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fixed point theorems together with the definition of a suitable Banach space and appropriate
conditions for subsets to be relatively compact in this space. Two illustrative examples are

given.

1. INTRODUCTION

In this paper, we consider the following m-order nonlinear integrodifferential
equation in two variables

u(z,y) = g(z,y) + //Q K(x,y,s,t;u(s,t), Diu(s,t), ..., D{*u(s,t))dsdt, (1.1)

where (x,y) € 2 = [0,1] x [0,1] and g : @ - R, K : Q x Q x R™"*l - R
are given functions. Denote by Diu = g;%’ the partial derivative of order
i =1,...,m of a function u defined on 2, with respect to the first variable.

It is well known that integral and integrodifferential equations have at-
tracted the interest of scientists not only because of their major role in the
fields of functional analysis but also because of their important role in nu-
merous applications, for example, mechanics, physics, population dynamics,
economics and other fields of science, see Corduneanu [8], Deimling [9].

There are many different methods to solve the integral and integrodifferen-
tial equations (see, for example, see [1]-[23] and the references given therein).
In [3], his homotopy perturbation method was applied to solve linear and
nonlinear systems of integro-differential equations. In [20], based on the appli-
cations of the well-known Banach fixed point theorem coupled with Bielecki
type norm and a certain integral inequality with explicit estimate, Pachpatte
proved uniqueness and other properties of solutions of the following Fredholm
type integrodifferential equation

b
x(t) = g(t) +/ f(t,s,x(s),x’(s),...,x(”_l)(s))ds, t € la,b],

where x, g, f are real valued functions and n > 2 is an integer. With the
same methods, Pachpatte studied the existence, uniqueness and some basic
properties of solutions of the Fredholm type integral equation in two variables
as follows (see [21]):

a rb
U(Sﬂ,y) = f(1:7y) +/0 /0 g (IL',y,S,t,U(S,t),Dlu(S,t),DQU(S,t)) dtds.

Abdou et al. also considered the existence of integrable solution of nonlinear
integral equation, of type Hammerstein-Volterra of the second kind, by using
the technique of measure of weak noncompactness and Schauder fixed point
theorem (see [2]).
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Recently, in [10]-[12], [15]-[19], using tools of functional analysis and a
fixed point theorem of Krasnosel’skii type, we have investigated solvability
and asymptotically stable of nonlinear functional integral equations on one
variable or two variables, or N variables.

In the base of the above works, we consider (1.1). This paper is organized as
follows. In section 2, we present some preliminaries. It consists of the definition
of a suitable Banach space and a sufficient condition for relatively compact
subsets. In section 3, by applying the Banach theorem and the Schauder
theorem, we prove two existence theorems. Furthermore, the compactness of
solutions set is also proved. In order to illustrate the results obtained here,
two examples are given.

2. PRELIMINARIES

First, we construct an appropriate Banach space for (1.1) as follows. By
X = C(4;R), we denote the space of all continuous functions from € into R
equipped with the following norm

lull x = sup |u(z,y)|, u e X. (2.1)
(z,y)en
Put
Xp={ueX=C(;R): Diuc X, i=12..,m} (2.2)

We remark that
CHOGERN\X # 6, Xn\CHR) # ¢, Xpn N CHYR) # 6,

for all m = 2,3, ...
Indeed,

(i) We have u = u(z,y) = |z — 3| (z — %) |y — 3| (y — 3) € C*(;R), but
ué¢ X,
(ii) We also have v = v(z,y) = 2™ |y — 1| € Xy, but v ¢ CH (4 R).
(iii) With w(z,y) = e**Y, we have w € X,, N C1(;R), so

X NCHLR) # 6.

We shall need the following lemma, the proof of which can be found in [10,
p.266-267].

Lemma 2.1. ([10]) X,, is a Banach space with the norm defined by

lullx,, = llullx + Z [Diully, u€ Xp. (2.3)

Next, we give a sufficient condition for relatively compact subsets of X,,.



