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Abstract. The purpose of the present paper is to introduce several new classes of meromor-

phic functions defined the generalized Cho-Kwon-Srivastava operator and investigate various

inclusion properties of these classes. Some interesting applications involving these and other

classes of integral operators are also considered.

1. Introduction

Cho et al. [2] introduced new multiplier transformation τnλ,µ by using
Hadamard product in 2004. In literature many authors have concentrated
Cho-Kwon-Srivastava operator such as [9], [18], [19] and other authors studied
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Cho-Kwon-Srivastava operator as [10], [23] but their study related to analytic
function.

Normally, we are considering the class of meromorphic function f of the
form:

f(z) =
1

z
+
∞∑
n=0

anz
n, (1.1)

which are analytic in the punctured open disk U∗ = {z : z ∈ C and 0 <
|z| < 1} = U \ {0} and denoted by Σ.

The Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2)(z) =
1

z
+
∞∑
n=0

an,1an,2z
n = (f2 ∗ f1)(z).

was derived by the two functions fj(z) ∈ Σ (j = 1, 2), which equals

fj(z) =
1

z
+
∞∑
n=0

an,jz
n (j = 1, 2). (1.2)

Several interesting characteristics and properties of Hurwitz-Lerch zeta func-
tion Φ(z, s, a) defined by (see [21])

Φ(z, s, a) =
∞∑
n=0

zn

(n+ a)s
,

a ∈ C \ Z−0 = {0,−1,−2, · · · },{
s ∈ C when |z| < 1;

Re s > 1 when |z| = 1,
(1.3)

had been found in investigations held by several authors (see [8], [14], [22]).

Through the use of [[20], p.1496, Remark 7]:

lim
b→0

{
H2,0

0,2

[
(a+ n)b

1
λ | (s, 1),

(
0,

1

λ

)]}
= λΓ(s) (λ > 0),

we were able to introduce a new family of generalized Hurwitz-Lerch zeta
functions Φ(z, s, a, b, λ) which equates to

Φ(z, s, a, b, λ) =
∞∑
n=0

zn

(n+ a)s
Λ(a+ n, b, s, λ)

λΓ(s)
. (1.4)
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El-Ashwah[8] termed the function of Hs
a(z) (a ∈ C \ Z−0 ; s ∈ C) by

Hs
a(z) =

as

z
Φ(z, s, a) (z ∈ U∗), (1.5)

and Hs,a
λ,b(z) to be represented by

Hs,a
λ,b(z) =

as

z
Φ(z, s, a, b, λ) (z ∈ U∗), (1.6)

with

Λ(a, b, s, λ) := H2,0
0,2

[
ab

1
λ | (s, 1),

(
0,

1

λ

)]
.

We also denote by

Ls,aλ,bf(z) : Σ→ Σ.

The equation

Ls,aλ,bf(z) = Hs,a
λ,b(z) ∗ f(z) (a ∈ C \ Z−0 ; s ∈ C; z ∈ U∗)

can be signified and defined as a new linear operator:

Ls,aλ,bf(z) =
1

z
+

∞∑
n=0

(
a

n+ a+ 1

)s Λ(a+ n, b, s, λ)

λΓ(s)
anz

n, (1.7)

with min{<(a),<(s)} > 0; λ > 0 if R(b) > 0 and s ∈ C and a ∈ C \ Z−0
if b = 0.

This was clear in El-Ashwah’s study [8] which examined that by taking the
limit as b→ 0 one would have obtained Lsaf(z).

Also we note that:
(i) Lαβf(z) = Pαβ f(z) (α, β > 0) (see Lashin[12]);

(ii) Lα1 f(z) = Pαf(z) (α > 0) (see Aqlan et al. [1], with p = 1);
(iii) L1

νf(z) = Fνf(z) (ν > 0) (see[16], p.11 and 389).

