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Abstract. In this papere, we have extended the result of Perov [5] for a sequence of multi-

valued mappings in two different ways. First, we discuss the result for a sequence of ad-

missible multi-valued self mappings, secondly our discussion is for sequence of nonself type

multi-valued mappings. As consequence of our results, we have obtained some new fixed

point theorems.

1. Introduction and preliminaries

Banach contraction principle is the basis of metric fixed point theory. This
result has been generalized by several authors in different ways. One of them
is the result of Semat et al. [7] for the admissible mappings. The results of
Perov [5] are considered from the earlier and worthwhile generalizations of
Banach contraction principle. Ali et al. [1] generalized the results of [5] by
extending the concept of admissible mappings. Here, we extend the result
of Perov [5] for a sequence of multi-valued mappings in two different settings.
The consequences of our results contain many new results. Some consequences
can be concluded as an extension of the result of Ali et al. [1].

Now, we introduce some basic notions and results: Let X be a nonempty
set and Rm be the set of all m × 1 real matrices. If α, β ∈ Rm, α =
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(α1, α2, . . . , αm)T , β = (β1, β2, . . . , βm)T and c ∈ R, then by α ≤ β (resp.,
α < β) we mean αi ≤ βi ( resp., αi < βi) for each i ∈ {1, 2, . . . ,m} and
by α ≥ c we mean that αi ≥ c for each i ∈ {1, 2, . . . ,m}. A mapping
d : X ×X → Rm is called a vector-valued metric on X if the following prop-
erties are satisfied:

(d1) d(x, y) ≥ 0 for all x, y ∈ X; if d(x, y) = 0 then x = y, and viceversa;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

A set X endowed with a vector-valued metric d is called a generalized metric
space. It is denoted by (X, d). The convergence sequence and Cauchy sequence
in a generalized metric space are defined in a similar manner as in a metric
space.

Throughout this paper, we denote the set of all nonempty closed subsets of
X by CL(X), the set of all m × m matrices with non-negative elements by
Mm,m(R+), the zero m ×m matrix by 0̄ and the identity m ×m matrix by
I. Also note that A0 = I. A matrix A is said to be convergent to zero if and
only if An → 0 as n→∞ (see [9]).

Theorem 1.1. [3] Let A ∈ Mm,m(R+). Then the following conditions are
equivalent.

(1) A is convergent to zero;
(2) The eigenvalues of A are in the open unit disc, that is, |λ| < 1, for

every λ ∈ C with det(A− λI) = 0;
(3) The matrix I −A is nonsingular and

(I −A)−1 = I +A+ · · ·+An + · · · . (1.1)

Example 1.2. The following matrices are convergent to zero.

(1) A :=

(
a a
b b

)
, where a, b ∈ R+ and a+ b < 1;

(2) B :=

(
a b
a b

)
, where a, b ∈ R+ and a+ b < 1;

(3) C :=

(
a b
0 c

)
, where a, b, c ∈ R+ and max{a, c} < 1.

Perov [5] extended the Banach contraction principle by proving the following
fixed point theorem.

Theorem 1.3. [5] Let (X, d) be a complete generalized metric space and
f : X → X be a mapping for which there exists a matrix A ∈Mm,m(R+) such
that d(f(x), f(y)) ≤ Ad(x, y) for all x, y ∈ X. If A is a convergent matric to
zero, then the sequence of successive approximations {xn} with xn = fn(x0),
is convergent to x∗ ∈ Fix(f), for all x0 ∈ X.
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You can find some more contributions to this topic in [2, 3, 4, 6, 8]. Recently
Ali et al. [1] extended the result of Perov [5] in the following way:

Theorem 1.4. [1] Let (X, d) be a complete generalized metric space and Λ :
X×X →Mm,m(R+). Let f : X → X be a mapping such that for each x, y ∈ X
we have

Λ(x, y)d(fx, fy) ≤ A1d(x, y) +A2d(x, fx) +A3d(y, fy)

+A4d(x, fy) +Bd(y, fx), (1.2)

where Λ, A1, A2, A3, A4, B ∈Mm,m(R+) and (I −A3 −A4)
−1 exists. Further,

assume that the following conditions hold:

(i) the matrix A = (I −A3 −A4)
−1(A1 +A2 +A4) converges to zero;

(ii) there exists x0 ∈ X such that Λ(x0, fx0) ≥ I;
(iii) f is Λ∗-admissible, that is, Λ(x, y) ≥ I =⇒ Λ(fx, fy) ≥ I for each

x, y ∈ X;
(iv) for each sequence {xn} ⊆ X such that xn → x and Λ(xn, xn+1) ≥ I

for all n ∈ N, we have Λ(xn, x) ≥ I.

