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Abstract. In this paper, a simple hybrid Bregman projection iterative algorithm is in-

vestigated for finding a common fixed point of a family of countable Bregman quasi-strict

pseudo-contractions. Furthermore, strong convergence results are established in a reflexive

Banach space.

1. Introduction

Fixed point theory, which serves as a significant branch of nonlinear anal-
ysis theory, has been applied in investigating nonlinear phenomena. In fact,
many real world problems arising in economics, optimal control, image recon-
struction, engineering, and physics can be studied via fixed point techniques.

Construction of iterative algorithm for seeking fixed points of nonlinear
mappings as a main task of fixed point theory has been a popular concern.
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Many classical algorithms appeared successively in history; for instance, Pi-
card iterative algorithm, Mann iterative algorithm [9], Ishikawa iterative al-
gorithm [7], and so on. It is well known that, for more general nonexpansive
mappings, the Picard iterative algorithm does not converge to fixed points
of nonexpansive mappings even when they have fixed points; the Mann (or
Ishikawa) iterative algorithm only weakly converges to fixed points of non-
expansive mappings. But strong convergence is often much more desirable
than weak convergence in many disciplines, including economics, image recov-
ery, quantum physics, control theory, and problems arise in infinite dimension
spaces. For it translates the physically tangible property so that the energy
‖xn − x‖ of the error between the iterate xn and the solution x eventually
becomes arbitrarily small. In order to get strong convergence result, the pro-
jection method which was first introduced by Haugazeau [6] in 1968, is an
effective modified method about the Mann (or Ishikawa) iterative algorithm.

In recent years, projection methods have caused widely attention. Many
author focused attention on constructing iterative algorithm for seeking fixed
points of Bregman nonlinear operators via (Bregman) projection technique,
see [16, 11, 17, 14] and the references therein. In 2010, [11] gave the concept of
Bregman strongly nonexpansive mapping and proved the strong convergence
results of two Bregman hybrid projection algorithms for finding common fixed
points of finitely many Bregman strongly nonexpanisve operators in reflexive
Banach spaces. In 2014, [17] designed an iterative scheme about a Bregman
relatively nonexpansive operator. Recently, Ugwunnadi et al. [14] introduced
the concept of Bregman quasi-strict pseudo-contraction and proved the strong
convergence by using hybrid Bregman projection iterative algorithm for Breg-
man quasi-strict pseudo-contractions.

The purpose of this paper is to give a simple hybrid Bregman projection
iterative algorithm for finding a common fixed point of a family of countable
Bregman quasi-strict pseudo-contractions in the framework of reflexive Banach
spaces. The results presented in this paper improve and enrich the known
corresponding results announced in the literature sources listed in this work.

2. Preliminaries

In this section, we collect some preliminaries, definitions, and lemmas which
will be used to prove our main results. Throughout this paper, E is a real
reflexive Banach space with norm ‖ · ‖ and E∗ is the dual space of E. We
denote by N and R the set of positive integers and real numbers, respectively.
→ and ⇀ stand for strong convergence and weak convergence, respectively.

For x ∈int domf , the subdifferential of f at x is the convex set defined as

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈x∗, y − x〉 ≤ f(y), ∀y ∈ E}.
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For x∗ ∈ E∗, the Fenchel conjugate of f is the function f∗ : E∗ → (−∞,+∞]
defined as

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ E}.

The function f is called essentially smooth if ∂f is both locally bounded and
single-valued on its domain. It is called essentially strictly convex, if (∂f)−1 is
locally bounded on its domain and f is strictly convex on every convex subset
of dom ∂f . f is said to be a Legendre, if it is both essentially smooth and
essentially strictly convex. When the subdifferential of f is single-valued, it
coincides with the gradient ∂f = ∇f (see [10]).

We note that for a reflexive Banach space E, the following conclusions hold:

(i) f is essentially smooth if and only if f∗ is essentially strictly convex (
[1]);

(ii) (∂f)−1 = ∂f∗ ([2]);

(iii) f is Legendre if and only if f∗ is Legendre ([1]);

(iv) If f is Legendre, then ∇f is bijection satisfying ∇f = (∇f∗)−1,
ran∇f = dom∇f∗ = int domf∗ and ran∇f∗ = dom∇f = int domf
([1]).

Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable function.
Recall that the functon f is said to be totally convex at a point x ∈ int
domf if its modulus of total convexity at x, that is, the function νf : int dom
f × [0,+∞)→ [0,+∞), defined by

νf (x, t) := inf{Df (y, x) : y ∈ int domf, ‖y − x‖ = t},

is positive whenever t > 0. The function f is said to be totally convex when it
is totally convex at every point x ∈int dom f . Moreover, the function f is said
to be totally convex on bounded subset of E if νf (C, t) > 0 for any bounded
subset C of E and for any t > 0, where the modulus of total convexity of the
function f on the set C is the function νf : int domf × [0,+∞) → [0,+∞)
defined by

νf (C, t) := inf{νf (x, t) : x ∈ C ∩ int domf}.
We remark in passing that f is totally convex on bounded sets if and only

if f is uniformly convex on bounded sets.

Recall that the function f is called sequentially consistent [4] if for any two
sequences {xn} and {yn} in E such that the first one is bounded,

lim
n→∞

Df (yn, xn) = 0 ⇒ lim
n→∞

‖yn − xn‖ = 0. (2.1)

Lemma 2.1. ([3]) The function f is totally convex on bounded sets if and
only if the function f is sequentially consistent.
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Let f : E → (−∞,+∞] be a proper, lower semi-continuous, and convex
function. The domain of f is denoted by domf , that is, domf := {x ∈ E :
f(x) < +∞)}. For any x ∈int domf and y ∈ E, the right-hand derivative of
f at x in the direction of y is defined by

f◦(x, y) = lim
t→0+

f(x+ ty)− f(x)

t
. (2.2)

Next, we list some definitions about f by virtue of (2.2):

(1) The function f is said to be Gâteaux differentiable at x if f◦(x, y)
exists for any y. In this case, f◦(x, y) coincides with ∇f(x), the value
of the gradient ∇f(x) of f at x.

(2) The function f is said to be Gâteaux differentiable if it is Gâteaux
differentiable for any x ∈ int domf.

(3) The function f is called Fréchet differentiable at x if the limit (2.2) is
attained uniformly in ‖y‖ = 1.

(4) The function f is said to be uniformly Fréchet differentiable on a subset
C of E if the limit (2.2) is attained uniformly for x ∈ C and ‖y‖ = 1.

It is well known that if a continuous convex function f : E → R is Gâteaux
differentiable, then ∇f is norm-to-weak∗ continuous [3]; and if f is Fréchet
differentiable, then ∇f is norm-to-norm continuous [8].

The Bregman distance [5] with respect to f is the function Df :domf×int
domf → [0,+∞) defined by

Df (x, y) = f(x)− f(y)− 〈x− y,∇f(y)〉.
With the function f we associate the bifunction Vf : E×E∗ → [0,+∞) defined
by

Vf (x, x∗) = f(x)− 〈x, x∗〉+ f∗(x∗), ∀x ∈ E, x∗ ∈ E∗.
Then Vf is nonnegative and

Vf (x, x∗) = Df (x,∇f∗(x∗)) (2.3)

for all x ∈ E and x∗ ∈ E∗. Recall that the Bregman projection [12] of x ∈int
domf onto the nonempty closed and convex set C ⊂ domf is the unique vector

P fC(x) ∈ C satisfying

Df (P fC(x), x) = inf{Df (y, x) : y ∈ C}.

Bregman projections with respect to totally convex and differentiable func-
tions have the following variational characterizations.

Lemma 2.2. ([4]) Suppose that f is Gâteaux differentiable and totally convex
on int domf . Let x ∈ int domf and let C ⊂ int domf be a nonempty, closed
and convex set. If x̂ ∈ C, then the following conditions are equivalent:
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(a) The vector x̂ is the Bregman projection of x onto C with respect to f ,

that is, x̂ = P fC(x);
(b) The vector x̂ is the unique solution of the variational inequality

〈∇f(x)−∇f(x̂), x̂− y〉 ≥ 0, ∀ y ∈ C;

(c) The vector x̂ is the unique solution of the inequality

Df (y, x̂) +Df (x̂, x) ≤ Df (y, x), ∀ y ∈ C.

Lemma 2.3. ([13]) Let f : E → R be a Gâteaux differentiable and totally
convex function. If x0 ∈ E and the sequence {Df (xn, x0)} is bounded, then
the sequence {xn} is bounded too.

Recall the following definitions of nonlinear mappings.

Definition 2.4. Let C ⊂int domf be a nonempty, closed, and convex subset of
E, T : C → C be a mapping with fixed point set F (T ) 6= ∅, {Tn}n∈N : C → C
be a sequence of mappings with common fixed point set F =

⋂∞
n=1 F (Tn) 6= ∅.

