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Abstract. In this paper, we introduce a new non-combination iterative algorithm to find

a solution of a generalized split equilibrium problem in Hilbert spaces. In our algorithm,

the parameter γ is chosen from (0, 2
M2 ), where M is an arbitrary boundedness above of the

norm ‖A‖ of the operator A which is such that the parameter γ is easier to chose.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed and convex
subset of H. Let F : C ×C → R be a bifunction. The equilibrium problem for
F is to find z ∈ C such that

F (z, y) ≥ 0, ∀y ∈ C. (1.1)

The set of all solutions of (1.1) is denoted by EP (F ), i.e.,

EP (F ) = {z ∈ C : F (z, y) ≥ 0, ∀y ∈ C}.

Let A : C → H be a nonlinear operator. The generalized equilibrium
problem for F and A is to find v ∈ C such that

F (v, y) + 〈Av, y − v〉 ≥ 0, ∀y ∈ C. (1.2)
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The set of all solutions of (1.2) is denoted by EP , i.e.,

EP = {z ∈ C : F (z, y) + 〈Av, y − v〉 ≥ 0, ∀y ∈ C}.

In (1.2), if F = 0, then (1.2) is deduced to the following variational inequal-
ity problem: to find v ∈ C such that

〈Av, y − v〉 ≥ 0, ∀y ∈ C. (1.3)

The set of solutions of (1.3) is denoted by V I(C,A).

Many problems in physics, optimization and economics can be reduced to
find the solution of equilibrium problems (see [3, 11, 16, 18]). Also, many
iterative algorithms are considered to find the solutions of variational inequal-
ity problems, equilibrium problems and generalized equilibrium problems (see
[5, 16, 18, 21, 22, 23, 30, 31, 32]).

In 2012, He [8] introduced a new equilibrium problem called a split equilib-
rium problem which is also mentioned in [15].

Let H1, H2 be two real Hilbert spaces and C, Q be the nonempty closed and
convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a bounded
linear operator and F1 : C ×C → R, F2 : Q×Q→ R be two bifunctions. The
split equilibrium problem is to find x∗ ∈ C such that

F1(x∗, x) ≥ 0, ∀x ∈ C, (1.4)

and such that

y∗ = Ax∗ ∈ Q sovles F2(y∗, y) ≥ 0, ∀y ∈ Q. (1.5)

Let Ω denote the set of solutions of (1.4) and (1.5), that is,

Ω = {z ∈ C : z ∈ EP (F1), Az ∈ EP (F2)}.

In [8], the author introduced some strong and weak iterative algorithms
to solve the split equilibrium problem and some examples to illustrate the
iterative algorithms.

In 2013, Kazmi and Rizvi [12] gave the following iterative algorithm to
solve the split equilibrium problem and fixed point problem for nonexpansive
mapping in Hilbert spaces:

un = TF1
rn (xn + γA∗(TF2

rn − I)Axn),

yn = PC(un − λnDun),

xn+1 = αnv + βnxn + γnSyn

(1.6)

for each n ≥ 1, where D : C → H1 is a τ -inverse strongly monotone mapping
and S : C → C is a nonexpansive mapping. Under some certain assumptions
on the sequences {αn}, {βn}, {γn}, {λn} and {rn}, the authors proved that
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the sequence {xn} generated by (1.6) strongly converges to a point z = PΘv,
where Θ = Fix(S) ∩ Ω ∩ V I(C,D).

Recently, Wang et al. [25] introduced a strong convergence algorithm to
solve the split equilibrium problem and fixed point problem for asymptotically
nonexpansive mappings in Hilbert spaces as follows:

un = TF1
rn (I − γA∗(I − TF2

sn )A)xn,

yn = PC(un − λnBun),

xn+1 = αnf(xn) + βnxn + γnS
nyn

(1.7)

for each n ≥ 1, where B : C → H1 is a β-inverse strongly monotone mapping
and S : C → C is an asyptotically nonexpansive mapping. They proved that
the sequence {xn} defined by (1.7) strongly converges to the point z = PΘz,
where Θ = Fix(S) ∩ Ω ∩ V I(C,B).

Very recently, Xu et al. [29] considered a cloud hybrid method to solve
the split equilibrium problems and fixed point problems for a family of quasi-
Lipschitz mappings in Hilbert spaces. For more details on the split equilibrium
problem, refer to [1, 26].