Then f has a fixed point.

2. Main Results

We begin this section with the following definition.

Definition 2.1. Let X be a nonempty set, Λ : X × X → Mm,m(R+) and
{Ti : X → CL(X) : i ∈ N} be a sequence of mappings. The sequence {Ti} is
said to be Λ∗-admissible if for x ∈ X and y ∈ Tix for some i ∈ N satisfying
Λ(x, y) ≥ I, then we have Λ(y, z) ≥ I for each z ∈ Ti+1y, where I is an
m×m identity matrix and the inequality between matrices means entrywise
inequality.

Now, we are in a position to introduce the main theorem.

Theorem 2.2. Let (X, d) be a complete generalized metric space and Λ :
X × X → Mm,m(R+). Let {Ti : X → CL(X)} be a sequence of mappings
such that for each x, y ∈ X with Λ(x, y) ≥ I and u ∈ Tix, we have v ∈ Ti+1y
satisfying the following inequality:

d(u, v) ≤ A1d(x, y) +A2d(x, u) +A3d(y, v)

+A4d(x, v) +Bd(y, u), (2.1)

where A1, A2, A3, A4, B ∈ Mm,m(R+) and (I − A3 − A4)
−1 exists. Further,

assume that the following conditions hold:

(i) the matrix A = (I −A3 −A4)
−1(A1 +A2 +A4) converges to zero;

(ii) there exist x0 ∈ X and x1 ∈ T1x0 such that Λ(x0, x1) ≥ I;
(iii) {Ti} is Λ∗-admissible;
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(iv) for each sequence {xn} ⊆ X such that xn → x and Λ(xn, xn+1) ≥ I
for all n ∈ N, we have Λ(xn, x) ≥ I.

Then there exists an ω ∈ X such that ω ∈ Tiω for sufficiently large i.

Proof. Using hypothesis (ii), we get x0 ∈ X and x1 ∈ T1x0 such that Λ(x0, x1) ≥
I. From (2.1), for x0, x1 ∈ X with Λ(x0, x1) ≥ I and x1 ∈ T1x0, we have
x2 ∈ T2x1 which satisfies the following inequality

d(x1, x2) ≤ A1d(x0, x1) +A2d(x0, x1) +A3d(x1, x2)

+A4d(x0, x2) +Bd(x1, x1)

≤ A1d(x0, x1) +A2d(x0, x1) +A3d(x1, x2)

+A4[d(x0, x1) + d(x1, x2)] +B0.

After simplifying this inequality, we get

d(x1, x2) ≤ (I −A3 −A4)
−1(A1 +A2 +A4)d(x0, x1)

= Ad(x0, x1). (2.2)

Since {Ti} is Λ∗-admissible, we have Λ(x1, x2) ≥ I. Again by using (2.1), for
x1, x2 ∈ X with Λ(x1, x2) ≥ I and x2 ∈ T2x1, we have x3 ∈ T3x2 such that

d(x2, x3) ≤ A1d(x1, x2) +A2d(x1, x2) +A3d(x2, x3)

+A4d(x1, x3) +Bd(x2, x2)

≤ A1d(x1, x2) +A2d(x1, x2) +A3d(x2, x3)

+A4[d(x1, x2) + d(x2, x3)] +B0.

This implies that

d(x2, x3) ≤ (I −A3 −A4)
−1(A1 +A2 +A4)d(x1, x2)

= Ad(x1, x2). (2.3)

From (2.2) and (2.3), we have

d(x2, x3) ≤ A2d(x0, x1).

