

a=r+1

ρia(X)Wa (3.10)

− {αηi(X) + (β + 1)vi(X)}ζ,

∇XVi = F (A∗ξiX)−
r∑
j=1

τji(X)Vj +
r∑
j=1

h`j(X, ξi)Uj (3.11)

−
n∑

a=r+1

εaφai(X)Wa − (β + 1)ui(X)ζ,
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∇XWa = F (AEa
X) +

r∑
i=1

φai(X)Ui +

n∑
b=r+1

σab(X)Wb (3.12)

− εa(β + 1)wa(X)ζ,

(∇XF )(Y ) =
r∑
i=1

ui(Y )ANi
X +

n∑
a=r+1

wa(Y )AEa
X (3.13)

−
r∑
i=1

h`i(X,Y )Ui −
n∑

a=r+1

hsa(X,Y )Wa

+ α{g(X,Y )ζ − θ(Y )X}
+ (β + 1){ḡ(JX, Y )ζ − θ(Y )FX},

(∇Xui)(Y ) = −
r∑
j=1

uj(Y )τji(X)−
n∑

a=r+1

wa(Y )φai(X) (3.14)

− h`i(X,FY )− (β + 1)θ(Y )ui(X),

(∇Xvi)(Y ) =
r∑
j=1

vj(Y )τij(X) +
n∑

a=r+1

εawa(Y )ρia(X) (3.15)

−
r∑
j=1

uj(Y )ηj(ANi
X)− g(ANi

X,FY )

− {αηi(X) + (β + 1)vi(X)}θ(Y ).

Theorem 3.1. Let M be a generic lightlike submanifold of an indefinite trans-
Sasakian manifold M̄ with a semi-symmetric metric connection. If Uis are
parallel with respect to the connection ∇, then τij = 0, M is solenoidal and M̄
is an indefinite Kenmotsu manifold such that α = 0 and β = −1.

Proof. Assume that Uis are parallel with respect to ∇. Taking the scalar
product with ζ, Vj , Uj , Wa and Nj to (3.10) by turns, we get

α = 0, β = −1; τij = 0, ηj(ANi
X) = 0, ρia = 0, (3.16)

h∗i (X,Uj) = 0, (3.17)

respectively. As α = 0 and β = −1, M̄ is an indefinite Kenmotsu manifold.
As ηj(ANi

X) = 0 and ρia = 0, M is solenoidal. �

Theorem 3.2. Let M be a generic lightlike submanifold of an indefinite trans-
Sasakian manifold M̄ with a semi-symmetric metric connection. If Vis are
parallel with respect to the connection ∇, then τij = 0, M is irrotational and
M̄ is an indefinite Kenmotsu manifold such that α = 0 and β = −1.
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Proof. Assume that Vis are parallel with respect to ∇. Taking the scalar
product with Vj , Wa, Uj , ζ and Nj to (3.11) by turns, we obtain

h`j(X, ξi) = 0, φai = 0, τij = 0, β = −1,

h`i(X,Uk) = 0, (3.18)

respectively. As h`j(X, ξi) = 0 and φai = 0, M is irrotational. Replacing X by

ζ to (3.18) and using (3.7)1, we have α = 0. Thus

α = 0, β = −1, τij = 0, h`j(X, ξi) = 0, φai = 0. (3.19)

As α = 0 and β = −1, M̄ is an indefinite Kenmotsu manifold. �

4. Recurrent and Lie recurrent submanifolds

Definition 4.1. ([8]) The structure tensor field F of M is said to be recurrent
if there exists a 1-form $ on M such that

(∇XF )Y = $(X)FY.

A lightlike submanifold M of an indefinite trans-Sasakian manifold M̄ is called
recurrent if it admits a recurrent structure tensor field F .

Theorem 4.2. Let M be a recurrent generic lightlike submanifold of an in-
definite trans-Sasakian manifold M̄ with a semi-symmetric metric connection.
Then we have the following results:

(1) M̄ is an indefinite Kenmotsu manifold, i.e., α = 0 and β = −1,
(2) F is parallel with respect to the induced connection ∇ on M ,
(3) M is irrotational and solenoidal,
(4) H, J(ltr(TM)) and J(S(TM⊥)) are parallel distributions on M ,
(5) M is locally a product manifold Mr ×Mn−r ×M ], where Mr, Mn−r

and M ] are leaves of J(ltr(TM)), J(S(TM⊥)) and H, respectively.

Proof. From the above definition and (3.13), we obtain

$(X)FY =
r∑
i=1

ui(Y )ANi
X +

n∑
a=r+1

wa(Y )AEa
X (4.1)

−
r∑
i=1

h`i(X,Y )Ui −
n∑

a=r+1

hsa(X,Y )Wa

+ α{g(X,Y )ζ − θ(Y )X}
+ (β + 1){ḡ(JX, Y )ζ − θ(Y )FX}.