The function

Ψ(d, c; z) =
1

z
+

∞∑
n=0

(d)n+1

(c)n+1
zn (d ∈ C∗ = C \ {0}; c ∈ C \ Z−0 ; z ∈ U∗), (1.8)

can be derived when (γ)n also defined as the Pochhammer symbol and the
Gamma function Γ, was represented by

(γ)n :=
Γ (γ + n)

Γ (γ)
=

{
γ (γ + 1) ... (γ + n− 1) , (n ∈ N) ,

1, (n = 0) .
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It was noted that

Ψ(d, c; z) =
1

z
F1(d, 1, c; z),

F1(d, b, c; z) =

∞∑
n=0

(d)n(b)n
(c)n(1)n

zn (d, b, c ∈ C and c /∈ Z−0 ; z ∈ U),

was also defined as the (Gaussian) hypergeometric function.

Set

Ls,aλ,b ∗ F
s,a
λ,b (z) =

1

z(1− z)
,

we have

F s,aλ,b (z) =
1

z
+

∞∑
n=0

(
n+ a+ 1

a

)s λΓ(s)

Λ(a+ n, b, s, λ)
zn. (1.9)

Through the Hadamard product (or convolution), we have

F s,aλ,b (z) ∗ F s,aλ,b (d, c; z) = Ψ(d, c; z) (z ∈ U∗). (1.10)

A new operator F s,aλ,b (d, c; z), was derived from the original operator F s,aλ,b (z).

The linear operator F s,aλ,b (d, c; z) : Σ → Σ, had been verified from the classifi-

cation of the operator F s,aλ,b (d, c; z)f(z), which equaled:

F s,aλ,b (d, c; z)f(z) = F s,aλ,b (d, c; z) ∗ f(z) (s ∈ C; d ∈ C∗; c, a ∈ C \ Z−0 ) (1.11)

and

F s,aλ,b (d, c; z)f(z) =
1

z
+
∞∑
n=0

(d)n+1

(c)n+1

(
a

n+ a+ 1

)s Λ(a+ n, b, s, λ)

λΓ(s)
anz

n.(1.12)

It is easily verified from the definition of the operator F s,aλ,b (d, c; z)f(z), that

z(F s+1,a
λ,b (d, c; z)f(z))′ = aF s,aλ,b (d, c; z)f(z)− (a+ 1)F s+1,a

λ,b (d, c; z)f(z) (1.13)

and

z(F s,aλ,b (d, c; z)f(z))′

= dF s,aλ,b (d+ 1, c; z)f(z)− (d+ 1)F s,aλ,b (d, c; z)f(z) (d ∈ C \ {−1}). (1.14)

Clearly, upon setting d = µ and c = 1 in (1.12) and taking the limit as
b → 0, we obtain the operator Isa,µf(z) (a, µ ∈ R+, s ∈ N0 = N ∪ {0}) (see
Cho et al. [4]).
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Allowing f and g to be analytic in U . it can be concluded that f is sub-
ordinate to g and would be written as f ≺ g or f(z) ≺ g(z). The Schwarz
function ω in U presented the formula f(z) = g(ω(z)).

To further substantiate the existence of 0 ≤ η and β < 1, three key terms
and their subclasses had to be addressed. The mathematical terms and their
meromorphic functions which were subclasses of Σ included MS(η) starlike
of order η, MK(η) convex of order η and ML(η, β) close-to-convex of order
β and type η in U ([11],[13],[16]).

In this context, N indicated the class of all functions φ which were analytic
and univalent in U , whereby φ(U) was convex with φ(0) = 1 and Re{φ(z)} >
0(z ∈ U).

Through the use of the principle of subordination between analytic func-
tions, the subclasses MS(η, φ), MK(η, φ) and ML(η, β;φ, ψ) of the class Σ
were introduced respectively for 0 ≤ η, β < 1 and φ, ψ ∈ N , which had been
defined by

MS(η, φ) :=

{
f ∈ Σ :

1

1− η

(
−zf

′(z)

f(z)
− η
)
≺ φ(z) in U

}
,

MK(η, φ) :=

{
f ∈ Σ :

1

1− η

(
−
{

1 +
zf ′′(z)

f ′(z)

}
− η
)
≺ φ(z) in U

}
and

ML(η, β;φ, ψ) :=

{
f ∈ Σ :∃g ∈MS(η, φ) s.t.

1

1− β

(
−zf

′(z)

g(z)
− β

)
≺ ψ(z) in U

}
.

It was noted that the classes mentioned above were similar to those com-
monly applied on the space of analytic and univalent functions in U ([5],[15]).