Continuing in this process, we get a sequence {xn} ⊆ X such that

xn ∈ Tnxn−1, Λ(xn−1, xn) ≥ I

and

d(xn, xn+1) ≤ And(x0, x1), ∀ n ∈ N.
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Next we will prove that {xn} is a Cauchy sequence. Let n,m be arbitrary
natural numbers with m > n, by using the triangle inequality, we get

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1)

≤
m−1∑
i=n

Aid(x0, x1)

≤ An

( ∞∑
i=0

Ai

)
d(x0, x1)

= An(I −A)−1d(x0, x1).

Letting n→∞ to the above inequality, since the matrix A converges to zero,
we get limn→∞ d(xn, xn+m) = 0. Hence {xn} is a Cauchy sequence in X. Since
X is complete, there exists an element x∗ in X such that xn → x∗. By using
the hypothesis (iii), we conclude that Λ(xn, x

∗) ≥ 1 for all n ∈ N. From (2.1),
for xn, x

∗ ∈ X with Λ(xn, x
∗) ≥ 1 and xn+1 ∈ Tn+1xn, we have vn+2 ∈ Tn+2x

∗

such that

d(xn+1, vn+2) ≤ A1d(xn, x
∗) +A2d(xn, xn+1) +A3d(x∗, vn+2)

+A4d(xn, vn+2) +Bd(x∗, xn+1).

By using the triangle inequality and the above inequality, we have

d(x∗, vn+2) ≤ d(x∗, xn+1) + d(xn+1, vn+2)

≤ d(x∗, xn+1) +A1d(xn, x
∗) +A2d(xn, xn+1)

+A3d(x∗, vn+2) +A4[d(xn, x
∗) + d(x∗, vn+2)]

+Bd(x∗, xn+1).

This implies that

(I − (A3 +A4))d(x∗, vn+2) ≤ 0 as n→∞.
Since the inverse of the matrix I − (A3 +A4) exists, we have d(x∗, vn+2)→ 0
as n→∞. Hence vn+2 → x∗. This means that x∗ ∈ Tnx∗ for sufficiently large
n. �

Example 2.3. Let X = [0,∞)× [0,∞) be equipped with a generalized metric
defined by

d(x, y) =



(
x1 + y1

x2 + y2

)
, if x 6= y(

0

0

)
, if x = y

for each x = (x1, x2), y = (y1, y2) ∈ X.
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Define the mappings

T : X → CL(X), T (x1, x2) =
{

(1, 1),
(x1

3
,
x2
3

)}
and

S : X → CL(X), S(x1, x2) =

{{
(1, 1),

(
x1
4 ,

x2
4

)}
, if x1, x2 ≤ 4{

(0, 0),
(
x21, x

2
2

)}
, otherwise.

Define Λ : X ×X →M2,2(R+) by

Λ((x1, x2), (y1, y2)) =



(
1 0

0 1

)
, if x1, x2, y1, y2 ≤ 4(

0 0

0 0

)
, otherwise.

Then, it is easy to see that the sequence of mappings {Ti} defined by Ti = T
and T2i = S for each i ∈ N satisfies (2.1) with

A1 =

(
1
3 0
0 1

3

)
, A2 = A3 = A4 = B =

(
0 0
0 0

)
and all the other conditions of Theorem 2.2 also hold. Thus, we have x∗ ∈ X
such that x∗ ∈ Tix∗ for sufficiently large values of i. Hence we conclude that
x∗ ∈ Tx∗ and x∗ ∈ Sx∗.

Now, we state and prove our second result, in this result we denote the
closed ball with centered at x0 and radius r by B(x0, r).