986 H. T. H. Dung, P. H. Danh, L. T. P. Ngoc and N. T. Long

Lemma 2.2. Let F C X,,. Then F is relatively compact in Xy, if and only
if the following conditions are satisfied

(i) 3M > 0: ||lully, <M, Vue F;
(ii) Ve >0, 30 > 0: V(z,y), (Z,7) € Q,

lz—Z|+ly-yl<s = sup [u(z,y) —u(z,y)], <e, (2.4)
ue

where we denote [u(z,y)], = u(z,y)| + > |Diu(z,y)|.
i=1

Proof. Let F be relatively compact in X,,,. Then F is bounded, so (2.4) (i) is
true. Now, we show that (2.4) (ii) is also true.
For every € > 0, considering a collection of open balls in X,,, with center

at u € F and radius g, as follows

€ €
B(u, §) ={u€ Xpm:[lu—1ly < g}, ueF.
It is clear that F C |J B(u, 5). Because F compact in X,,, the open cover
ueF

U B(u, §) of F contains a finite subcover, so there are uy, ...,uq € F such
ueF
that

ES q 3

By the functions u;, Diuj, i1=1,...,m,j=1,...,q are uniformly continuous on
Q, there exists § > 0 such that, for all (z,v), (z,9) € Q, |z —Z| + |y — g| < I,
we have
_ € .
[u](xvy) - U‘J(xay)]* < ga Vj = 17 - g
For allu € F,u € B(uj, §) for some j = 1,...,q. Thus, for all (z,y), (Z,7) € ,
if |z — Z| + |y — g| < 6 then we obtain
[u(az,y) - u(jvg)]* < [u(m,y) - uj(xvy)]* + [uj(l"y) - uj(jvg)]*
< 2w =l A+ w2, y) —ui(Z,9)],
3 3 7
It implies that (2.4) (ii) is true.

<

Conversely, suppose that the conditions (i), (ii) hold. To prove that F is
relatively compact in X,,, let {u,} be a sequence in F, we show that {u,}
contains a convergent subsequence. By (2.4), Fi = {u, : p € N} and F} =
{Dll'up : p € N} are uniformly bounded and equicontinuous in X. Applying
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the Ascoli-Arzela theorem to Fi, it is relatively compact in X, so there exists
a subsequence {uy, } of {u,} and u € X such that

Up, — ||y — 0, as k — oo.
Dk X

Note that {Diu,, : k € N} C Fi is also uniformly bounded and equicontin-
uous in X, so it is also relatively compact in X. We obtain the existence of
a subsequence of {Djuy, }, denoted by the same symbol, and w® € X, such
that

HD’iupk —w®

— 0, as k — oo.
X

Since .
Up,, (T, ) — up, (0,9) :/0 Dyuy, (s,y)ds, V(z,y) € Q,

furthermore |Jup, — ully — 0 and ||Diu,, — w(l)HX — 0, we obtain
u(z,y) —u(0,y) = /Ox wWV (s,y)ds, Y(z,y) € Q.
It gives Dju = w® e X. Let Diu = w®,i=1,2,...,7 < m. We have
D) = Diug(0.9) = [ DI uylo)ds, Vo) €2 (25)

Since || Dju, — Djullyy — 0 and || D} u, — w(T’Ll)HX — 0, (2.5) leads to

Diu(e.y) - Diul0.9) = [ ws.p)ds, Yog) €2 (20
0

Then D}ty = w1 € X. By induction, we deduce that Diu = w(®, i =
1,2,...,m. Therefore u € X,, and up, — v in X,,. This completes the proof.
O

3. THE EXISTENCE THEOREMS

We make the following assumptions.

(A1) g € X,
(A2) K € C(Q x Q x R™TLR), such that
0K 9K 0"K
e e A QxQxR™ELR
dx " 0x?’ ’8567”60( Sl iR),
and there exist nonnegative functions kg, k1, ...,k : © x © — R satis-
fying

(i) B=> sup [[qki(z,y,s, t)dsdt <1,
i=0 (z,y)€Q
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(ii) Y(z,y,5,t) € Q x Q, V(ug, U1, ey U ), (To, U1, vy Uy ) € RTHL,

|K(l’,y, S, t;u(]aula aum) - K('Iv Y, Svt; I_L(), ala ceey am)|

m
S kO(xayVS?t)Z ’u] _ﬁj‘7

=0
(iii) Y(z,y,s,t) € Q x Q, Y(ug, U1, ..., unm), (o, U1, ..., Up) € RMHL,

K IK _
o —(x,y, 8, t;up, U1, ..., Up,) — e —(x,y, s, t;Up, Ut .., Upm,)

m
< ki($7y737t) Z |uj - ﬂj’ )
=0

Theorem 3.1. Let the functions g, K in (1.1) satisfy the assumptions (Ay),

(A2). Then the equation (1.1) has a unique solution in X,,.