(1) T is called Bregman quasi-nonexpansive if

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T ).

(2) T is said to be Bregman quasi-strictly pseudo-contractive [4] if there
exists a constant k ∈ [0, 1) and F (T ) 6= ∅ such that

Df (p, Tx) ≤ Df (p, x) + kDf (x, Tx), ∀ x ∈ C, p ∈ F (T ).

(3) {Tn}n∈N : C → C is called uniformly closed if for any sequence {xn} ⊂
C with xn → x ∈ C and ‖Tnxn − xn‖ → 0 as n → ∞, then the limit
of {xn} belongs to F .

Now, we give some examples of Bregman quasi-strict pseudo-contractions.

Example 2.5. ([11]) Let E be a real reflexive Banach space, A : E → 2E
∗

be
a maximal monotone mapping and f : E → (−∞,+∞] be a uniformly Fréchet
differentiable and bounded on bounded subsets of E such that A−1(0∗) 6= ∅,
then the resolvent

ResfA(x) = (∇f +A)−1 ◦ ∇f(x)

is closed and Bregman relatively nonexpansive from E onto dom A, so is a
closed Bregman quasi-strict pseudo-contraction.

Example 2.6. ([15]) Let E be a smooth Banach space, and define f(x) = ‖x‖2
for all x ∈ E. Let x0 6= 0 be any element of E, the mapping T : E → E be
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defined as follows:

T (x) =

{
(12 + 1

2n+1 )x0, if x = (12 + 1
2n )x0;

−x, if x 6= (12 + 1
2n )x0

for all n ≥ 1. Then T is a Bregman quasi-strict pseudo-contraction.

The following lemma is also useful in the next section.

Lemma 2.7. ([14]) Let f : E → R be a Legendre function enjoying uniformly
Fréchet differentiable on bounded subsets of E. Let C be a nonempty, closed,
and convex subset of E and let T : C → C be a Bregman quasi-strictly pseudo-
contractive mapping with respect to f . Then F (T ) is closed and convex.

3. Main Results

In this section, we state and prove our main theorem.

Theorem 3.1. Let E be a real reflexive Banach space, C be a nonempty,
closed, and convex subset of E. Let f : E → R be a Legendre function which
is bounded, uniformly Fréchet differentiable, and totally convex on bounded
subsets of E, and {Tn}∞n=1 be a uniformly closed family of countable Bregman
quasi-strict pseudo-contractions such that F =

⋂∞
n=1 F (Tn) 6= ∅. Let {xn} be

a sequence generated by the following iterative algorithm:

x0 ∈ C chosen arbitrarily,

C1 = C,

x1 = projfC1
(x0),

Cn+1 = {z ∈ Cn : Df (zn, Tnzn)

≤ 1
1−κ〈zn − z,∇f(zn)−∇f(Tnzn)〉},

xn+1 = projfCn+1
(x0), n ∈ N ∪ {0},

(3.1)

where κ ∈ [0, 1), zn = xn+en, {en} ⊂ C is a sequence of errors which satisfies

limn→∞ en = 0. Then the sequence {xn} converges strongly to p = projfF (x0),

where projfF is the Bregman projection of E onto F .

Proof. From Lemma 2.7, we know F =
⋂∞
n=1 F (Tn) is closed and convex.

Furthermore, projfF is well defined for any x0 ∈ C. Indeed, it is not difficult

to check that the sets Cn are closed and convex for all n ∈ N. Hence, projfCn

is also well defined for any x0 ∈ C. On the other hand, it is obvious that
F ⊂ C = C1. Suppose that F ⊂ Cm for some m ∈ N. For any p ∈ F , we have
p ∈ Cm. From the definition of Tn, we obtain

Df (p, Tn(xm + em)) ≤ Df (p, xm + em) + κDf (xm + em, Tn(xm + em)).



A simple hybrid Bregman projection algorithms 1007

And, in view of the three point identity of the Bregman distance, we get

Df (p, Tn(xm + em)) = Df (p, xm + em) +Df (xm + em, Tn(xm + em))

+ 〈∇f(xm + em)−∇f(Tn(xm + em)), p− (xm + em)〉.
Therefore, from the two formula above, we have

Df (zm, Tn(zm)) ≤ 1

1− κ
〈zm − p,∇f(zm)−∇f(Tn(zm))〉,

where zm = xm + em. It follows that p ∈ Cm+1. From the arbitrariness of p,
we learn that F ⊂ Cn for all n ∈ N.