Subclasses of Σ entails special choices for the functions of φ and ψ as:

MS
(
η;

1 + z

1− z

)
=MS(η),

MK
(
η;

1 + z

1− z

)
=MK(η)

and

ML(η, β;
1 + z

1− z
,
1 + z

1− z
) =ML(η, β).
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For example, through the use of operator F s,aλ,b (d, c; z), classes of meromor-

phic functions for φ, ψ ∈ N ,λ > 0 and 0 ≤ η, β < 1 we have:

MSd,a(s, λ, η, φ) :=
{
f ∈ Σ : F s,aλ,b (d, c; z)f ∈MS(η, φ)

}
,

MKd,a(s, λ, η, φ) :=
{
f ∈ Σ : F s,aλ,b (d, c; z)f ∈MK(η, φ)

}
,

and

MLd,a(s, λ, η, β;φ, ψ) :=
{
f ∈ Σ : F s,aλ,b (d, c; z)f ∈ML(η, β;φ, ψ)

}
were presented. We also note that

f(z) ∈MKd,a(s, λ, η, φ)⇔ −zf ′(z) ∈MSd,a(s, λ, η, φ). (1.15)

In particular, we set

MSd,a
(
s, λ, η,

1 +Az

1 +Bz

)
=:MSd,a (s, λ, η, A,B) (−1 < B < A ≤ 1)

and

MKd,a
(
s, λ, η,

1 +Az

1 +Bz

)
=:MKd,a (s, λ, η, A,B) (−1 < B < A ≤ 1).

In this paper, we investigated several inclusion properties of the classes
MSd,a(s, λ, η, φ),MKd,a(s, λ, η, φ) andMLd,a(s, λ, η, β;φ, ψ) associated with
the operator F s,aλ,b (d, c; z). Some applications involving the integral operators

had been considered by the previous works such that [3] and [8].

2. Inclusion properties involving the operator F s,aλ,b (d, c; z)

The results that followed were required in the investigation.

Lemma 2.1. ([6]) Let φ be convex univalent in U with φ(0) = 1 and Re{Kφ(z)+
ν} > 0 (K, ν ∈ C). If p is analytic in U with p(0) = 1, then

p(z) +
zp′(z)

Kp(z) + ν
≺ φ(z) (z ∈ U)

implies

p(z) ≺ φ(z) (z ∈ U).
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Lemma 2.2. ([17]) Let φ be convex univalent in U and ω be analytic in U
with Re{ω(z)} ≥ 0. If p is analytic in U and p(0) = φ(0), then

p(z) + ω(z)zp′(z) ≺ φ(z) (z ∈ U)

implies

p(z) ≺ φ(z) (z ∈ U).

Firstly, with the assistance provided by Lemma 2.1, several key theorems
were highlighted and explained.

Theorem 2.3. Let φ ∈ N with

max
z∈U

Re{φ(z)} < min

{
Re(d) + 1− η

1− η
,
Re(a) + 1− η

1− η

}
,

for Re(d), Re(a) > 0; 0 ≤ η < 1. Then we have

MSd+1,a(s, λ, η, φ) ⊂MSd,a(s, λ, η, φ) ⊂MSd,a(s+ 1, λ, η, φ).

Proof. Theorem 2.3 was derived by adding f ∈MSd+1,a(s, λ, η, φ) with setting

p(z) =
1

1− η

(
−
z(F s,aλ,b (d, c; z)f(z))′

F s,aλ,b (d, c; z)f(z)
− η

)
, (2.1)

where p is analytic in U with p(0) = 1. Applying (1.14) and (2.1), we obtain

1

1− η

(
−
z(F s,aλ,b (d+ 1, c; z)f(z))′

F s,aλ,b (d+ 1, c; z)f(z)
− η

)

= p(z) +
zp′(z)

−(1− η)p(z) + d+ 1− η
(z ∈ U). (2.2)

Since maxz∈U Re{φ(z)} < Re(d)+1−η
1−η (Re(d) > 0; 0 ≤ η < 1; z ∈ U), we note

that
Re{−(1− η)φ(z) + a+ 1− η} > 0 (z ∈ U).

The second part of Theorem 2.3 which incorporated Lemma 2.1 to (2.2)
shown as p ≺ φ, so that f ∈ MSd,a(s, λ, η, φ), was completed when it was
proven through the application of similar arguments detailed in point (1.13).

