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Abstract. Recently a remarkably large number of polynomials and numbers and their

generalizations have been introduced and investigated, due mainly to their usefulness. In

this sequel, we aim to introduce the 3-variable Hermite poly-Bernoulli polynomials of the

second kind and investigate some of their properties and formulas such as implicit summation

formulas and symmetric identities. The results presented here are sure to be new and
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variable Hermite polynomials, alternating sums, polylogarithm functions, poly-Bernoulli
numbers, Bernoulli numbers of the second kind, poly-Bernoulli polynomials of the second
kind, Hermite poly-Bernoulli polynomials of the second kind, Stirling numbers of the first
and second kinds.

0Corresponding author: Junesang Choi.



1014 W. A. Khan, M. Ghayasuddin, J. Choi and N. U. Khan

potentially useful. They, being general, can be specialized to yield some known and new

formulas.

1. Introduction and preliminaries

The 2-variable Hermite Kampé de Fériet polynomials Hn(x, y) [2, 4] are
defined by

Hn(x, y) = n!

[n
2
]∑

r=0

yrxn−2r

r!(n− 2r)!
. (1.1)

It is easy to find from (1.1) that

Hn(2x,−1) = Hn(x) and Hn (x,−1/2) = Hen(x),

where Hn(x) and Hen(x) are ordinary Hermite polynomials (see, e.g., [1]).
Also

Hn(x, 0) = xn.

The 2-variable Hermite polynomials Hn(x, y) are generated by the following
function (see, e.g., [1, 15])

ext+yt
2

=
∞∑
n=0

Hn(x, y)
tn

n!
. (1.2)

The alternating sums Tk(n) (n ∈ N, k ∈ N0) are defined by

Tk(n) =
n−1∑
r=0

(−1)rrk = 0k − 1k + 2k − · · ·+ (−1)n−1(n− 1)k,

which are generated by the following function

1− (−et)n

1 + et
=

∞∑
k=0

Tk(n)
tk

k!
. (1.3)

Here and in the following, let C, R+, Z, and N be the sets of complex
numbers, positive real numbers, integers, and positive integers, respectively,
and let N0 := N ∪ {0}.

The polylogarithm functions Lik(z) (k ∈ Z) are defined by (see, e.g., [21, p.
185])

Lik(z) : =

∞∑
n=1

zn

nk
(|z| ≤ 1; k ∈ N \ {1})

=

z∫
0

Lik−1(t)

t
dt (k ∈ N \ {1})

(1.4)
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and

Li1(z) = −Log(1− z), Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
, · · · .

Kaneko [6] used the polylogarithm function Lik(z) to introduce and inves-
tigate poly-Bernoulli numbers

Lik(1− e−t)

1− e−t
=
∞∑
n=0

B(k)
n

tn

n!
(k ∈ Z). (1.5)

The particular case k = 1 in (1.5) yields the classical Bernoulli numbers Bn

as follows: B
(1)
n = (−1)nBn (n ∈ N0) (see, e.g., [21, Section 1.7]).

Kim et al. [11] introduced the poly-Bernoulli polynomials of the second
kind defined by the generating function

Lik(1− e−t)

log(1 + t)
(1 + t)x =

∞∑
n=0

b(k)n (x)
tn

n!
. (1.6)

It is noted that
∞∑
n=0

b(1)n (x)
tn

n!
=

Li1(1− e−t)

log(1 + t)
(1+t)x =

t

log(1 + t)
(1+t)x =

∞∑
n=0

bn(x)
tn

n!
, (1.7)

where bn(x) are called the Bernoulli numbers of the second kind (see [12, 13]).

Pathan and Khan [15] introduced and investigated the following generalized

Hermite-Bernoulli polynomials of two variables HB
(α)
n (x, y)(

t

et − 1

)α
ext+yt

2
=
∞∑
n=0

HB
(α)
n (x, y)

tn

n!
. (1.8)

The particular case of (1.8) when α = 1 reduces to the known polynomials

HBn(x, y) (see [4, p. 386, Eq. (1.6)])

t

et − 1
ext+yt

2
=
∞∑
n=0

HBn(x, y)
tn

n!
. (1.9)

The Stirling numbers s(n, k) and S(n, k) of the first kind and the second
kind, respectively, are defined by the following generating functions (see, e.g.,
[21, Section 1.6])

z(z − 1) · · · (z − n+ 1) =

n∑
k=0

s(n, k) zk (n ∈ N0) (1.10)

and

(ez − 1)k = k!