Replacing Y by ζ to (4.1) and using (2.1), (3.5) and (3.7), we get

αF 2X − (β + 1)FX = 0.
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Taking X = ξi to this and using the fact that Fξi = −Vi, we have

−αξi + (β + 1)Vi = 0.

Taking the scalar product with Ni and Ui to this by turns, we obtain

α = 0, β = −1. (4.2)

Therefore, M̄ is an indefinite Kenmotsu manifold.

(2) Replacing Y by ξi to (4.1) and using (4.2), we have

$(X)Vi =

r∑
j=1

h`j(X, ξi)Uj +

n∑
a=r+1

hsa(X, ξi)Wa.

Taking the scalar product with Ui, Vk and Wb to this by turns, we get

$ = 0, h`k(X, ξi) = 0, hsb(X, ξi) = 0. (4.3)

As $ = 0, F is parallel with respect to the induced connection ∇.

(3) From (4.3)2, 3, we see that M is irrotational.
Taking thescalar product with Nj to (4.1), we obtain

r∑
j=1

uj(Y )ḡ(ANj
X,Ni) +

n∑
a=r+1

wa(Y )ḡ(AEa
X,Ni) = 0.

Taking Y = Uk and Y = Wb to this equation by turns, we have

ḡ(ANk
X,Ni) = 0, ḡ(AEb

X,Ni) = 0. (4.4)

Thus, by Remark 2.3, we see that M is solenoidal.

(4) Taking the scalar product with Vi and Wa to (4.1) by turns, we obtain

h`i(X,Y ) =
r∑

k=1

uk(Y )ui(ANk
X) +

n∑
a=r+1

wa(Y )ui(AEa
X),

hsa(X,Y ) =
r∑
i=1

ui(Y )wa(ANi
X) +

n∑
b=r+1

wb(Y )wa(AEb
X).

Taking Y = V and Y = FZo, Zo ∈ Γ(Ho) to these equations by turns and
using the results: ui(FZo) = wa(FZo) = 0 as FZo = JZo ∈ Γ(Ho), we have

h`i(X,Vj) = 0, h`i(X,FZo) = 0, hsa(X,Vj) = 0, hsa(X,FZo) = 0. (4.5)

In general, by using (2.1), (2.8), (2.11), (3.4), (3.11) and (3.12), we derive

g(∇Xξi, Vj) = −h`i(X,Vj), g(∇Xξi,Wa) = −h`i(X,Wa),

g(∇XVi, Vj) = h`j(X, ξi), g(∇XVi,Wa) = −φai(X),

g(∇XZo, Vi) = b`i(X,FZo), g(∇XZo,Wa) = bsa(X,FZo).
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From these equations and (3.9)4, (4.3) and (4.5), we see that

∇XY ∈ Γ(H), ∀X ∈ Γ(TM), ∀Y ∈ Γ(H).

It follows that H is a parallel distribution on M .
Taking Y = Ui and Y = Wa to (4.1) by turns and using (4.2), we have

ANi
X =

r∑
j=1

h`j(X,Ui)Uj +

n∑
a=r+1

hsa(X,Ui)Wa. (4.6)

AEa
X =

r∑
i=1

h`j(X,Wa)Ui +

n∑
b=r+1

hsb(X,Wa)Wb. (4.7)

Applying F to (4.6) and (4.7) by turns and using FUi = FWa = 0, we get

F (ANi
X) = 0, F (AEa

X) = 0.

Using this result and (4.2)∼(4.4), Eq.s (3.10) and (3.12) are reduced to

∇XUi =
r∑
j=1

τij(X)Uj , ∇XWa =
n∑

b=r+1

σab(X)Wb. (4.8)

Thus J(ltr(TM)) and J(S(TM⊥)) are also parallel distributions on M .

(5) As H, J(ltr(TM)) and J(S(TM⊥)) are parallel distributions and satisfy
the decomposition form (3.1), by the de Rham’s decomposition theorem [3],
M is locally a product manifold Mr ×Mn−r ×M ], where Mr, Mn−r and M ]

are leaves of J(ltr(TM)), J(S(TM⊥)) and H, respectively. �

Definition 4.3. ([8]) The structure tensor field F of M is said to be Lie
recurrent if there exists a 1-form ϑ on M such that

(LXF )Y = ϑ(X)FY,

where LX denotes the Lie derivative on M with respect to X. In case ϑ = 0,
we say that F is Lie parallel. A lightlike submanifold M is called Lie recurrent
if it admits a Lie recurrent structure tensor field F .