�

Theorem 2.4. Let φ ∈ N with

max
z∈U

Re{φ(z)} < min

{
Re(d) + 1− η

1− η
,
Re(a) + 1− η

1− η

}
,



942 K. A. Challab, M. Darus and F. Ghanim

for Re(d), Re(a) > 0; 0 ≤ η < 1. Then we have

MKd+1,a(s, λ, η, φ) ⊂MKd,a(s, λ, η, φ) ⊂MKd,a(s+ 1, λ, η, φ).

Proof. The utilization seen in (1.15) and Theorem 2.3 proved the outcome
found in Theorem 2.4, that is

f(z) ∈MKd+1,a(s, λ, η, φ)⇔ −zf ′(z) ∈MSd+1,a(s, λ, η, φ)

⇒ −zf ′(z) ∈MSd,a(s, λ, η, φ)

⇔ f(z) ∈MKd,a(s, λ, η, φ)

and

f(z) ∈MKd,a(s, λ, η, φ)⇔ −zf ′(z) ∈MSd,a(s, λ, η, φ)

⇒ −zf ′(z) ∈MSd,a(s+ 1, λ, η, φ)

⇔ f(z) ∈MKd,a(s+ 1, λ, η, φ),

which evidently proves Theorem 2.4. �

Taking

φ(z) =
1 +Az

1 +Bz
(−1 < B < A ≤ 1; z ∈ U)

whereby both Theorems equates to

Corollary 2.5. Let

(A+ 1)

(B + 1)
< min

{
Re(d) + 1− η

1− η
,
Re(a) + 1− η

1− η

}
,

Re(d), Re(a) > 0; 0 ≤ η < 1; −1 < B < A ≤ 1.

Then

MSd+1,a(s, λ, η;A,B) ⊂MSd,a(s, λ, η;A,B) ⊂MSd,a(s+ 1, λ, η;A,B)

and

MKd+1,a(s, λ, η;A,B) ⊂MKd,a(s, λ, η;A,B) ⊂MKd,a(s+ 1, λ, η;A,B).

The following inclusion relation for the class MLd,a(s, λ, η, β;φ, ψ) was at-
tained through from Lemma 2.2.

Theorem 2.6. Let φ, ψ ∈ N with

max
z∈U

Re{φ(z)} < min

{
Re(d) + 1− η

1− η
,
Re(a) + 1− η

1− η

}
,
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for Re(d), Re(a) > 0; 0 ≤ η < 1. Then

MLd+1,a(s, λ, η, β;φ, ψ) ⊂MLd,a(s, λ, η, β;φ, ψ)

⊂MLd,a(s+ 1, λ, η, β;φ, ψ).

Proof. The inclusion of Theorem 2.6 had been verified by going through the ad-
dition of f ∈MLd+1,a(s, λ, η, β;φ, ψ) which formed the definition ofMLd+1,a

(s, λ, η, β;φ, ψ), that indicate the function of g ∈MSd+1,a(s, λ, η, φ) as

1

1− β

(
−
z(F s,aλ,b (d+ 1, c; z)f(z))′

F s,aλ,b (d+ 1, c; z)g(z)
− β

)
≺ ψ(z) (z ∈ U).

Now let

p(z) =
1

1− β

(
−
z(F s,aλ,b (d, c; z)f(z))′

F s,aλ,b (d, c; z)g(z)
− β

)
, (2.3)

where p is analytic in U with p(0) = 1. Using (1.14), we obtain

1

1− β

(
−
z(F s,aλ,b (d+ 1, c; z)f(z))′

F s,aλ,b (d+ 1, c; z)g(z)
− β

)

=
1

1− β


z(F s,aλ,b (d,c;z)(−zf

′(z)))′

F s,aλ,b (d,c;z)g(z)
+ (d+ 1)

F s,aλ,b (d,c;z)(−zf
′(z))

F s,aλ,b (d,c;z)g(z)

z(F s,aλ,b (d,c;z)g(z))
′

F s,aλ,b (d,c;z)g(z)
+ d+ 1

− β

 . (2.4)