∞∑
n=k

S(n, k)
zn

n!
(k ∈ N0) . (1.11)
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For easier use, we recall some formal manipulations of double series as in
the following lemma (see, e.g., [3], [10], [20, pp. 56-57], and [22, p. 52]).

Lemma 1.1. The following identities hold true:

∞∑
n=0

∞∑
k=0

Ak,n =

∞∑
n=0

[n/p]∑
k=0

Ak,n−pk (p ∈ N); (1.12)

∞∑
n=0

[n/p]∑
k=0

Ak,n =

∞∑
n=0

∞∑
k=0

Ak,n+pk (p ∈ N); (1.13)

∞∑
k=0

∞∑
n=k

Ak,n =
∞∑
n=0

n∑
k=0

Ak,n; (1.14)

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(m+ n)
xn

n!

ym

m!
. (1.15)

Here, the Ak,n and f(N) (k, n, N ∈ N0) are real or complex valued functions
of the k, n and N , respectively, and x and y are real or complex numbers. Also,
in order to verify rearrangements of the involved series, all the associated series
should be absolutely convergent.

In this paper, we introduce 3-variable Hermite poly-Bernoulli polynomi-

als of the second kind Hb
(k)
n (x, y, z) and investigate some of their interesting

properties. The results presented here are also shown to be specialized to yield
some known formulas and identities which are given in Kim et al. [11]-[13],
Qi et al. [19], Dattoli et al. [4], Khan [7]-[9], and Pathan and Khan [14]-[18].

2. A new class of Hermite poly-Bernoulli numbers
and polynomials of the second kind

We begin by defining the 3-variable Hermite poly-Bernoulli polynomials

Hb
(k)
n (x, y, z) of the second kind

Lik(1− e−t)

log(1 + t)
(1 + t)x eyt+zt

2
=
∞∑
n=0

Hb
(k)
n (x, y, z)

tn

n!
(k ∈ Z), (2.1)

whose special case k = 1 is simply expressed as follows:

t

log(1 + t)
(1 + t)x eyt+zt

2
=
∞∑
n=0

Hbn(x, y, z)
tn

n!
. (2.2)
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It is remarked that the special case of (2.1) when y = z = 0 reduces to the
poly-Bernoulli polynomials of the second kind together with the generating
function in (1.6).

By combining (1.2) and (1.6), it is easy to see that the 3-variable Hermite

poly-Bernoulli polynomials Hb
(k)
n (x, y, z) in (2.1) can be expressed in terms of

the 2-variable Hermite polynomials Hn(x, y) in (1.2) and the poly-Bernoulli

polynomials of the second kind b
(k)
n (x) in (1.6), which is asserted by the fol-

lowing theorem.

Theorem 2.1. The following formula holds.

Hb
(k)
n (x, y, z) =

n∑
m=0

(
n

m

)
b
(k)
n−m(x)Hm(y, z) (k ∈ Z; n ∈ N0) . (2.3)

Proof. We can prove the desired identity by using (1.12) with p = 1. We omit
the details. �

Theorem 2.2. The following identity holds.

Hb
(2)
n (x, y, z) =

n∑
m=0

(
n

m

)
Bm
m+ 1

Hbn−m(x, y, z) (n ∈ N0) , (2.4)

where Bm are Bernoulli numbers (see, e.g., [21, Section 1.7]).

Proof. Setting k = 2 in (2.1), we have
∞∑
n=0

Hb
(2)
n (x, y, z)

tn

n!
=

Li2(1− e−t)

log(1 + t)
(1 + t)x eyt+zt

2
. (2.5)

We find from (1.4) (see also [6, Eq. (2)]) that

Li2(1− e−t) =

∫ t

0

u

eu − 1
du. (2.6)

Applying the generating function of the Bernoulli numbers (see, e.g., [21, p.
81, Eq. (2)]) to the integrand of (2.6), we have

Li2(1− e−t) =

∞∑
m=0

Bm
m! (m+ 1)

tm+1. (2.7)

Using (2.2) and (2.7) into (2.5), with the help of (1.12) when p = 1, we obtain
∞∑
n=0

Hb
(2)
n (x, y, z)

tn

n!
=

∞∑
n=0

Hbn(x, y, z)
tn

n!

∞∑
m=0

tmBmm!

(m+ 1)

=
∞∑
n=0

n∑
m=0

(
n

m

)
Bm
m+ 1

Hbn−m(x, y, z)
tn

n!
,
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which, upon equating the coefficients of tn, yields the desired identity (2.4). �

Setting y = z = 0 in (2.4) reduces to the known result in [11, Theorem 2.1],
which is recalled in the following corollary.