Theorem 2.4. Let (X, d) be a complete generalized metric space, x0 ∈ X and
r = (r11, r21, · · · , rm1)

T be any nonzero matrix in Rm with ri1 ≥ 0 for each
i ∈ {1, 2, · · · ,m}. Let {Ti : B(x0, r) → CL(X)} be a sequence of mappings
such that for each x, y ∈ B(x0, r) and u ∈ Tix, we have v ∈ Ti+1y satisfying
the following inequality:

d(u, v) ≤ A1d(x, y) +A2d(x, u) +A3d(y, v)

+A4d(x, v) +Bd(y, u), (2.4)

where A1, A2, A3, A4, B ∈ Mm,m(R+) and (I − A3 − A4)
−1 exists. Further,

assume that the following conditions hold:

(i) the matrix A = (I −A3 −A4)
−1(A1 +A2 +A4) converges to zero;

(ii) there exist x0 ∈ X and x1 ∈ T1x0 such that (I −A)−1d(x0, x1) ≤ r;
Then there exists an ω ∈ X such that ω ∈ Tiω for sufficiently large i.

Proof. By hypothesis (ii), we have x0 ∈ X and x1 ∈ T1x0 such that (I −
A)−1d(x0, x1) ≤ r. Thus we have

(I −A)−1d(x0, x1) ≤ r ≤ (I −A)−1r.
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This implies that d(x0, x1) ≤ r. Hence x1 ∈ B(x0, r). From (2.4), for x0, x1 ∈
B(x0, r) and x1 ∈ T1x0, we have x2 ∈ T2x0 such that

d(x1, x2) ≤ A1d(x0, x1) +A2d(x0, x1) +A3d(x1, x2)

+A4d(x0, x2) +Bd(x1, x1)

≤ A1d(x0, x1) +A2d(x0, x1) +A3d(x1, x2)

+A4[d(x0, x1) + d(x1, x2)] +B0.

After simplifying this inequality we get

d(x1, x2) ≤ (I −A3 −A4)
−1(A1 +A2 +A4)d(x0, x1)

= Ad(x0, x1). (2.5)

Further, we get

(I −A)−1d(x1, x2) ≤ (I −A)−1Ad(x0, x1)

= A(I −A)−1d(x0, x1)

≤ Ar. (2.6)

By using the triangle inequality and (2.6), we have

(I −A)−1d(x0, x2) ≤ (I −A)−1d(x0, x1) + (I −A)−1d(x1, x2)

≤ Ir +Ar

≤ (I +A+A2 +A3 + · · · )r
= (I −A)−1r.

This implies that d(x0, x2) ≤ r, that is, x2 ∈ B(x0, r). From (2.4), for x1, x2 ∈
B(x0, r) and x2 ∈ T2x1, we have x3 ∈ T3x2 such that

d(x2, x3) ≤ A1d(x1, x2) +A2d(x1, x2) +A3d(x2, x3)

+A4d(x1, x3) +Bd(x2, x2)

≤ A1d(x1, x2) +A2d(x1, x2) +A3d(x2, x3)

+A4[d(x1, x2) + d(x2, x3)] +B0.

This implies that

d(x2, x3) ≤ (I −A3 −A4)
−1(A1 +A2 +A4)d(x1, x2)

= Ad(x1, x2). (2.7)

From (2.5) and (2.7), we have

d(x2, x3) ≤ A2d(x0, x1).
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Further, from the above inequality, we get

(I −A)−1d(x2, x3) ≤ (I −A)−1A2d(x0, x1)

= A2(I −A)−1d(x0, x1)

≤ A2r. (2.8)

Again by using the triangle inequality, we get

(I −A)−1d(x0, x3) ≤ (I −A)−1d(x0, x1) + (I −A)−1d(x1, x2)

+(I −A)−1d(x2, x3)

≤ Ir +Ar +A2r

= (I +A+A2 +A3 + · · · )r
= (I −A)−1r.

Thus d(x0, x3) ≤ r, hence x3 ∈ B(x0, r). Continuing in this process, we
construct a sequence {xn} ⊆ B(x0, r) such that for each n ∈ N,

(i) xn ∈ Tnxn−1;
(ii) d(xn, xn+1) ≤ And(x0, x1);
(iii) (I −A)−1d(x0, xn) ≤ (I −A)−1r.