Proof. For every u € X,,, we put

(Au)(z,y) = g(z,y) (3.1)

+/ K(z,y,s,t;u(s,t), Dyu(s,t), ..., D{"u(s, t))dsdt, (z,y) € Q.
Q

It is obvious that Au € X,,,. We shall show that A : X,,, — X, is a contraction

map, by proving

|Au — Aally, < Bllu—1alx, , Yu, @ € Xp. (3.2)

For any u, u € X,,, and (z,y) € , from (A2)-(ii), (3.1) leads to
|(Au)(z,y) — (Au)(z,y)|
< // |K(x,y, s, t;u(s,t), Diu(s,t), ..., D7*u(s,t))
Q

—K(z,y,s,t;u(s,t), Dra(s,t), ..., D" a(s, t))| dsdt

< // ko(x,y, s, t) g ‘D{u(s,t) - D{ﬂ(s,t)‘ dsdt
Q -
Jj=0

sup // ko(z,y,s,t)dsdt | [[u —uly, -
z,y) R

Hence we have

|Au — Aal|y < ( sup // ko(z,y, s,t) dsdt) lu—aly, - (3.3)

z,Y)EN
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Similarly, by
Di(Au)(z,y) = Dig(z,y)
'K m
+ W(:c, y, s, t;u(s, t), Diu(s,t), ..., D"u(s, t))dsdt,
Q X

and (Az)-(ii) we obtain
}D’i(Au>(9{:, y) — Di(Aa)(z,y)|

; %(x,y,s,t;u(s,t),Dlu(s,t),...,D’lnu(s,t))
8’K

- (a? y, s, t;u(s,t), Dru(s,t), ..., D" a(s,t))| dsdt

// :cy,st ‘Dj (s,t) — Dj (s, t)‘dsdt
sup // (z,y,s,t)dsdt | [[u—ullx -
z,y)€Q
Hence we have

||D§(Au) —Di(Aﬂ)HX < ( sup / ki(z,y,s,t) dsdt) |u—aly, - (3.4)

(z,y)€Q
From (3.3) and (3.4), we have (3.2). Applying the Banach fixed point theorem,
Theorem 3.1 is proved. O

Next, we also obtain the existence of solutions of (1.1) in X,, via the
Schauder fixed point theorem, by making the following assumptions.

(Al) g€ Xma
(A3) K € C(Q x Q x R™TLR), such that
0K 0°K  0"K
Ox’ 92277 dam
and there exist nonnegative functions ko, ki, ..., km :  x  — R satis-
fying

(i) B = Z sup ffg (z,y,s,t)dsdt < 1,
=0 (z,y)€

€ C(Q x Qx R™LR),

_ m
(11) |K($7y75>t; anulv"'aum)| < kg(:r:,y,s,t) <1 + Z u]|> )
j=0

v(x7y’s’t) € Qx Q’ v(u()?ula 7um) S Rm+17
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o | o
(iil) |5,

_ m
i(mayvsvt; u07u17""um) < kiz'((L‘,y,S,t) <1 + Z |U]’> )

j=0
Y(z,y,5,t) € QxQ, Y(ug,ut, ..., up,) € R™TL G =1,2...0m
Theorem 3.2. Let the functions g, K in (1.1) satisfy the assumptions (A1),

(A). Then the equation (1.1) has a solution in X,,. Furthermore, the set of
solutions is compact.

Proof. With the operator A as in (3.1), it is clear that A : X, — X,,. For
M > 0, we define a closed ball in X,,, as follows:

Bu = {u € Xt |Jullx, < M}.