In this paper, we consider the generalized split equilibrium problem in
Hilbert spaces. For each i = 1, 2, let Hi be a real Hilbert space and Ci

be a nonempty closed and convex subset of Hi, let Fi : Ci × Ci → R be a
bifunction and Ai : Ci → Hi be a nonlinear operator. Let A : H1 → H2 be a
bounded linear operator. The generalized split equilibrium problem is to find
a point z ∈ C1 such that

F1(z, y) + 〈A1z, y − z〉 ≥ 0, ∀y ∈ C1 (1.8)

and v = Az such that

F2(v, y) + 〈A2v, y − v〉 ≥ 0, ∀y ∈ C2. (1.9)

In the main results of this paper, the operators A1 and A2 are two monotone
operators which are more general than inverse strongly monotone operators or
strongly monotone operators. On the other hand, the bifunctions F1 and F2

in [1, 8, 12, 25, 26, 29] are required to be satisfy the following four conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, limt↓0 F (tz + (1− t)x, y) ≤ F (x, y);
(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semi-continuous.

However, F1 and F2 in our result are required to satisfy the different conditions
with (A1)-(A4).

In this paper, we introduce a new non-convex combination iterative al-
gorithm which is neither viscosity approximation algorithm nor CQ hybrid
algorithm to solve the generalized split equilibrium problem (1.8) and (1.9).
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In our results, the conditions (A3) and (A4) on the bifunctions F1 and F2 are
relaxed. On the other hand, the parameter γ can be obtained by an arbitrary
boundedness above of ‖A‖. In the similar results to others (see, for exam-
ple, [1, 12, 25, 26, 29]), the parameter γ is from (0, 1

L2 ), where L the spectral
radius of the operator A∗A. In our algorithm, the parameter γ is chosen by
the boundedness above of ‖A‖ not the spectral radius of the operator A∗A.
Obviously, the parameter γ in our algorithms is easier to chose. The strong
convergence of the proposed algorithm is proved.

2. Preliminaries

Let H be a Hilbert space and C be a nonempty closed subset of H. For
each point x ∈ H, there exists a unique nearest point of C, denoted by PCx,
such that

‖x− PCx‖ ≤ ‖x− y‖
for all y ∈ C. Such a PC is called the metric projection from H onto C. It is
well known that PC is a firmly nonexpansive mapping from H onto C, i.e.,

‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉, ∀x, y ∈ H.

Further, for any x ∈ H and z ∈ C, z = PCx if and only if

〈x− z, z − y〉 ≥ 0, ∀y ∈ C.

Definition 2.1. A mapping A : C → H is said to be:

(1) monotone if

〈x− y,Ax−Ay〉 ≥ 0, ∀x, y ∈ C.

(2) strongly monotone if there exists δ > 0 such that

〈x− y,Ax−Ay〉 ≥ δ‖x− y‖2, ∀x, y ∈ C.

(3) inverse strongly monotone if there exists λ > 0 such that

〈x− y,Ax−Ay〉 ≥ λ‖Ax−Ay‖2, ∀x, y ∈ C.

Lemma 2.2. ([24, Lemmas 2.5, 2.6]) Let C be a bounded nonempty closed
convex subset of a real Hilbert H. Let A : C → H be a continuous and
monotone operator and F : C×C → R be a bifunction satisfying the following
conditions:

(B1) F (x, x) = 0 for all x ∈ C;
(B2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(B3) for each x ∈ C, y 7→ F (x, y) is convex.
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Let r > 0 and define the mapping TF
r : H → C as follows:

TF
r (x) = {z ∈ C : F (z, y) + 〈Az, y − z〉+

1

r
〈y − z, z − x〉 ≥ 0 for all y ∈ C}

for all x ∈ H. Then the following hold:

(1) TF
r is single-valued.

(2) TF
r is a firmly nonexpansive mapping, i.e., for all x, y ∈ H,

‖TF
r x− TF

r y‖2 ≤ 〈TF
r x− TF

r y, x− y〉.
(3) F (TF

r ) = EP .
(4) EP is closed and convex.

Remark 2.3. In the proof process of [24, Lemma 2.5, 2.6], the condition that
F (x, y) is lower semi-continuous in the second argument is not used. Hence
we omit the restriction in (B3). The continuous and monotone operator A in
Lemma 2.1 is the special case of T in [24, Lemma 2.5,2.6].