Theorem 4.4. Let M be a Lie recurrent generic lightlike submanifold of an
indefinite trans-Sasakian manifold M̄ with a semi-symmetric metric connec-
tion. Then we have the following results:

(1) α = 0 and M̄ is an indefinite β-Kenmotsu manifold,
(2) F is Lie parallel,
(3) τij and ρia are satisfied τij ◦ F = 0 and ρia ◦ F = 0. Moreover,

τij(X) =
r∑

k=1

uk(X)g(ANk
Vj , Ni)− βδijθ(X).
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Proof. (1) Using (2.10), (3.13) and the fact that θ ◦ F = 0, we get

ϑ(X)FY = −∇FYX + F∇YX (4.9)

+
r∑
i=1

ui(Y )ANi
X +

n∑
a=r+1

wa(Y )AEa
X

−
r∑
i=1

h`i(X,Y )Ui −
n∑

a=r+1

hsa(X,Y )Wa

+ α{g(X,Y )ζ − θ(Y )X}
+ (β + 1)ḡ(JX, Y )ζ − βθ(Y )FX.

Taking Y = ξj and Y = Vj to (4.9) by turns, we have

−ϑ(X)Vj = ∇VjX + F∇ξjX + (β + 1)uj(X)ζ (4.10)

−
r∑
i=1

h`i(X, ξj)Ui −
n∑

a=r+1

hsa(X, ξj)Wa,

ϑ(X)ξj = −∇ξjX + F∇VjX + αuj(X)ζ (4.11)

−
r∑
i=1

h`i(X,Vj)Ui −
n∑

a=r+1

hsa(X,Vj)Wa.

Taking the scalar product with ζ to (4.11) such that X = Uj and using (3.10),
we obtain α = 0. Thus M̄ is an indefinite β-Kenmotsu manifold.

(2) Taking the product with Ui to (4.10) and Ni to (4.11), we obtain

−δijϑ(X) = g(∇VjX,Ui)− ḡ(∇ξjX,Ni), (4.12)

δijϑ(X) = g(∇VjX,Ui)− ḡ(∇ξjX,Ni),

respectively. From these equations, we get ϑ = 0. Thus F is Lie parallel.

(3) Taking the scalar product with Ni to (4.10) such that X = Wa and
using (2.12), (2.14)4 and (3.12), we get hsa(Ui, Vj) = ρia(ξj). Also, taking the
scalar product with Wa to (4.11) such that X = Ui and using (3.10), we have
hsa(Ui, Vj) = −ρia(ξj). Thus ρia(ξj) = 0 and hsa(Ui, Vj) = 0.

Taking the scalar product with Ui to (4.10) such that X = Wa and using
(2.14)2, 4 and (3.12), we get εaρia(Vj) = φaj(Ui). Also, taking the scalar prod-
uct with Wa to (4.10) such that X = Ui and using (2.14)2 and (3.10), we get
εaρia(Vj) = −φaj(Ui). Thus ρia(Vj) = 0 and φaj(Ui) = 0.

Taking the scalar product with Vi to (4.10) such that X = Wa and using
(2.14)2, (3.9)4 and (3.12), we obtain φai(Vj) = −φaj(Vi). Also, taking the
scalar product with Wa to (4.10) such that X = Vi and using (2.14)2 and
(3.11), we have φai(Vj) = φaj(Vi). Thus we obtain φai(Vj) = 0.
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Taking the scalar product with Wa to (4.10) such that X = ξi and us-
ing (2.8), (2.11) and (2.14)2, we get h`i(Vj ,Wa) = φai(ξj). Also, taking the
scalar product with Vi to (4.11) such that X = Wa and using (3.12), we have
h`i(Vj ,Wa) = −φai(ξj). Thus φai(ξj) = 0 and h`i(Vj ,Wa) = 0.

Summarizing the above results, we obtain

ρia(ξj) = 0, ρia(Vj) = 0, φai(Uj) = 0, φai(Vj) = 0, φai(ξj) = 0, (4.13)

hsa(Ui, Vj) = h`j(Ui,Wa) = 0, h`i(Vj ,Wa) = hsa(Vj , Vi) = 0.

Taking the scalar product with Ni to (4.9) and using (2.14)4, we have

− ḡ(∇FYX,Ni) + g(∇YX,Ui)− βθ(Y )vi(X) (4.14)

+
r∑

k=1

uk(Y )ḡ(ANk
X,Ni) +

n∑
a=r+1

εawa(Y )ρia(X) = 0.

Taking X = Vj and X = ξj by turns and using (2.8) and (3.11), we get

h`j(FX,Ui) + τij(X) + βδijθ(X) =

r∑
k=1

uk(X)ḡ(ANk
Vj , Ni), (4.15)

h`j(X,Ui) =

r∑
k=1

uk(X)ḡ(ANk
ξj , Ni) + τij(FX), (4.16)

due to (4.13)1, 2. Taking X = Uk to (4.16), we have

h∗i (Uk, Vj) = h`j(Uk, Ui) = ḡ(ANk
ξj , Ni). (4.17)

Replacing X by Ui to (4.9) and using (2.13), (3.3), (3.5), (3.8), (3.9)1, 2,
(3.10) and the fact that α = 0, we obtain

r∑
k=1

uk(Y )ANk
Ui +

n∑
a=r+1

wa(Y )AEa
Ui −ANi

Y + (β + 1)ηi(Y )ζ (4.18)

− F (ANi
FY )−

r∑
j=1

τij(FY )Uj −
n∑

a=r+1

ρia(FY )Wa = 0.