Corollary 2.3. The following formula holds.

b(2)n (x) =
n∑

m=0

(
n

m

)
Bm
m+ 1

bn−m(x) (n ∈ N0) . (2.8)

Theorem 2.4. The following identity holds.

Hb
(k)
n (x, y, z) =

n∑
j=0

(−1)j

j + 1

(
n

j

)
Hbn−j(x, y, z)

×
j∑
`=0

(−1)` (`+ 1)!S(j + 1, `+ 1)

(`+ 1)k

(2.9)

for k ∈ N \ {1}; n ∈ N0.

Proof. By using (1.4) and (1.11), we have, for k ∈ N \ {1},

Lik
(
1− e−t

)
=
∞∑
`=1

(−1)`
(
e−t − 1

)`
`k

=
∞∑
`=1

∞∑
j=`

(−1)`+j `!S(j, `)

`k j!
tj

=

∞∑
`=0

∞∑
j=`

(−1)`+j (`+ 1)!S(j + 1, `+ 1)

(`+ 1)k (j + 1)!
tj+1.

Applying (1.14) to the last double summation, we obtain

Lik
(
1− e−t

)
= t

∞∑
j=0

j∑
`=0

(−1)`+j (`+ 1)!S(j + 1, `+ 1)

(`+ 1)k (j + 1)!
tj . (2.10)
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Using (2.10) and (2.2) in (2.1), we get

∞∑
n=0

Hb
(k)
n (x, y, z)

tn

n!

=
t

log(1 + t)
(1 + t)x eyt+zt

2
∞∑
j=0

j∑
`=0

(−1)`+j (`+ 1)!S(j + 1, `+ 1)

(`+ 1)k (j + 1)!
tj

=
∞∑
n=0

Hbn(x, y, z)
tn

n!

∞∑
j=0

j∑
`=0

(−1)`+j (`+ 1)!S(j + 1, `+ 1)

(`+ 1)k (j + 1)!
tj .

Applying the identity (1.12) with p = 1 to the last double summation, we have

∞∑
n=0

Hb
(k)
n (x, y, z)

tn

n!

=

∞∑
n=0

{ n∑
j=0

Hbn−j(x, y, z)
1

(n− j)!

j∑
`=0

(−1)`+j (`+ 1)!S(j + 1, `+ 1)

(`+ 1)k (j + 1)!

}
tn,

which, upon equating the coefficients of tn, yields the desired identity. �

Setting y = z = 0 in (2.9) reduces to yield the known result (see [11,
Theorem 2.2]) which is recalled in the following corollary.

Corollary 2.5. The following identity holds.

b(k)n (x) =
n∑
j=0

(−1)j

j + 1

(
n

j

)
bn−j(x)

j∑
`=0

(−1)` (`+ 1)!S(j + 1, `+ 1)

(`+ 1)k
(2.11)

for k ∈ N \ {1}; n ∈ N0.

Theorem 2.6. The following formula holds.

Hb
(k)
n+1(x+ 1, y, z)− Hb

(k)
n+1(x, y, z)

=

n∑
j=0

n+ 1

j + 1

(
n

j

)
Hbn−j(x, y, z)

j∑
`=0

(−1)`+j (`+ 1)!S(j + 1, `+ 1)

(`+ 1)k

(2.12)

for k ∈ N \ {1}; n ∈ N0.
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Proof. From (2.1), we have

∞∑
n=0

Hb
(k)
n (x+ 1, y, z)

tn

n!
−
∞∑
n=0

Hb
(k)
n (x, y, z)

tn

n!

=
∞∑
n=1

{
Hb

(k)
n (x+ 1, y, z)− Hb

(k)
n (x, y, z)

} tn

n!

=
t

log(1 + t)
(1 + t)x eyt+zt

2
Lik(1− e−t),

where the first equality follows from

Hb
(k)
0 (x, y, z) = 1 (x, y, z ∈ C; k ∈ N \ {1}).

Using (2.2) and (2.10), with the aid of (1.12) when p = 1, similarly as above,
we can prove the desired identity. We omit the details. �

Remark 2.7. Setting y = z = 0 in (2.12) yields a known result (cf., [11,
Theorem 2.3].

3. Implicit summation formulae involving the Hermite
poly-Bernoulli numbers and polynomials of the second kind

Khan [5] and Pathan and Khan [14]-[18] have established ceratin interest-
ing implicit summation formulae for the ordinary Hermite and related poly-
nomials and Hermite-Bernoulli polynomials, respectively. Here, we present
some implicit summation formulae for the Hermite poly-Bernoulli polynomials

Hb
(k)
n (x, y, z) in (2.1). We begin by stating the following implicit summation

formula for the Hermite poly-Bernoulli polynomials Hb
(k)
n (x, y, z).