Since TF
r is firmly nonexpansive and also is 1-inverse strongly monotone,

I − TF
r : H → H is 1-inverse strongly monotone. Indeed, for all x, y ∈ H, we

have
‖(I − TF

r )x− (I − TF
r )y‖2

= ‖x− y‖2 − 2〈x− y, TF
r x− TF

r y〉+ ‖TF
r x− TF

r y‖2

≤ ‖x− y‖2 − 2〈x− y, TF
r x− TF

r y〉+ ‖TF
r x− TF

r y‖2

≤ ‖x− y‖2 − 〈x− y, TF
r x− TF

r y〉
= 〈x− y, (I − TF

r )x− (I − TF
r )y〉.

Hence I − TF
r is a 1-inverse strongly monotone mapping.

Lemma 2.4. (Demiclosed Principle) Let C be a nonempty closed convex
subset of H and T : C → C be a nonexpansive mapping. Suppose that
{xn} ⊂ C weakly converges to a point x′ ∈ C and ‖xn−Txn‖ → 0 as n→∞.
Then x′ = Tx′.

Lemma 2.5. Let H be a real Hilbert space. Then the following inequality
holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉
for all x, y ∈ H.

Lemma 2.6. ([14]) Let {sn}, {cn} be the sequences of nonnegative real num-
bers and {an} be a sequence in (0, 1). Suppose that {bn} is a real number
sequence such that

sn+1 ≤ (1− an)sn + bn + cn
for all n ≥ 0. Assume that

∑∞
n=0 cn <∞. Then the following results hold:
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(1) If bn ≤ βan for all n ≥ 0, where β ≥ 0, then {sn} is a bounded
sequence.

(2) If we have
∞∑
n=0

an =∞, lim sup
n→∞

bn
an
≤ 0,

then limn→∞ sn = 0.

3. Main Results

In this section, let H1, H2 be two real Hilbert spaces and C1 ⊂ H1, C2 ⊂ H2

be the bounded nonempty closed and convex subsets. Let A : H1 → H2 be
a linear bounded operator. Let F1 : C1 × C1 → R, F2 : C2 × C2 → R be
the bifunctions satisfying the conditions (B1)-(B3). Let A1 : C1 → H1 and
A2 : C2 → H2 be the continuous and monotone operators. Let

EPi = {x ∈ Ci : Fi(x, y) + 〈Aix, y − x〉 ≥ 0, ∀y ∈ Ci}, i = 1, 2.

Let Ω = {z ∈ C1 : z ∈ EP1, Az ∈ EP2} and assume that Ω 6= ∅.

Algorithm A. We consider the following algorithm.

Step 1. Choose the control sequences {βn}, {γn} ⊂ (0, 1) and set γ, r, s > 0.
Take the initial point x0 ∈ C1 arbitrarily.

Step 2. Find un ∈ C2 such that

F2(un, y) + 〈A2un, y − un〉+
1

s
〈y − un, un −Axn〉 ≥ 0, ∀y ∈ C2.

Set vn = xn − γA∗(Axn − un) and find wn ∈ C1 such that

F1(wn, y) + 〈A1vn, y − wn〉+
1

r
〈y − wn, wn − vn〉 ≥ 0, ∀y ∈ C1.

Step 3. If un = Axn and wn = xn, stop and xn ∈ Ω; otherwise, go to the
next step.

Step 4. Generate xn+1 by

xn+1 = βn(1− γn)xn + (1− βn)wn

for each n ≥ 1 and n = n+ 1 and then go to Step 2.

Obviously, by Lemma 2.2, it follows that

un = TF2
s Axn ∈ C2, wn = TF1

r vn ∈ C1 (3.1)

for each n ≥ 0. Hence, if the stop criterion is satisfied for some n ≥ 1, then
we can get

Axn = TF2
s Axn, xn = TF1

r xn.
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Therefore, xn ∈ Ω. For showing the convergence of Algorithm A, we assume
that the stop criterion can not be satisfied for all n ≥ 1. Let M > 0 be the
arbitrary boundedness above of ‖A‖.

Lemma 3.1. If γ ∈ (0, 2
M2 ), then the sequence {xn} generated by Algorithm

A is bounded.