Taking the scalar product with Vj to (4.18) and using (2.12), (2.13), (2.14)3,
(3.9)1 and (4.17), we get

h`j(X,Ui) = −
r∑

k=1

uk(X)ḡ(ANk
ξj , Ni)− τij(FX).

Comparing this equation with (4.16), we obtain

τij(FX) +

r∑
k=1

uk(X)ḡ(ANk
ξj , Ni) = 0.
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Replacing X by Uh to this equation, we have ḡ(ANk
ξj , Ni) = 0. Thus

τij(FX) = 0, h`j(X,Ui) = 0. (4.19)

Taking X = FY to (4.19)2, we get h`j(FX,Ui) = 0. Thus (4.15) reduces

τij(X) =

r∑
k=1

uk(X)ḡ(ANk
Vj , Ni)− βδijθ(X). (4.20)

Replacing Y by Wa to (4.18), we obtain ANi
Wa = AEa

Ui. Taking the scalar

product with Uj to this and using (2.12), (2.13) and (3.9)2, we have

h∗i (Wa, Uj) = εah
s
a(Ui, Uj) = εah

s
a(Uj , Ui) = h∗i (Uj ,Wa). (4.21)

Taking the scalar product with Wa to (4.18) and using (2.12), we have

εaρia(FY ) = −h∗i (Y,Wa) +
r∑

k=1

uk(Y )h∗k(Ui,Wa) +
n∑

b=r+1

εbwb(Y )hsb(Ui,Wa).

Taking the scalar product with Ui to (4.9) and then, taking X = Wa and using
(2.12), (2.13), (2.14)4, (3.9)2, (3.12) and (4.21), we obtain

εaρia(FY ) = h∗i (Y,Wa)−
r∑

k=1

uk(Y )h∗k(Ui,Wa)−
n∑

b=r+1

εbwb(Y )hsb(Ui,Wa).

Comparing the last two equations, we obtain ρia(FY ) = 0. �

5. Indefinite generalized Sasakian space forms

Definition 5.1. An indefinite trans-Sasakian manifold M̄ is called indefinite
generalized Sasakian space form and denoted by M̄(f1, f2, f3) if there exist
three smooth functions f1, f2 and f3 on M̄ such that

R̃(X̄, Ȳ )Z̄ = f1{ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ } (5.1)

+ f2{ḡ(X̄, JZ̄)JȲ − ḡ(Ȳ , JZ̄)JX̄ + 2ḡ(X̄, JȲ )JZ̄}
+ f3{θ(X̄)θ(Z̄)Ȳ − θ(Ȳ )θ(Z̄)X̄

+ ḡ(X̄, Z̄)θ(Ȳ )ζ − ḡ(Ȳ , Z̄)θ(X̄)ζ},

where R̃ denote the curvature tensor of the Levi-Civita connection ∇̃ on M̄ .

Generalized Sasakian space form was introduced by Alegre et. al. [1]. Sasakian
space form, Kenmotsu space form and cosymplectic space form are important
kinds of generalized Sasakian space forms such that

f1 = c+3
4 , f2 = f3 = c−1

4 ; f1 = c−3
4 , f2 = f3 = c+1

4 ; f1 = f2 = f3 = c
4
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respectively, where c is a constant J-sectional curvature of each space forms.

By directed calculations from (1.1) and (1.2), we see that

R̄(X̄, Ȳ )Z̄ = R̃(X̄, Ȳ )Z̄ + ḡ(X̄, Z̄)∇̄Ȳ ζ − ḡ(Ȳ , Z̄)∇̄X̄ζ (5.2)

+ {(∇̄X̄θ)(Z̄)− ḡ(X̄, Z̄)}Ȳ − {(∇̄Ȳ θ)(Z̄)− ḡ(Ȳ , Z̄)}X̄,

where R̄ is the curvature tensor of the semi-symmetric metric connection ∇̄.

Denote by R and R∗ the curvature tensors of the induced linear connec-
tion ∇ and ∇∗ on M and S(TM) respectively. Using the Gauss-Weingarten
formulae, we obtain Gauss equations for M and S(TM), respectively:

R̄(X,Y )Z = R(X,Y )Z +
r∑
i=1

{h`i(X,Z)ANi
Y − h`i(Y, Z)ANi

X}

+
n∑

a=r+1

{hsa(X,Z)AEa
Y − hsa(Y, Z)AEa

X}

+

r∑
i=1

{(∇Xh`i)(Y,Z)− (∇Y h`i)(X,Z)

+
r∑
j=1

[τji(X)h`j(Y, Z)− τji(Y )h`j(X,Z)]