From the proof of Theorem 2.2, we conclude that {xn} is a Cauchy sequence in
B(x0, r). Since B(x0, r) is closed in complete space X, we have x∗ ∈ B(x0, r)
such that xn → x∗. From (2.4), for xn, x

∗ ∈ B(x0, r) and xn+1 ∈ Tn+1xn we
have vn+2 ∈ Tn+2x

∗ such that

d(xn+1, vn+2) ≤ A1d(xn, x
∗) +A2d(xn, xn+1) +A3d(x∗, vn+2)

+A4d(xn, vn+2) +Bd(x∗, xn+1).

By using the triangle inequality, we have

d(x∗, vn+2) ≤ d(x∗, xn+1) + d(xn+1, vn+2)

≤ d(x∗, xn+1) +A1d(xn, x
∗)

+A2d(xn, xn+1) +A3d(x∗, vn+2)

+A4[d(xn, x
∗) + d(x∗, vn+2)] +Bd(x∗, xn+1).

This implies that

(I − (A3 +A4))d(x∗, vn+2) ≤ 0, as n→∞.

Since the inverse of the matrix I − (A3 +A4) exists, we have d(x∗, vn+2)→ 0
as n→∞. Hence vn+2 → x∗. This means that x∗ ∈ Tnx∗ for sufficiently large
n. �
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3. Consequences

As consequences, we mention only fixed point results which can be obtained
from our results.

The following theorems are special cases of our main results by considering
the sequence of mappings {Ti}, as Ti = T for each i ∈ N.

Theorem 3.1. Let (X, d) be a complete generalized metric space and Λ :
X ×X → Mm,m(R+). Let T : X → CL(X) be a mapping such that for each
x, y ∈ X with Λ(x, y) ≥ I and u ∈ Tx, we have v ∈ Ty satisfying the following
inequality:

d(u, v) ≤ A1d(x, y) +A2d(x, u)

+A3d(y, v) +A4d(x, v) +Bd(y, u),

where A1, A2, A3, A4, B ∈ Mm,m(R+) and (I − A3 − A4)
−1 exists. Further,

assume that the following conditions hold:

(i) the matrix A = (I −A3 −A4)
−1(A1 +A2 +A4) converges to zero;

(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that Λ(x0, x1) ≥ I;
(iii) T is Λ∗-admissible, that is, for x ∈ X and y ∈ Tx with Λ(x, y) ≥ I,

we have Λ(y, v) ≥ I for each v ∈ Ty;
(iv) for each sequence {xn} ⊆ X such that xn → x and Λ(xn, xn+1) ≥ I

for all n ∈ N, we have Λ(xn, x) ≥ I.
Then T has a fixed point.

Theorem 3.2. Let (X, d) be a complete generalized metric space, x0 ∈ X and
r = (r11, r21, · · · , rm1)

T be any nonzero matrix in Rm with ri1 ≥ 0 for each
i ∈ {1, 2, · · · ,m}. Let T : B(x0, r)→ CL(X) be a mapping such that for each
x, y ∈ B(x0, r) and u ∈ Tx, we have v ∈ Ty satisfying the following inequality;

d(u, v) ≤ A1d(x, y) +A2d(x, u) +A3d(y, v)

+A4d(x, v) +Bd(y, u), (3.1)

where A1, A2, A3, A4, B ∈ Mm,m(R+) and (I − A3 − A4)
−1 exists. Further,

assume that the following conditions hold:

(i) the matrix A = (I −A3 −A4)
−1(A1 +A2 +A4) converges to zero;

(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that (I −A)−1d(x0, x1) ≤ r.
Then T has a fixed point.

Example 3.3. Let X = R2 be equipped with a generalized metric defined by

d(x, y) =

(
|x1 − y1|
|x2 − y2|

)
for each x = (x1, x2), y = (y1, y2) ∈ X.
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Take x0 = (2, 0) and r =

(
2
0

)
. Then we have B(x0, r) = {(x, y) : 0 ≤ x ≤

4 and y = 0}. Define a mapping

T : B(x0, r)→ CL(X), T (x1, x2) =
{

(5, 0),
(x1

2
, x2

)}
.

Then, it is easy to see that for each x, y ∈ B(x0, r) and u ∈ Tx, we have
v ∈ Ty satisfying (3.1) with

A1 =

(
1
2 0
0 0

)
, A2 = A3 = A4 = B =

(
0 0
0 0

)
.