Proof. We first show that {xn} is bounded. Let p ∈ Ω arbitrarily. Since
γ < 2

M2 and I − TF2
s is 1-inverse strongly monotone, it follows from (3.1) that

‖wn − p‖2 = ‖TF1
r vn − TF1

r p‖2 ≤ ‖vn − p‖2

= ‖(I − γA∗(I − TF2
s )A)xn − (I − γA∗(I − TF2

s )A)p‖2

= ‖xn − p‖2 − 2γ〈xn − p,A∗(I − TF2
s )Axn −A∗(I − TF2

s )Ap〉
+ γ2‖A∗(I − TF2

s )Axn −A∗(I − TF2
s )Ap‖2

= ‖xn − p‖2 − 2γ〈Axn −Ap, (I − TF2
s )Axn − (I − TF2

s )Ap〉
+ γ2‖A∗(I − TF2

s )Axn −A∗(I − TF2
s )Ap‖2

≤ ‖xn − p‖2 + γ(γ‖A‖2 − 2)‖(I − TF2
s )Axn‖2

≤ ‖xn − p‖2 + γ(γM2 − 2)‖(I − TF2
s )Axn‖2

≤ ‖xn − p‖2
(3.2)

for each n ≥ 0. Thus it follows that

‖xn+1 − p‖ = ‖βn(1− γn)xn + (1− βn)wn − p‖
= ‖βn(1− γn)(xn − p) + (1− βn)(wn − p)− βnγnp‖
≤ βn(1− γn)‖xn − p‖+ (1− βn)‖xn − p‖+ βnγn‖p‖
= (1− βnγn)‖xn − p‖+ βnγn‖p‖
≤ max{‖xn − p‖, ‖p‖}

for each n ≥ 0. Hence {xn} is bounded. Further {un}, {vn}, {Axn} and {wn}
are also bounded. �

Lemma 3.2. Suppose γ ∈ (0, 2
M2 ). If the sequences {βn} and {γn} satisfy the

following conditions:

(a) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(b) limn→∞ γn = 0 and

∑∞
n=1 γn =∞;

(c)
∑∞

n=1 |γn+1 − γn| <∞ and
∑∞

n=1 |βn+1 − βn| <∞,

then we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖wn − xn‖ = lim
n→∞

‖un −Axn‖ = 0.
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Proof. Since (I − TF2
s ) is 1-inverse strongly monotone, by (3.1), we have

‖wn+1 − wn‖2

= ‖TF1
r vn+1 − TF1

r vn‖2

≤ ‖vn+1 − vn‖2

= ‖(I − γA∗(I − TF2
s )A)xn+1 − (I − γA∗(I − TF2

s )A)xn‖2

= ‖xn+1 − xn‖2 − 2γ〈xn+1 − xn, A∗(I − TF2
s )Axn+1 −A∗(I − TF2

s )Axn〉
+ γ2‖A∗(I − TF2

s )Axn+1 −A∗(I − TF2
s )Axn‖2

= ‖xn+1 − xn‖2 − 2γ〈Axn+1 −Axn, (I − TF2
s )Axn+1 − (I − TF2

s )Axn〉
+ γ2‖A∗(I − TF2

s )Axn+1 −A∗(I − TF2
s )Axn‖2

≤ ‖xn+1 − xn‖2 − 2γ〈Axn+1 −Axn, (I − TF2
s )Axn+1 − (I − TF2

s )Axn〉
+ γ2‖A∗‖2‖(I − TF2

s )Axn+1 − (I − TF2
s )Axn‖2

≤ ‖xn+1 − xn‖2 + γ(γ‖A‖2 − 2)‖(I − TF2
s )Axn+1 − (I − TF2

s )Axn‖2

≤ ‖xn+1 − xn‖2

for each n ≥ 0 and hence

‖xn+1 − xn‖
= ‖βn(1− γn)xn + (1− βn)wn − βn−1(1− γn−1)xn−1 − (1− βn−1)wn−1‖
= ‖βn(1− γn)(xn − xn−1) + βn(1− γn)xn−1 + (1− βn)(wn − wn−1)

+ (1− βn)wn−1 − βn−1(1− γn−1)xn−1 − (1− βn−1)wn−1‖
= ‖βn(1− γn)(xn − xn−1) +

(
βn(1− γn)− βn−1(1− γn−1)

)
xn−1

+ (1− βn)(wn − wn−1) + (βn−1 − βn)wn−1‖
≤ βn(1− γn)‖xn − xn−1‖+ (|βn − βn−1|+ |γn−1 − γn|)‖xn−1‖