Theorem 2.3 indicates g ∈MSd+1,a(s, λ, η, φ) ⊂MSd,a(s, λ, η, φ),

q(z) =
1

1− η

(
−
z(F s,aλ,b (d, c; z)g(z))′

F s,aλ,b (d, c; z)g(z)
− η

)
, (2.5)

was set, where q ≺ φ in U had been assumed as φ ∈ N . By virtue of (2.3),
(2.4) and (2.5), that

1

1− β

(
−
z(F s,aλ,b (d+ 1, c; z)f(z))′

F s,aλ,b (d+ 1, c; z)g(z)
− β

)

= p(z) +
zp′(z)

−(1− η)q(z) + d+ 1− η
≺ ψ(z) (z ∈ U) (2.6)

had been discerned. Since Re(d) > 0 and q ≺ φ in U with maxz∈U Re{φ(z)} <
Re(d)+1−η

1−η , we have

Re{−(1− η)q(z) + d+ 1− η} (z ∈ U).

Furthermore, taking
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ω(z) =
1

−(1− η)q(z) + d+ 1− η
in (2.6), and applying Lemma 2.2, revealed that p ≺ ψ in U , and f ∈
MLd,a(s, λ, η, β;φ, ψ) attributed to the second inclusion through similar points
detailed above with (1.13). Therefore, the proof of Theorem 2.6 is com-
pleted. �

3. Inclusion properties involving the integral operator Fµ

This section had been considered as the integral operator Fµ (see, e.g., [11])
defined by

Fµ(f) := Fµ(f)(z) =
µ

zµ+1

∫ z

0
tµf(t)dt (f ∈ N ;µ > 0). (3.1)

The definition of Fµ defined by (3.1) is given as the following:

z(F s,aλ,b (d, c; z)Fµ(f)(z))′ = µF s,aλ,b (d, c; z)f(z)− (µ+ 1)F s,aλ,b (d, c; z)Fµ(f)(z).

Theorem 3.1 discussed below, exhibited proof, similar to that of Theorem
2.3.

Theorem 3.1. Let φ ∈ N with

max
z∈U

Re{φ(z)} < µ+ 1− η
1− η

(µ > 0; 0 ≤ η < 1).

If f ∈MSd,a(s, λ, η, φ), then Fµ(f) ∈MSd,a(s, λ, η, φ).

Next, an inclusion property involving F was derived, which had been ob-
tained by applying (1.15) and Theorem 3.1.

Theorem 3.2. Let φ ∈ N with

max
z∈U

Re{φ(z)} < µ+ 1− η
1− η

(µ > 0; 0 ≤ η < 1).

If f ∈MKd,a(s, λ, η, φ), then Fµ(f) ∈MKd,a(s, λ, η, φ).

From Theorems 3.1 and 3.2, we gathered

Corollary 3.3. Let 1+A
1+B < µ+1−η

1−η (µ > 0;−1 < B < A ≤ 1; 0 ≤ η < 1). If

f ∈MSd,a (s, λ, η, A,B) (orMKd,a (s, λ, η, A,B), then

Fµ(f) ∈MSd,a (s, λ, η, A,B) (orMKd,a (s, λ, η, A,B)).
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Finally, we obtain Theorem 3.4 as stated below, was collected by using the
same techniques as in the proof of Theorem 2.6.

Theorem 3.4. Let φ, ψ ∈ N with

max
z∈U

Re{φ(z)} < µ+ 1− η
1− η

(µ > 0; 0 ≤ η < 1).

If f ∈MLd,a(s, λ, η, β;φ, ψ), then Fµ(f) ∈MLd,a(s, λ, η, β;φ, ψ).

4. Conclusion

This paper defined a new operator for the class of meromorphic univalent
functions via the principle of subordination. Some inclusion properties had
been given. Many other results can be showed as [2], [3], [4], [7], [8].

Acknowledgement: The work here is supported by MOHE grant:
FRGS/1/2016/STG06/UKM/01/1.

References

[1] E. Aqlan, J.M. Jahangiri, and S.R. Kulkarni, Certain integral operators applied to mero-
morphic p-valent functions, J. of Natural Geometry, 24(1/2) (2003), 111–120.

[2] N.E. Cho and I.H. Kim, Inclusion and argument properties for certain classes of mero-
morphic functions associated with a family of multiplier transformations, Jour. Math.
Anal. Appl., 300(2) (2004), 505–520.