+

n∑
a=r+1

[φai(X)hsa(Y,Z)− φai(Y )hsa(X,Z)]

− θ(X)h`i(Y,Z) + θ(Y )h`i(X,Z)}Ni (5.3)

+
n∑

a=r+1

{(∇Xhsa)(Y,Z)− (∇Y hsa)(X,Z)

+
r∑
i=1

[ρia(X)h`i(Y,Z)− ρia(Y )h`i(X,Z)]

+
n∑

b=r+1

[σba(X)hsb(Y,Z)− σba(Y )hsb(X,Z)]

− θ(X)hsa(Y, Z) + θ(Y )hsa(X,Z)}Ea

and

R(X,Y )PZ = R∗(X,Y )PZ +

r∑
i=1

{h∗i (X,PZ)A∗ξiY − h
∗
i (Y, PZ)AξiX}
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+

r∑
i=1

{(∇Xh∗i )(Y, PZ)− (∇Y h∗i )(X,PZ)

+

r∑
k=1

[τik(Y )h∗k(X,PZ)− τik(X)h∗k(Y, PZ)] (5.4)

− θ(X)h∗i (Y, PZ) + θ(Y )h∗i (X,PZ)}ξi.

Taking the scalar product with ξi and Ni to (5.2) by turns and then, sub-
stituting (5.3) and (5.1) and using (2.3), (2.14)4 and (5.4), we get

(∇Xh`i)(Y,Z)− (∇Y h`i)(X,Z)

+
r∑
j=1

{τji(X)h`j(Y,Z)− τji(Y )h`j(X,Z)}

+
n∑

a=r+1

{φai(X)hsa(Y,Z)− φai(Y )hsa(X,Z)} (5.5)

− θ(X)h`i(Y,Z) + θ(Y )h`i(X,Z)

+ α{ui(Y )g(X,Z)− ui(X)g(Y, Z)}
= f2{ui(Y )ḡ(X,JZ)− ui(X)ḡ(Y, JZ) + 2ui(Z)ḡ(X, JY )}

and

(∇Xh∗i )(Y, PZ)− (∇Y h∗i )(X, PZ)

+

r∑
j=1

{τij(Y )h∗j (X, PZ)− τij(X)h∗j (Y, PZ)}

+
r∑
j=1

{h`j(X, PZ)ηi(ANj
Y )− h`j(Y, PZ)ηi(ANj

X)}

+
n∑

a=r+1

εa{ρia(Y )hsa(X, PZ)− ρia(X)hsa(Y, PZ)}

− θ(X)h∗i (Y, PZ) + θ(Y )h∗i (X,PZ)

− {(∇̄Xθ)(PZ) + βg(X,PZ)}ηi(Y ) (5.6)

+ {(∇̄Y θ)(PZ) + βg(Y, PZ)}ηi(X)

+ α{vi(Y )g(X,PZ)− vi(X)g(Y, PZ)}
= f1{g(Y, PZ)ηi(X)− g(X,PZ)ηi(Y )}

+ f2{vi(Y )ḡ(X, JPZ)− vi(X)ḡ(Y, JPZ) + 2vi(PZ)ḡ(X, JY )}
+ f3{θ(X)ηi(Y )− θ(Y )ηi(X)}θ(PZ).
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Theorem 5.2. Let M be a generic lightlike submanifold of an indefinite gen-
eralized Sasakian space form M̄(f1, f2, f3) with a semi-symmetric metric con-
nection. Then the functions α, β, f1, f2 and f3 satisfy

(1) α is a constant on M ,
(2) αβ = 0,
(3) f1 − f2 = α2 − β2 and f1 − f3 = α2 − β2 − ζβ.

Proof. Applying ∇X to h`j(Y,Ui) = h∗i (Y, Vj) and using (2.1), (2.11), (2.13),

(3.2), (3.3), (3.4), (3.7)1, (3.8), (3.9)1, 2, 4, (3.10) and (3.11), we have

(∇Xh`j)(Y,Ui) = (∇Xh∗i )(Y, Vj)−
r∑

k=1

{τkj(X)h`k(Y,Ui) + τik(X)h∗k(Y, Vj)}

−
n∑

a=r+1

{φaj(X)hsa(Y, Ui) + εaρia(X)hsa(Y, Vj)}

+

r∑
k=1

{h∗i (Y, Uk)h`k(X, ξj) + h∗i (X,Uk)h
`
k(Y, ξj)}

−g(A∗ξjX,F (ANi
Y ))− g(A∗ξjY, F (ANi

X))

−
r∑

k=1

h`j(X,Vk)ηk(ANi
Y )

+α(β + 1){uj(X)vi(Y )− uj(Y )vi(X)}
−α2uj(Y )ηi(X) + (β + 1)2uj(X)ηi(Y ).