We shall show that there exists M > 0 such that A : By; — Bjy. For every
u € By and (z,y) € Q, we have

|(Au)(z,y)| < |g9(z,y)] +/ |K(x,y,s,t;u(s,t), Diu(s,t), ..., DT"u(s, t))| dsdt

< lly + / /Q Fo(e,y,s1) (1+ ||u||Xm) dy

<llglly + (1 + M) [ sup //koacy,stdsdt
(z,y)eQ

It implies that

z,y) €N

lAullx < llglly + (1+ M) ( sup [ / Fole, v, 5.1) dsdt> (3.5)

Similarly,

|Di(Au)(z,y)| < |Dig(z,y)]
K .. 0). Dy, ), D (5,1
s

“Jhlas

§HDigHX+(1+M < sup // (z y,stdsdt)
(z,y)eR
so we have

HDﬁ(AU)HX < HDZigHX +(1+ M) ( sup // (x,y,s,t) dsdt) (3.6)

z,y)EN

dsdt
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Therefore, we have

Aull, < lglx, +(1+M)> sup / / (o, g5 Ddsdt (3.7)
i—0 (z,y)EQ

<llgllx,, + 1 +M)B.

Choosing M > gl + (1+ M) B, ie. M > w ,then A : By — By
Now we show that two conditions as below are satlsﬁed
(i) A: By — Bjy is continuous.
(ii) F = A(By) is relatively compact in X,,.
To prove (i), let {up} C B, |lup —ully, — 0, as m — oo, we need to show
that

| Aup, — Aul| — 0 and Z HDZi(Aup) Di(Au) HX — 0, asp — o00. (3.8)
i=1
Note that

|(Aup) (2, y) = (Au)(z, y)| (3.9)

é / ’K(l‘, y7 Sa t7 Up(S, t)v Dlup('S’ t)v ey Dinup(sv t))
Q
—K(x,y, s, t;u(s,t), Dyu(s,t), ..., D"u(s, t))| dsdt.

Since K is uniformly continuous on € x Q x [—~M, M|™*1 for ¢ > 0, there
exists 6 > 0 such that, for all (ug, w1, ..., Un), (o, U1, ..., Um) € [—M, M]™T!
and (z,y,s,t) € Q x Q,

m

Z |u1 — ’le| <46

i=0

= |K(z,y, s, t;up, U1, ..., Um) — K(x,9, 8,t; Ug, U1, ..., Um)| < €.

Since |lup — ully — 0 and Z | Diup — Diul|, — 0, there is py € N such that

for all p € N with p > pg,
m
Jup — ullx + Z HD?l“p - DWHX <.
i=1
It implies that for all p € N with p > py and (z,y,s,t) € Q x £,
|K(x7y>Svt;up(s7t)7D1up(37t)7 ey rinup(svt))
_K(:‘Cayvsat;u(sat)aDlu(57t)a ceey inu(sat))‘ <e.
Hence we have
|(Aup) (2, y) — (Au)(z,y)| <&, Y(z,y) € Q, Vp > po.
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It means that
[Aup — Aullx <&, Vp = po, (3.10)
i.e., [[Au, — Aully — 0, as p — co. By the same argument, we obtain that
HD%(Aup) D' (Au) HX 0,
as p — oo, for each i =1, ...,m.

To prove (ii), we use Lemma 2.2. Condition (2.4) (i) holds because of F =
A(Bar) C By It remains to show (2.4) (ii). We note that

(Au)(z,y) — (Au)(Z,7) (3.11)
=g(z,y) — 9(z,7)
// (x,y, s, t;u(s,t), Diu(s,t),..., D" u(s,t))
— K(z,9,s,t;u(s,t), Diu(s,t), ..., DT"u(s, t))] dsdt,

for all (x,y), (Z,y) € Q, u € By. Let € > 0. By the fact that K is uniformly
continuous on 2 x Q x [~ M, M|™*! there exists ; > 0 such that for all (z,y),
(z,9) € Q,

|z =2+ [y —y| <

= | K (z,y, 8, t; U0, UL, ooy Upn) — K (T, 7, S, 5 U0, ULy eevy Uy )| <

)

=1 M

for all (s,t;ug, U, ..., Up) € X [=M, M]™FL. Then, for all (z,y), (Z,7) € Q,
[z — 2+ |y — y| <6 = [K(2,y, s, t;u(y), Diw(y), ..., DT"u(y))
~K (2,5, 5,t;u(y), Dru(y), ... D'u(y))] < 7.
for all (s,t,u) € Q x Bys. Hence, for all (z,y), (z,7) € £,
|z —2|+ |y —y| <&
— / [ 1K 5.t 0). Diuty). o D)
K(z,y,s,t;u(y), Diu(y), ..., D" u(y))| dsdt < , Yu € By
Since g is also uniformly continuous on €2, there is do > 0 such that
V(@) (#.9) €Q, |z =3 +ly -9l < 82 = lg(e.y) — 9(5.9)] < 7.
Choose §; = min{dy, &2}, it gives for all (z,v), (Z,7) € Q,

- €
|z —Z| + |y — g| < 61 = [(Au)(z,y) — (Au)(Z,79)| < ok Vu € By (3.12)
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It is similar to %Zf, Dig, so there is 62 > 0 such that for all (z,y), (Z,7) € Q,
[z — 2|+ |y — g < & (3.13)

i i — €
== |D1(Au)(x,y) - Dl(Au)(ac,y)’ < o Yu € Byy.