[3] N.E. Cho and I.H. Kim, Inclusion properties of certain classes of meromorphic functions
associated with the generalized hypergeometric function, Appl. Math. Comp., 187(1)
(2007), 115–121.

[4] N.E. Cho, O.S. Kwon and H.M. Srivastava, Inclusion relationships for certain subclasses
of meromorphic functions associated with a family of multiplier transformations, Inte.
Tran. Spec. Func., 16(8) (2005), 647–659.

[5] J.H.Choi, M.Saigo and H.M.Srivastava, Some inclusion properties of a certain family of
integral operators, Jour. Math. Anal. Appl., 276(1) (2002), 432–445.

[6] P.Eenigenburg, P.T. Mocanu, S.S. Miller and M.O. Reade, On a briot-bouquet differen-
tial subordination, In General Inequalities, 3 (1983), 339–348.

[7] R.M.El-Ashwah, Inclusion relationships for certain subclasses of meromorphic functions
defined by using the extended multiplier transformations, ISRN Math. Anal., 2012
(2012), 1-13.

[8] R.M.El-Ashwah, Inclusion properties regarding the meromorphic structure of Srivastava-
Attiya operator, Sout. Asia. Bull. Math., 38(4) (2014), 501-512.

[9] F. Ghanim and M. Darus, A class of meromorphically analytic functions related to Cho-
Kwon-Srivastava operator with applications to generalized hypergemetric functions, AIP
Conference Proc., 1602(1) (2014), 886–892.

[10] S. Kavitha, S. Sivasubramanian and R. Jayasankar, Differential subordination and su-
perordination results for Cho-Kwon-Srivastava operator, Comp. and Math. with Appl.,
64(6) (2012,) 1789–1803.



946 K. A. Challab, M. Darus and F. Ghanim

[11] V. Kumar and S.L. Shukla, Certain integrals for classes of p-valent meromorphic func-
tions, Bull. Aust. Math. Soc., 25(01) (1982), 85–97.

[12] A.Y.Lashin, On certain subclasses of meromorphic functions associated with certain
integral operators, Comp. and Math.with Appl., 59(1) (2010), 524–531.

[13] R.J. Liber, M.S. Robertson and others, Meromorphic close-to-convex functions, Michi-
gan Math. J., 8(2) (1961), 167-175.

[14] Q.M. Luo and H.M. Srivastava, Some generalizations of the Apostol–Bernoulli and
Apostol–Euler polynomials, Jour. Math. Anal. Appl., 308(1) (2005), 290–302.

[15] W. Ma and D. Minda, An internal geometric characterization of strongly starlike func-
tions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 45 (1991), 89–97.

[16] S.S. Miller and P.T. Mocanu, Diff. subordinations: theory and applications, CRC Press,
(2000).

[17] S.S. Miller, P.T. Mocanu et al, Differential subordinations and univalent functions,
Michigan Math. J., 28(2) (1981), 157–172.

[18] T. Panigrahi, A subclass of multivalent meromorphic functions associated withitertions
of the Cho-Kwon-Srivastava operator, Palestine Jour. of Math., 4(1) (2015). 57-64.

[19] K. Piejko and J. Sokol, subclass of meromorphic functions associated with the Cho-
Kwon-Srivastava operator, Jour. Math. Anal. Appl., 337(2) (2008), 1261–1266.

[20] P. Sharma, J.K. Prajapat and R.K. Raina, Certain subordination results involving a
generalized multiplier transformation operator, Jour. Clas. Anal., 2(1) (2013), 85–106.

[21] H.M. Srivastava and J. Choi, Series associated with the zeta and related functions,
Springer Science & Business Media, 530 (2001), 1-92.

[22] H.M. Srivastava, S. Gaboury and F. Ghanim, Certain subclasses of meromorphically uni-
valent functions defined by a linear operator associated with the λ-generalized Hurwitz–
Lerch zeta function, Inte. Tran. Special Func., 26(4) (2015), 258–272.

[23] Z.G. Wang, R. Aghalary, M. Darus and R.W. Ibrahim, Some properties of certain mul-
tivalent analytic functions involving the Cho-Kwon-Srivastava operator, Math. Comp.
Mode., 49(9) (2009), 1969–1984.