Substituting this into (5.5) such that replace i by j and Z by Ui, we have

(∇Xh∗i )(Y, Vj)− (∇Y h∗i )(X,Vj)

−
r∑

k=1

{τik(X)h∗k(Y, Vj)− τik(Y )h∗k(X,Vj)}

−
n∑

a=r+1

εa{hsa(Y, Vj)ρia(X)− hsa(X,Vj)ρia(Y )}

−
r∑

k=1

{h`k(Y, Vj)ηi(ANk
X)− h`k(X,Vj)ηi(ANk

Y )} (5.7)

− θ(X)h∗i (Y, Vj) + θ(Y )h∗i (X,Vj)}
− α(2β + 1){uj(Y )vi(X)− uj(X)vi(Y )}
− {α2 + (β + 1)2}{uj(X)ηi(Y )− uj(Y )ηi(X)}
= f2{uj(Y )ηi(X)− uj(X)ηi(Y ) + 2δij ḡ(X, JY )}.
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Applying ∇̄X to θ(Vi) = 0 and using (2.4) and (3.11), we obtain

(∇̄Xθ)(Vi) = (β + 1)ui(X). (5.8)

Comparing (5.7) and (5.6) with Z = Vj and using (2.14)3 and (3.9)3, we get

{f1 − f2 − α2 + β2}[uj(Y )ηi(X)− uj(X)ηi(Y )]

= 2αβ{uj(Y )vi(X)− uj(X)vi(Y )}.

Taking X = ξi,Y = Uj and X = Vi, Y = Uj to this by turns, we obtain

f1 − f2 = α2 − β2, αβ = 0. (5.9)

Applying ∇̄X to θ(ζ) = 1 and using (2.3), we obtain

(∇̄Xθ)(ζ) = 0. (5.10)

Applying ∇̄X to ηi(Y ) = ḡ(Y,Ni) and using (2.5), we have

(∇Xηi)Y = −g(ANi
X,Y ) +

r∑
j=1

τij(X)ηj(Y ).

Applying ∇X to (3.8) and using (2.13) and (3.6) and (3.8), (3.16), we have

(∇Xh∗i )(Y, ζ) = −(Xα)vi(Y ) + (Xβ)ηi(Y )

− α{
r∑
j=1

vj(Y )τij(X) +
n∑

a=r+1

wa(Y )ρia(X)

−
r∑
j=1

uj(Y )ηj(ANi
X)− g(ANi

X,FY )− g(ANi
Y, FX)

− αθ(Y )ηi(X) + θ(X)vi(Y )− θ(Y )vi(X)}

+ (β + 1){
r∑
j=1

τij(X)ηj(Y ) + (β + 1)θ(X)ηi(Y )

− g(ANi
X,Y )− g(ANi

Y,X)}.

Substituting this and (3.7) into (5.5) with PZ = ζ and using (5.9), we get

−(Xα)vi(Y ) + (Y α)vi(X) + (Xβ)ηi(Y )− (Y β)ηi(X)

= (f1 − f3 − α2 + β2){θ(Y )ηi(X)− θ(X)ηi(Y )}.

Taking Y = ζ, X = ξi and Y = Uj , X = Vi to this by turns, we obtain

f1 − f3 = α2 − β2 − ζβ, Uiα = 0.
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Applying ∇Y to (3.7)1 and using (3.6), (3.7)1 and (3.14), we have

(∇Xh`i)(Y, ζ) = −(Xα)ui(Y ) + α{h`i(X,FY ) + h`i(Y, FX)

+
r∑
j=1

uj(Y )τji(X) +
n∑

a=r+1

wa(Y )φai(X)

+ θ(Y )ui(X)− θ(X)ui(Y )} − (β + 1)h`i(X,Y ).

Substituting this and (3.7)1 into (5.5) with Z = ζ and using (3.7), we get

(Xα)ui(Y ) = (Y α)ui(X).

Taking Y = Ui to this, we get Xα = 0. Thus α is a constant on M . �

Definition 5.3. (1) A screen distribution S(TM) is called totally umbilical
[5] if there exist smooth functions γi on a neighborhood U such that

h∗i (X,PY ) = γig(X,PY ).

In case γi = 0, we say that S(TM) is totally geodesic in M .

(2) A generic lightlike submanifold M is said to be screen conformal [5] if
there exist non-vanishing smooth functions ϕi on U such that

h∗i (X,PY ) = ϕih
`
i(X,PY ). (5.11)

Theorem 5.4. Let M be a generic lightlike submanifold of an indefinite gen-
eralized Sasakian space form M̄(f1, f2, f3) with a semi-symmetric metric con-
nection. If one of the following five conditions is satisfied,

(1) M is recurrent,
(2) S(TM) is totally umbilical,
(3) M is screen conformal,
(4) Uis is parallel with respect to the induced connection ∇,
(5) Vis is parallel with respect to the induced connection ∇,

then M̄(f1, f2, f3) is an indefinite Kenmotsu space form such that

α = 0, β = −1; f1 = −1, f2 = f3 = 0. (5.12)