Next, we show that limn→∞Df (xn, x0) exists. Indeed, since xn = projfCn
(x0),

from Lemma 2.2 (c), we have

Df (xn, x0) = Df (projfCn
(x0), x0)

≤ Df (p, x0)−Df (p, projfCn
(x0))

≤ Df (p, x0),

for each p ∈ F and for each n ∈ N. So {Df (xn, x0)}n∈N is bounded. Using
Lemma 2.3, we get {xn} is bounded too.

On the other hand, note that xn = projfCn
(x0) and xn+1 = projfCn+1

(x0) ∈
Cn+1 ⊂ Cn, we obtain that Df (xn, x0) ≤ Df (xm+1, x0) for all n ∈ N. This im-
plies that {Df (xn, x0)}n∈N is a nondecreasing sequence. So limn→∞Df (xn, x0)
exists.

Since {xn} is bounded and E is reflexive, there exists a subsequence {xni}
of {xn} such that xni ⇀ p̂ ∈ C = C1. Since Cn is closed and convex and
Cn+1 ⊂ Cn, this implies that Cn is weakly closed and p̂ ∈ Cn for all n ∈ N.

From xni = projfCni
(x0), we obtain that Df (xni , x0) ≤ Df (p̂, x0) for each

ni ∈ N. Since f is a lower semi-continuous function on convex set C, it is
weakly lower semi-continuous on C. Then, we get

lim inf
i→∞

Df (xni , x0) = lim inf
i→∞

{f(xni)− f(x0)− 〈xni − x0,∇f(x0)〉}

≥ f(p̂)− f(x0)− 〈p̂− x0,∇f(x0)〉
= Df (p̂, x0).

Furthermore, we obtain

Df (p̂, x0) ≤ lim inf
i→∞

Df (xni , x0)

≤ lim sup
i→∞

Df (xni , x0)

≤ Df (p̂, x0),

which implies that
lim
i→∞

Df (xni , x0) = Df (p̂, x0). (3.2)
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Using Lemma 2.2 (c), we have

Df (p, xni) ≤ Df (p, x0)−Df (xni , x0). (3.3)

Taking i→∞ in the above inequality and using (3.2), we get

lim
i→∞

Df (p̂, xni) = 0. (3.4)

Note that f is totally convex on bounded sets, So f is sequentially consistent
and we have limi→∞ xni = p̂. On the other hand, note that {Df (xn, x0)} is
convergent. This together with (3.2) implies that

lim
i→∞

Df (xn, x0) = Df (p̂, x0).

If we do the similar work as (3.3) and (3.4), we also can obtain that

lim
n→∞

xn = p̂. (3.5)

In view of limn→∞ en = 0 and (3.5), we have

lim
n→∞

(xn + en) = p̂. (3.6)

and

lim
n→∞

(xn + en − xn+1) = 0. (3.7)

Next, we show that the limit of {xn}n∈N belongs to F =
⋂∞
n=1 F (Tn). Since

xn+1 = projfCn+1
(x0) ∈ Cn+1, we have from (3.1) that

Df (zn, Tnzn) ≤ 1

1− κ
〈zn − xn+1,∇f(zn)−∇f(Tnzn)〉,

which together with (3.7) implies that

lim
n→∞

Df (zn, Tnzn) = 0.

Noticing that f is totally convex on bounded subsets of E, f is sequentially
consistent. It follows that

lim
n→∞

‖zn − Tnzn‖ = 0.

Since the uniform closedness of Tn and (3.6), we have p̂ ∈
⋂∞
n=1 F (Tn) = F .

Finally, we show that p̂ = ProjfF (x0). From xn = projfCn
x0, we get

〈y − xn,∇f(x0)−∇f(xn)〉 ≤ 0, ∀y ∈ Cn.
Since F ⊂ Cn for each n ∈ N, we have

〈y − xn,∇f(x0)−∇f(xn)〉 ≤ 0, ∀y ∈ F .
By taking limit of the above inequality , we have

〈y − p̂,∇f(x0)−∇f(p̂)〉 ≤ 0, ∀y ∈ F .
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In view of Lemma 2.2 (a) and Lemma 2.2 (b), It is obvious that p = projfF (x0)
holds. This completes the proof of Theorem 3.1. �

4. Applications

In this section we consider the problem for seeking the common solution of
a system of generalized mixed equilibrium problems. Let C be a nonempty,
closed, and convex subset of a smooth, strictly convex and reflexive Banach
space E. Let {gn}n∈N be a family of bifunctions from C×C into R, {An}n∈N :
C → E∗ be a sequence of nonlinear mappings, and {ϕn}n∈N : C × R be
a sequence of real-valued functions. The “so-called” system of generalized
mixed equilibrium problems is to find x ∈ C, for arbitrary y ∈ C, n ∈ N, such
that

fn(x, y) + 〈y − x,Anx〉+ ϕn(y)− ϕn(x) ≥ 0. (4.1)

The set of solutions of the system of generalized mixed equilibrium problems
is denoted by SGMEP (gn, An, ϕn), where n ∈ N.

A mapping A : C → E∗ is said to be monotone if

〈x− y,Ax−Ay〉 ≥ 0, ∀x, y ∈ C.
A mapping A is said to be Lipschitz continuous if there exists L > 0 such

that
‖Ax−Ay‖ ≤ L‖x− y‖, ∀x, y ∈ C.

For solving the generalized mixed equilibrium problem, let us assume that
g : C × C → R is a bifunction satisfying the following conditions:

(A1) g(x, x) = 0 for all x ∈ C;
(A2) g is monotone, i.e., g(x, y) + g(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

g(tz + (1− t)x, y) ≤ g(x, y);

(A4) for each x ∈ C, g(x, ·) is convex and lower semicontinuous.

The resolvent operator of a bifunction g : C × C → R, Res : E → C is
defined as follows: for all x ∈ E,

Res(x) = {G(z, y) + 〈y − z,∇f(z)−∇f(x)〉 ≥ 0, ∀y ∈ C},
where G(x, y) = g(z, y) + 〈y − z,Az〉+ ϕ(y)− ϕ(z). The set of solutions of a
generalized mixed equilibrium problem is denoted by GMEP . If f : E → R
is a Legendre function, g : C ×C → R satisfies conditions (A1)-(A4), it is not
hard to know that Res has the following properties:

(a) Res is single-valued;

(b) the set of fixed points of Res is the solution set of the corresponding
generalized mixed equilibrium problem, i.e., F (Res) = GMEP ;
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(c) GMEP is closed and convex;

(d) for any p ∈ GMEP , x ∈ E,
Df (p,Res(x)) +Df (Res(x), x) ≤ Df (p, x).

Theorem 4.1. Let E be a real reflexive Banach space, C be a nonempty,
closed, and convex subset of E, f : E → R be a Legendre function which
is bounded, uniformly Fréchet differentiable, and totally convex on bounded
subsets of E. Let {fn}n∈N : C×C → R be a sequence of bifunctions satisfying
the conditions (A1)-(A2), {An}n∈N : C → E∗ be a sequence of continuous and
monotone mappings, {ϕn}n∈N : C → R be a sequence of lower semi-continuous
and convex functions. Assume that F =

⋂∞
n=1 SGMEP (fn, An, ϕn) 6= ∅. Let

{xn} be a sequence generated by the following iterative algorithm:

x0 ∈ C chosen arbitrarily,

C1 = C,

x1 = projfC1
(x0),

Cn+1 = {z ∈ Cn : Df (zn, Resnzn)

≤ 1
1−κ〈zn − z,∇f(zn)−∇f(Resnzn)〉},

xn+1 = projfCn+1
(x0), n ∈ N ∪ {0},

where Resn is the sequence of resolvents of the system of generalized mixed
equilibrium problems (4.1), κ ∈ [0, 1), zn = xn + en, {en} ⊂ C is a sequence
of errors which satisfies limn→∞ en = 0. Suppose that the resolvent operator
Resn is uniformly closed. Then the sequence {xn} converges strongly to p =

projfF (x0), where projfF is the Bregman projection of E onto F .

Proof. From the properties (d) of the resolvent operator Res, we learn that
Resn is a Bregman quasi-strict pseudo-contraction for each n ∈ N. By applying

Theorem 3.1, the sequence {xn} converges strongly to p = projfF (x0). �

5. Conclusions

In this article, using a simple hybrid Bregman projection iterative algo-
rithm, we investigate a convex feasibility problem based on a family of count-
able Bregman quasi-strict pseudo-contractions and give a strong convergence
theorem of the proposed algorithm in a reflexive Banach space. As a appli-
cation, we solve a system of generalized mixed equilibrium problems via the
proposed algorithm (3.1).
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