Theorem 3.1. The following formula holds: For n, ` ∈ N0,

Hb
(k)
n+`(x,w, z) =

n∑
p=0

∑̀
q=0

(
n

p

)(
`

q

)
(w − y)p+q Hb

(k)
n+`−p−q(x, y, z). (3.1)

Proof. Replacing t by t+ u in (2.1), we obtain

Lik(1− e−(t+u))

log(1 + t+ u)
(1 + t+ u)x ez(t+u)

2

= e−y(t+u)
∞∑
n=0

Hb
(k)
n (x, y, z)

(t+ u)n

n!
.

(3.2)
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Using binomial theorem to expand (t+u)n and then (1.13) when p = 1 in the
right side of (3.2), we get

Lik(1− e−(t+u))

log(1 + t+ u)
(1 + t+ u)x ez(t+u)

2

= e−y(t+u)
∞∑

n,`=0

Hb
(k)
n+`(x, y, z)

tn

n!

u`

`!
.

(3.3)

It is noted that the left side of (3.3) is independent of the variable y. Replacing
y by w in the right side of (3.3) and equating the two expressions, we have

e(w−y)(t+u)
∞∑

n,`=0

Hb
(k)
n+`(x, y, z)

tn

n!

u`

`!
=

∞∑
n,`=0

Hb
(k)
n+`(x,w, z)

tn

n!

u`

`!
. (3.4)

Expanding e(w−y)(t+u) and applying (1.15), we get

e(w−y)(t+u) =

∞∑
N=0

(w − y)N (t+ u)N

N !
=

∞∑
p,q=0

(w − y)p+q
tp

p!

uq

q!
(3.5)

Substituting (3.5) in (3.4) and using (1.12) when p = 1 in the resulting 4-ple
series, we obtain

∞∑
n,`=0


n∑
p=0

∑̀
q=0

1

(n− p)!p! (`− q)!q!
(w − y)p+q Hb

(k)
n+`−p−q(x, y, z)

 tnu`

=
∞∑

n,`=0

Hb
(k)
n+`(x,w, z)

tn

n!

u`

`!
,

which, upon equating the coefficients of tn and u`, yields the desired identity.
�

Theorem 3.2. The following formula holds.

Hb
(k)
n (x+ u, y, z) =

n∑
j=0

(
n

j

)
(−1)j(−u)j Hb

(k)
n−j(x, y, z) (n ∈ N0) . (3.6)

Proof. Recall the generalized binomial formula

(1− z)−α =
∞∑
n=0

(−α)n
zn

n!
(α ∈ C; |z| < 1), (3.7)
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where (λ)ν denotes the Pochhammer symbol defined (for λ, ν ∈ C), in terms
of the familiar Gamma function Γ, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

{
1 (ν = 0; λ ∈ C \ {0})
λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C).

(3.8)
We find from (2.1), using (3.7) and (1.12) when p = 1, that

∞∑
n=0

Hb
(k)
n (x+ u, y, z)

tn

n!
=

Lik(1− e−t)

log(1 + t)
(1 + t)x eyt+zt

2
(1 + t)u

=
∞∑
n=0

Hb
(k)
n (x, y, z)

tn

n!

∞∑
j=0

(−1)j (−u)j
tj

j!

=
∞∑
n=0

n∑
j=0

1

(n− j)!j!
(−1)j (−u)jHb

(k)
n−j(x, y, z) t

n,

which, equating the coefficients of tn, yields the desired identity. �

Theorem 3.3. The following identity holds.

Hb
(k)
n (x, y + u, z + w) =

n∑
m=0

(
n

j

)
Hb

(k)
n−j(x, y, z)Hj(u,w) (n ∈ N0) . (3.9)

Proof. Using (2.1) and (1.2), similarly as above, we can prove the desired
identity. We omit the details. �

Theorem 3.4. The following identity holds.

Hb
(k)
n (x, y, z) =

[n/2]∑
j=0

n−2j∑
m=0

n!

m!j!(n− 2j −m)!
yn−m−2j zj (n ∈ N0) . (3.10)

Proof. We find from (2.1) and (1.6) that

∞∑
n=0

Hb
(k)
n (x, y, z)

=

∞∑
n=0

yn tn

n!

∞∑
m=0

b(k)m (x)
tm

m!

∞∑
j=0

zj t2j

j!