Proof. (1) As M is recurrent, by Theorem 4.2, we obtain α = 0, β = −1
and the fact that M is irrotational and solenoidal, i.e., (2.15) and (2.16) are
satisfied. By directed calculation from (4.8)1, we obtain

R(X,Y )Ui =
r∑
j=1

2dτij(X,Y )Uj . (5.13)

On the other hand, since α = 0 and β = −1, we have ∇̄Xζ = 0 by (2.3)
and f1 + 1 = f2 = f3 by Theorem 5.2. Comparing the tangential components
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of the right and left terms of (5.2) and using (5.1) and (5.3), we obtain

R(X,Y )Z =
r∑
i=1

{h`i(Y, Z)ANi
X − h`i(X,Z)ANi

Y } (5.14)

+
n∑

a=r+1

{hsa(Y, Z)AEa
X − hsa(X,Z)AEa

Y }

+ (∇̄Xθ)(Z)Y − (∇̄Y θ)(Z)X

+ (f1 + 1){g(Y,Z)X − g(X,Z)Y }
+ f2{ḡ(X, JZ)FY − ḡ(Y, JZ)FX + 2ḡ(X, JY )FZ}
+ f3{θ(X)θ(Z)Y − θ(Y )θ(Z)X

+ ḡ(X,Z)θ(Y )ζ − ḡ(Y,Z)θ(X)ζ}.

Applying ∇̄X to θ(Ui) = 0 and using (2.4) and (3.10), we obtain

(∇̄Xθ)(Ui) = αηi(X) + (β + 1)vi(X). (5.15)

Replacing Z by Ui to (5.14) and using (5.13) and (5.15), we get

r∑
j=1

2dτij(X,Y )Uj =

r∑
j=1

{h`j(Y, Ui)ANj
X − h`j(X,Ui)ANj

Y }

+

n∑
a=r+1

{hsa(Y,Ui)AEa
X − hsa(X,Ui)AEa

Y }

+ (f1 + 1){vi(Y )X − vi(X)Y }
+ f2{ηi(X)FY − ηi(Y )FX}
+ f3{vi(X)θ(Y )− vi(Y )θ(X)}ζ.

Taking the scalar product with Nj and using (2.15) and (2.16), we get

f2{vi(Y )ηj(X)− vi(X)ηj(Y )}+ f2{vj(Y )ηi(X)− v(X)ηi(Y )} = 0.

Taking Y = Vi and X = ξj , we get f2 = 0. Thus f1 = −1 and f2 = f3 = 0.

(2) Assume that S(TM) is totally umbilical. Then (3.8) is reduced to

γiθ(X) = −αvi(X) + (β + 1)ηi(X).

Taking X = ζ, X = Vi and X = ξi by turns, we have γi = 0, α = 0 and
β = −1. As γi = 0, S(TM) is totally geodesic and, from (3.9)1, 2. we have

h`j(X,Ui) = 0, hsa(X,Ui) = 0. (5.16)

As α = 0 and β = −1, M̄ is an indefinite Kenmotsu manifold and f1 + 1 =
f2 = f3 by Theorem 5.2. Taking PZ = Uj to (5.6) such that h∗i = 0 and using
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(5.15), (5.16) and the fact that f1 + 1 = f2, we get

f2{[vj(Y )ηi(X)− vj(X)ηi(Y )] + [vi(Y )ηj(X)− vi(X)ηj(Y )]} = 0.

Taking X = ξi and Y = Vj to this equation, we get f2 = 0. Thus M̄(f1, f2, f3)
is an indefinite Kenmotsu space form satisfying (5.12).

(3) Taking PY = ζ to (5.11) and using (3.7)1 and (3.8), we get

αvi(X)− (β + 1)ηi(X) = αϕui(X).

Taking X = Vi and X = ξi by turns, we have α = 0 and β = −1 respectively.
Thus M̄ is an indefinite Kenmotsu manifold such that f1 + 1 = f2 = f3.

Denote by µi, i ∈ {1, · · · , r} the r-th vector fields on S(TM) such that
µi = Ui − ϕiVi. Then Jµi = Ni − ϕiξi. Using (3.9)1, 2, 3, 4, we get

h`j(X,µi) = 0, hsa(X,µi) = 0. (5.17)

Applying ∇Y to (5.11), we have

(∇Xh∗i )(Y, PZ) = (Xϕi)h
`
i(Y, PZ) + ϕi(∇Xh`i)(Y, PZ).