It follows that, by choosing 6 = min{dy, d2}, we have, for all (x,v), (Z,7) € €,

[z — 2|+ |y — gl <& = [(Au)(z,y) — (Au)(z,7)], (3.14)
= [(Au)(z, y) — (Au)(z,7)]
+ Y |Di(Au)(2,y) — Di(Au)(z,9)]
i=1

€ €
— — =g, V Byy.
<2+m2 g, Vu € Dy

Using Lemma 2.2, F = A(Bjy) is relatively compact in X,,. And applying
the Schauder fixed point theorem, the existence of a solution is proved.

Next, we show that the set of solutions, S = {u € Bys : u = Au}, is compact
in X,,. By the compactness of the operator A : Byy — By and S = A(S),
we only prove that S is closed. Let {up} C S, [[up — ul[x ~— 0. The continuity
of A leads to

lu = Aully,, <llu—uplx, +llup = Aully

= llu—wllx,, +I[[Aup — Aullx =0,
so u = Au € S. Theorem 3.2 is proved. 0
To the end, we illustrate the results obtained here by two examples.
Example 3.3. We consider (1.1), with the functions g, K as follows
K(CE, Y, s, ta UQ, U1, --- um)

— k(z,y) [(st)ao sin (#}‘gt)) + 3 (s1)" cos (Dﬁﬂi,t)ﬂ C (3.15)

9(e,y) = wo(e,y) = 32 (rgk(e ),
J:

where

w0($,y) =e’ +am |y - O‘{|PY2 ) ki([L‘,y) = ‘Tﬁl |y - 5‘|:Y2 ) (316)
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and «, v1, V2, &, Y1, Y2, Qg, A1, ..., Qy, are positive constants satisfying

O<a<l,0<yn <1, v >m,
0<a<l,0<y <1, %1 >m,

QQ, Qs .nny Qg > 0,
m 1 mo _ ' . N
27 'Zo T <1 + 271 A-1)..(n1—i+ 1)) max{a’?, (1 — &)} < 1.
j= i=
(3.17)
We have
wo(r,y) = e +aM|y—al?,
Diwo(z,y) = e +mnm—1)..(m—it+1)a" " |y—al®,

so wg, Diwy € X and wo(z,y) > 1, Diwg(z,y) > 1. Hence K € C(Q x Q x
R™+1:R). We now prove that (A1), (A2) hold. It is obviously that (A1) holds,
by wo, k € Xp.

Assumption (Asg) holds, by the fact that

First, Dik € X,

0K _ Dik(z,y) |(st)* sin 0 ) 4 i(st)o"' cos _2mus
gzt AT 2wo(s, ) — Diwg(s,t) /) |’
SO %ilf € C(Q x Q x R™TLR);
X
| K (x,y, 8, t;u0, Uty ooy Upn) — K (2,9, S, U0, U1,y .., U (3.18)
7 |lug — u0] ;2T lu; — u
<k t _—
< k(z,y) <<s TN ER +Z Dluo(s.)
m m
< 2mk(z,y) Z]uj—u]\
z:O 7=0
= k(](x7y>37t) Z "LL]' - aj| )
5=0
in which

ko(x,y,s,t) = 2nk(x,y Z (3.19)
7=0
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'K K ~
—— (2, Y, S, LU, ULy ooy Upy) — —— (T, Y, S, £ UQ, Uy vy Uy
ozt ozt
< ki(x>y75at) Z |u,7 - ﬂj| )
§=0
where
ki(w,y,s,t) = 27 | Dik(z,y)| > (st)™
=0
We have
// ki(x,y,s,t)dsdt = 2m ‘Dzlk(x,y)‘ Z// (st)¥ dsdt
Q par )
= 27’[’§: # }Dik:(x y)l
= 1+« ’
m 1 .
< 2%2 sup |Dik(z,y)|.