+ |βn−1 − βn|‖wn−1‖+ (1− βn)‖xn − xn−1‖
≤ (1− βnγn)‖xn − xn−1‖+ (2|βn − βn−1|+ |γn−1 − γn|)M0

for each n ≥ 0, where M0 = max{supn∈N ‖wn‖, supn∈N ‖xn‖}. Thus, by
Lemma 2.6 and the conditions (a)-(c), we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.3)

On the other hand, from (3.3) and (b) it follows that

(1− βn)‖wn − xn‖ = ‖xn+1 − xn + βnγnxn‖
≤ ‖xn+1 − xn‖+ βnγn‖xn‖
→ 0
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as n→∞. This with (a) yields that

lim
n→∞

‖wn − xn‖ = 0. (3.4)

Let

zn = βnxn + (1− βn)wn. (3.5)

By (3.4), we have

‖zn − xn‖ = (1− βn)‖wn − xn‖ → 0 (3.6)

as n→∞. Since TF1
r is firmly nonexpansive, it follows from (3.1) that

‖wn − p‖2 = ‖TF1
r vn − TF1

r p‖2

≤ 〈vn − p, wn − p〉

=
1

2
(‖wn − p‖2 + ‖vn − p‖2 − ‖vn − wn‖2)

and hence

‖wn − p‖2 ≤ ‖vn − p‖2 − ‖vn − wn‖2 (3.7)

for each n ≥ 1. By (3.5) and (3.7), we have

‖zn − p‖2 ≤ βn‖xn − p‖2 + (1− βn)‖wn − p‖2

≤ βn‖xn − p‖2 + (1− βn)(‖vn − p‖2 − ‖wn − vn‖2)

≤ βn‖xn − p‖2 + (1− βn)(‖xn − p‖2 − ‖wn − vn‖2)

= ‖xn − p‖2 − (1− βn)‖wn − vn‖2.

(3.8)

Combing (3.6) and (3.8), we obtain

(1− βn)‖wn − vn‖2 ≤ ‖xn − p‖2 − ‖zn − p‖2

≤ ‖xn − zn‖(‖xn − p‖+ ‖zn − p‖)
→ 0

as n→∞. This with (a) imply that

lim
n→∞

‖wn − vn‖ = 0. (3.9)
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Now by (3.2), we have

‖xn+1 − p‖2

= ‖βn((1− γn)xn − p) + (1− βn)(wn − p)‖2

≤ βn‖(1− γn)xn − p‖2 + (1− βn)‖wn − p‖2

≤ βn‖(1− γn)xn − p‖2 + (1− βn)[‖xn − p‖2

+ γ(γ‖A‖2 − 2)‖(I − TF2
s )Axn‖2]

= βn[‖xn − p‖2 − 2γn〈xn − p, xn〉+ γ2
n‖xn‖2]

+ (1− βn)
[
‖xn − p‖2 + γ(γ‖A‖2 − 2)‖(I − TF2

s )Axn‖2
]

= ‖xn − p‖2 − 2βnγn〈xn − p, xn〉+ βnγ
2
n‖xn‖2

+ γ(1− βn)(γ‖A‖2 − 2)‖(I − TF2
s )Axn‖2

≤ ‖xn − p‖2 − 2βnγn〈xn − p, xn〉+ βnγ
2
n‖xn‖2

+ γ(1− βn)(γM2 − 2)‖(I − TF2
s )Axn‖2.

(3.10)

From (3.3), (3.10) and (b), it follows that

γ(1− βn)(2− γM2)‖(I − TF2
s )Axn‖2

≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖)− 2βnγn〈xn − p, xn〉+ βnγ
2
n‖xn‖2

→ 0

as n→∞. Since 2− γM2 > 0 and lim supn→∞ βn < 1, we have

lim
n→∞

‖(I − TF2
s )Axn‖ = lim

n→∞
‖un −Axn‖ = 0. (3.11)

This completes the proof. �

Now, we give the main results in this paper.

Theorem 3.3. Suppose that the sequences {γn} and {βn} satisfy the con-
ditions in Lemma 3.2. Then the sequence {xn} generated by Algorithm A
strongly converges to the point x∗ = PΩθ, where θ denotes the zero element of
H1.

Proof. Since {xn} is bounded, we can choose a subsequence {xnj} of {xn}
such that

lim sup
n→∞

〈−x∗, xn − x∗〉 = lim
j→∞
〈−x∗, xnj − x∗〉.