Substituting this equation and (5.11) into (5.6) and using (5.5), we have

r∑
j=1

{(Xϕi)δij − ϕiτji(X)− ϕjτij(X)− ηi(ANj
X)}h`j(Y, PZ)

−
r∑
j=1

{(Y ϕi)δij − ϕiτji(Y )− ϕjτij(Y )− ηi(ANj
Y )}h`j(X,PZ)

−
n∑

a=r+1

{εaρia(X) + ϕiφai(X)}hsa(Y, PZ)

+

n∑
a=r+1

{εaρia(Y ) + ϕiφai(Y )}hsa(X,PZ)

− {(∇̄Xθ)(PZ)− g(X,PZ)}ηi(Y )

+ {(∇̄Y θ)(PZ)− g(Y, PZ)}ηi(X)

= f1{g(Y, PZ)ηi(X)− g(X,PZ)ηi(Y )}
+ f2{g(Y, µi)ḡ(X, JPZ)− g(X,µi)ḡ(Y, JPZ)

+ 2g(PZ, µi)ḡ(X, JY )}
+ f3{θ(X)ηi(Y )− θ(Y )ηi(X)}θ(PZ).
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Replacing PZ by µi to this and using (5.8), (5.15) and (5.17), we obtain

f2{[vk(Y )ηi(X)− vk(X)ηi(Y ) + vi(Y )ηk(X)− vi(X)ηk(Y )]

− ϕk[uk(Y )ηi(X)− uk(X)ηi(Y )] + ϕi[ui(Y )ηk(X)− ui(X)ηk(Y )]

+ 2[ϕkδki − ϕiδki]ḡ(X, JY )} = 0.

Taking X = ξi and Y = Vk, we get f2 = 0. Thus M̄(f1, f2, f3) is an indefinite
Kenmotsu space form satisfying (5.12).

(4) If Uis is parallel with respect to ∇, then we have (3.16) and (3.17). As
α = 0 and β = 0, we get f1 + 1 = f2 = f3 by Theorem 5.2.

Applying ∇Y to (3.17) and using the fact that ∇XUi = 0, we obtain

(∇Xh∗i )(Y,Uj) = 0.

Substituting this equation and (3.17 into (5.6) such that PZ = Uj and using
(5.15), (3.16) and the fact that f1 + 1 = f2, we have

f2{[vj(Y )ηi(X)− vj(X)ηi(Y )] + [vi(Y )ηj(X)− vi(X)ηj(Y )]} = 0.

Taking X = ξi and Y = Vj to this equation, we get f2 = 0. Thus M̄(f1, f2, f3)
is an indefinite Kenmotsu space form satisfying (5.12).

(5) If Vis is parallel with respect to the connection ∇, then we have (3.18)
and (3.19). As α = 0 and β = −1, we get f1 + 1 = f2 = f3 by Theorem 5.2.
From (3.9)1 and (3.18), we have

h∗i (Y, Vj) = 0.

Applying ∇X to this equation and using the fact that ∇XVj = 0, we have

(∇Xh∗i )(Y, Vj) = 0.

Substituting these two equations into (5.6) such that PZ = Vj , we obtain

r∑
k=1

{h`k(X, Vj)ηi(ANk
Y )− h`k(Y, Vj)ηi(ANk

X)}

+

n∑
a=r+1

εa{ρia(Y )hsa(X, Vj)− ρia(X)hsa(Y, Vj)}

= f2{uj(Y )ηi(X)− uj(X)ηi(Y ) + 2δij ḡ(X, JY )}.

Taking X = ξi and Y = Uj to this and using (3.18), (3.19) and the fact that

hsa(Uj , Vj) = εah
`
i(Uj ,Wa) = 0 due to (3.9)4 and (3.18), we get f2 = 0. Thus

M̄(f1, f2, f3) is an indefinite Kenmotsu space form satisfying (5.12). �

Theorem 5.5. Let M be a Lie recurrent generic lightlike submanifold of an
indefinite generalized Sasakian space form M̄(f1, f2, f3) with a semi-symmetric
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metric connection. Then M̄(f1, f2, f3) is a space form with an indefinite β-
Kenmotsu structure such that

f1 = −β2, f2 = 0, f3 = ζβ.

Proof. If M is Lie recurrent, then, by Theorem 4.4 we get α = 0 and

h`i(X,Uj) = 0. (5.18)

Applying ∇Y to (5.18) and using (3.7)1 and (3.10), we have

(∇Xh`i)(Y, Uj) = −h`i(Y, F (ANj
X))−

n∑
a=r+1

ρja(X)h`i(Y,Wa).

Substituting the last two equations into (5.5) with Z = Uj , we have

h`i(X,F (ANj
Y ))− h`i(Y, F (ANj

X))

+

n∑
a=r+1

{ρja(Y )h`i(X,Wa)− ρja(X)h`i(Y,Wa)}

+
n∑

a=r+1

{φai(X)hsa(Y, Uj)− φai(Y )hsa(X,Uj)}

= f2{ui(Y )ηj(X)− ui(X)ηj(Y ) + 2δij ḡ(X, JY )}.

Taking Y = Ui and X = ξj to this and using (2.14)2, (3.9)4, (4.13)1, 3, 4, 5 and
(5.18), we have f2 = 0. As f2 = 0, we have f1 = −β2 and f3 = ζβ. �
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