( +aj) (z,y)EN

<.
Il
o

We also have the following lemma, it is clear, so we omit its proof.

995

(3.20)

(3.21)

(3.22)

Lemma 3.4. Let positive constants o, yo, v1 satisfy0 <a <1, 0< 1 <1<

v1. Then

< 2"y —a|” <max{a”, (1 -a)”}, Vo,y €[0,1],
< 27y — o < max{a”?, (1 — a)?}, Vz,y € [0,1].

Using Lemma 3.4, we get

0 < k(w,y) =27 |y — & < max{a™, (1-a)"};

0 < Dik(z,y) = Apa it ly — 04\72 < 4 max{a’?, (1 — oz)w}

0 < Dik(w,y) =51 (1 = 1) . (i =i+ 1) a7y — af

IN
N

1 (A1 —=1) .. (A1 —i4+ Dmax{a™, (1 —&)?}, i=1,...m

Y

(3.23)
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SO

sup // (x,y,s,t)dsdt (3.24)

i—0 (z.y)€R
<2WZ MJ <1+Zw - 1). (%—Hl))max{d%,(l—d)%},

consequently

8= sup // x,y,s,t)dsdt < 1. (3.25)
—o (@y)eQ
Then, Theorem 3.1 is fulﬁlled. Morever, wg € X,, is also a unique solution of
(1.1).
Example 3.5. We consider (1.1) with the functions K, g defined by
K(z,y,s,t;up, U1, ..., um) = k(x,y) K1(8, t; 00, Uty oovy U )
m (3.26)
g(fﬂ,y) = wO(xvy) -2 Z:O l+a (14a;)? ( 7y)7
j:
where

Ki(s,t;u9,u1, ..., Um)

= (st)o0 (el 4 | o ‘1/4 + 3 (st ( prils + (g )1/3
wo(s,t) wo(s,t) : D?wo(s,t) Diwo(s,t) ’

wO(‘rvy) =e’ + M |y - 04’72 ) k(ﬂf7y) = x:ﬂ ly - dl:y ’

and «, V1, Y2, @, Y1, Y2, QQ, A1, ..., Oy are positive constants satisfying 327
O<a<1l,0<»n <1, v >m,
0<a<l,0<%» <1,y >m,
QQy Oy ey Qg > 0,
2 Z (ETom (1 + 2 (AL —1) . (B — i+ 1)) max{a”, (1 — &)} < 1.
(3.28)

We can prove that (A1), (A3) hold, by the following.
First, wg, Djwy € X and wo(z,y) > 1, Djwo(x,y) > 1. Then K € C(Q x
Q x Rmﬂ R).
y Dik € X, %Z[f Dik(z,y)K1(s,t;u0, U1, ..., Up ), 50 2
Rm+1, R). Applying the inequality

(2 x Q x

a<l+al, Va>0, Vqg=>1,
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we obtain
2 |ug]
Ki(s,t; < (st)* 1
‘ 1(8, ; U, UL, 7’U,m>‘ — (S ) ( + w0(87t)>
m 2 Jug
+ (st) (1 + Z>
; Diwo(s, 1)
m m
<2 () [ 14D Jul |
i=0 7=0
it leads to

| K (2,y,s,t;u0, U1, ..., um)| = k(x,y) | K1(s, t; up, U1, ..., Um)|

m
< ko(z,y,5,6) [ 1+ |us |,

in which .
ko(z,y,s,t) = 2k(z,y) Z
7=0
Similarly,
K - “
‘a 3 (Q? y,S t; 'LLO,’LLl,...,’LLm)‘ S ki(xayv‘S?t) 1 +Z’“’J’ ]
in which
ki(z,y,s,t) = 2 |Dik(z,y)| > (st)
=0
Next,

Sup/ ki(x,y, s, t)dsdt

i=0 (z,y)eQ

—22 sup ‘D’ xy‘Z// (st)dsdt

i—0 (z.9)€R

SO

sup // (x,y,s,t)dsdt < 1.
—o (z,y)eQ

Theorem 3.2 is true. Furthermore, wo € Xy, is also a solution of (1.1).
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(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

Z 1_|_aj < +;’71 71_1 (5’1_@4‘1)) max{@%’(l_d)&g}’

(3.34)
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