Further for (2, 0), we have (1, 0) ∈ T (2, 0) satisfying (I − A)−1d(x0, x1) ≤ r.
Thus, by Theorem 3.2, T has a fixed point.

The following results can be obtain from Theorem 3.1. By considering
B1 = A1, B2 = A2 = A3 and B3 = A4 = B.

Corollary 3.4. Let (X, d) be a complete generalized metric space and Λ :
X ×X → Mm,m(R+). Let T : X → CL(X) be a mapping such that for each
x, y ∈ X with Λ(x, y) ≥ I and u ∈ Tx, we have v ∈ Ty satisfying the following
inequality:

d(u, v) ≤ B1d(x, y) +B2[d(x, u) + d(y, v)]

+B3[d(x, v) + d(y, u)],

where B1, B2, B3 ∈ Mm,m(R+) and (I − B2 − B3)
−1 exists. Further, assume

that the following conditions hold:

(i) the matrix A = (I −B2 −B3)
−1(B1 +B2 +B3) converges to zero;

(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that Λ(x0, x1) ≥ I;
(iii) T is Λ∗-admissible;
(iv) for each sequence {xn} ⊆ X such that xn → x and Λ(xn, xn+1) ≥ I

for all n ∈ N, we have Λ(xn, x) ≥ I.

Then T has a fixed point.

Subsequently, (X, d) is a generalized metric space and G = (V,E) is a
directed graph such that the set V of its vertices coincides with X and the
set E of its edges contains loops; that is, E ⊇ 4, where 4 is the diagonal of
the Cartesian product X × X. The following theorem can be obtained from
Theorem 3.1, by defining the function Λ : X ×X →Mm,m(R+) as

Λ(x, y) =

{
Im×m if (x, y) ∈ E,
0m×m otherwise,

where Im×m is an m×m identity matrix and 0m×m is m×m zero matrix.
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Theorem 3.5. Let (X, d) be a complete generalized metric space with the
graph G, let T : X → CL(X) be a mapping such that for each x, y ∈ X with
(x, y) ∈ E and u ∈ Tx, we have v ∈ Ty satisfying the following inequaity:

d(u, v) ≤ A1d(x, y) +A2d(x, u) +A3d(y, v)

+A4d(x, v) +Bd(y, u),

where A1, A2, A3, A4, B ∈ Mm,m(R+) and (I − A3 − A4)
−1 exists. Further,

assume that the following conditions hold:

(i) the matrix A = (I −A3 −A4)
−1(A1 +A2 +A4) converges to zero;

(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E;
(iii) for x ∈ X and y ∈ Tx with (x, y) ∈ E, we have (y, v) ∈ E for each

v ∈ Ty;
(iv) for each sequence {xn} ⊆ X such that xn → x and (xn, xn+1) ∈ E for

all n ∈ N, we have (xn, x) ∈ E.
Then T has a fixed point.

The following corollary can be obtained from Theorem 3.5. By considering
the graph G = (V,E) as defined below

V = X, E = {(x, y) ∈ X ×X : x � y},
where � is a partial ordering on X.

Corollary 3.6. Let (X, d) be a complete generalized metric space with partial
ordering �, let T : X → CL(X) be a mapping such that for each x, y ∈ X with
x � y and u ∈ Tx, we have v ∈ Ty satisfying the following inequality:

d(u, v) ≤ A1d(x, y) +A2d(x, u) +A3d(y, v)

+A4d(x, v) +Bd(y, u),

where A1, A2, A3, A4, B ∈ Mm,m(R+) and (I − A3 − A4)
−1 exists. Further,

assume that the following conditions hold:

(i) the matrix A = (I −A3 −A4)
−1(A1 +A2 +A4) converges to zero;

(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that x0 � x1;
(iii) for x ∈ X and y ∈ Tx with x � y, we have y � v for each v ∈ Ty;
(iv) for each sequence {xn} ⊆ X such that xn → x and xn � xn+1 for all

n ∈ N, we have xn � x.
Then T has a fixed point.
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