Since{xnj} is bounded, there exists a subsequence {xnji
} of {xnj} converging

weakly to a point v ∈ H1. Without loss of generality, we can assume that
xnj ⇀ v as j →∞. From (3.3), (3.4), (3.9) and (3.11), it follows that

wnj ⇀ v, vnj ⇀ v, unj ⇀ Av
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as j →∞. Since {wnj} ⊂ C1 and C1 is closed, it follows that v ∈ C1. Similarly,
Av ∈ C2 since {unj} ⊂ C2.

Now, we show that v ∈ EP1. In fact, since TF1
r is nonexpansive, by (3.1),

(3.9) and Lemma 2.4, we can conclude that v ∈ Fix(TF1
r ). Further, from

Lemma 2.2, it follows that v ∈ EP1. Similarly, by (3.1), (3.11) and Lemma
2.2 we have Av ∈ EP2. Therefore, we have v ∈ Ω. By Lemma 2.4, it follows
that

lim sup
n→∞

〈−x∗, xn − x∗〉 = lim
j→∞
〈−x∗, xnj − x∗〉

= 〈−x∗, v − x∗〉
≤ 0.

(3.12)

Since
xn+1 = zn − βnγnxn

= (1− βnγn)zn + βnγn(zn − xn)

= (1− βnγn)zn + βnγn(1− βn)(wn − xn),

by (3.8) and Lemma 2.4, we have

‖xn+1 − x∗‖2

= ‖(1− βnγn)(zn − x∗) + βnγn[(1− βn)(wn − xn)− x∗]‖2

≤ (1− βnγn)‖zn − x∗‖2 + 2βnγn(1− βn)〈wn − xn, xn+1 − x∗〉
+ 2βnγn〈−x∗, xn+1 − x∗〉
≤ (1− βnγn)‖xn − x∗‖2 + 2βnγn(1− βn)〈wn − xn, xn+1 − x∗〉

+ 2βnγn〈−x∗, xn+1 − x∗〉

(3.13)

for each n ≥ 0. By (a), (b), (3.4), (3.12), (3.13) and Lemma 2.4, we obtain

lim
n→∞

‖xn − x∗‖ = 0.

This completes the proof. �

Since each inverse strongly monotone mapping is monotone and continuous,
we have the following:

Corollary 3.4. Let Hi be a real Hilbert space and Ci be a nonempty bounded
closed convex subset of Hi, Ai : Ci → Hi be a λi-inverse strongly monotone
mapping, and Fi : Ci×Ci → R satisfying the conditions (B1)-(B3), for i = 1, 2.
Let A : H1 → H2 be a bounded linear operator. If the sequences {βn} and {γn}
satisfy the following conditions:

(a) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(b) limn→∞ γn = 0 and

∑∞
n=1 γn =∞;
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(c)
∑∞

n=1 |γn+1 − γn| <∞ and
∑∞

n=1 |βn+1 − βn| <∞,
then the sequence {xn} generated by Algorithm A strongly converges to the
element x∗ = PΩθ, where θ denotes the zero element of H1.

Since each strongly monotone mapping is monotone, we have the following:

Corollary 3.5. Let Hi be a real Hilbert space and Ci be a nonempty bounded
closed convex subset of Hi. Let Ai : Ci → Hi be a strongly monotone and
continuous mapping with the parameter λi > 0, Fi : Ci × Ci → R satisfying
the conditions (B1)-(B3), for i = 1, 2 and A : H1 → H2 be a bounded linear
operator. If the sequences {βn} and {γn} satisfy the following conditions:

(a) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(b) limn→∞ γn = 0 and

∑∞
n=1 γn =∞;

(c)
∑∞

n=1 |γn+1 − γn| <∞ and
∑∞

n=1 |βn+1 − βn| <∞,

then the sequence {xn} generated by Algorithm A strongly converges to a point
x∗ = PΩθ, where θ denotes the zero element of H1.

Remark 3.6. In [1, 12, 25, 26, 29], the parameter is chosen from (0, 2
L2 ), where

L is the spectral radius of the operator A∗A. In this paper, the parameter
γ is chosen by the boundedness above of ‖A‖. Obviously, the parameter γ
is easier to chose. On the other hand, at each step, xn+1 is computed by a
non-convex combination of xn and wn, which is very different with the similar
ones of others in the literature.
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