=
∞∑
j=0


[n/2]∑
j=0

n−2j∑
m=0

1

m!j!(n− 2j −m)!
yn−m−2j zj

 tn,

(3.11)
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which, upon equating the coefficients of tn, proves the desired identity. For
the second equality in (3.11), we have used (1.12) when p = 1 and p = 2,
successively. �

Theorem 3.5. The following identity holds.

Hb
(k)
n (x, y, z) =

n∑
j=0

(
n

j

)
(−1)j(−u)jHb

(k)
n−j(x− u, y, z) (n ∈ N0) . (3.12)

Proof. Expressing

∞∑
n=0

Hb
(k)
n (x, y, z)

tn

n!
=

Lik(1− e−t)

log(1 + t)
(1 + t)x−u e(yt+zt

2) · (1 + t)u

and using (2.1) and (3.7) to expand the right side, similarly as above, we can
prove the desired identity. We omit the details. �

4. Symmetric Identities

Here, we give two symmetric identities for the polynomials Hb
(k)
n (x, y, z) in

(2.1). The first one is expressed in terms of the 2-variable Hermite polynomials

Hn(x, y) in (1.2) and the poly-Bernoulli polynomials of the second kind b
(k)
n (x)

in (1.6), which is asserted by Theorem 4.1. The other one is expressed in terms
of the 2-variable Hermite polynomials Hn(x, y) in (1.2) and the alternating
sums in (1.3) as given in Theorem 4.2. For other known symmetric identities,
we refer, for example, to Khan [7]-[9] and Pathan et al. [14]-[18].

Theorem 4.1. Let c, d ∈ R+ with c 6= d and m, n ∈ N0. Then

n∑
j=0

cn−j dj

(n− j)! j! H
b
(k)
n−j(cx, dy, d

2z)Hb
(k)
j (dx, cy, c2z)

=

n−m∑
j=0

m∑
`=0

cn−m dm

(n−m− j)!j!(m− `)!`!

× b(k)n−m−j(cx) b
(k)
n−`(dx)Hj(dy, d

2z)H`(cy, c
2z).

(4.1)

Proof. We start to define a function

f(t) :=
Lik
(
1− e−ct

)
Lik
(
1− e−dt

)
log(1 + ct) log(1 + dt)

(1 + ct)cx (1 + dt)dx e2cdyt e2c
2d2zt2 . (4.2)

It is easy to see that f(t) is symmetric in c and d. Then we write
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f(t) := f1(t) f2(t), where

f1(t) =
Lik
(
1− e−ct

)
log(1 + ct)

(1 + ct)cx ecdyt ec
2d2zt2

and

f2(t) =
Lik
(
1− e−dt

)
log(1 + dt)

(1 + dt)dx ecdyt ec
2d2zt2 .

We use (2.1) to obtain

f(t) = f1(t) f2(t)

=

{ ∞∑
n=0

Hb
(k)
n (cx, dy, d2z)

(ct)n

n!

}
∞∑
j=0

Hb
(k)
j (dx, cy, c2z)

(dt)j

j!

 ,

which, upon applying (1.12) with p = 1 to combine the two series, yields

f(t) =

∞∑
n=0

n∑
j=0

cn−j dj

(n− j)!j! H
b
(k)
n−j(cx, dy, d

2z)Hb
(k)
j (dx, cy, c2z) tn. (4.3)

We use (1.2) and (1.6), with the aid of (1.12) with p = 1, to find

f1(t) =

{ ∞∑
n=0

b(k)n (cx)
(ct)n

n!

}
∞∑
j=0

Hj(dy, d
2z)

(ct)j

j!


=
∞∑
n=0

n∑
j=0

b
(k)
n−j(cx)Hj(dy, d

2z)
(ct)n

(n− j)!j!
.

Similarly, we have

f2(t) =
∞∑
m=0

m∑
`=0

b
(k)
m−`(dx)H`(cy, c

2z)
(dt)m

(m− `)!`!
.

We apply (1.12) with p = 1 to combine the two series expressions of f1(t) and
f1(t)2 and get

f(t) =

∞∑
n=0

cn−m dm
n−m∑
j=0

m∑
`=0

1

(n−m− j)!j!(m− `)!`!

× b(k)n−m−j(cx) b
(k)
m−`(dx)Hj(dy, d

2z)H`(cy, c
2z) tn.

(4.4)

From (4.3) and (4.4), we equate the coefficients of tn to yield the desired
identity (4.1). �
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Theorem 4.2. Let c, d ∈ R+ with c 6= d, α ∈ N, and n ∈ N0. Then

n∑
p=0

n−p∑
m=0

p∑
q=0

cn−m−q dm+q

(n− p−m)!m!(p− q)!q!

× Hb
(k)
n−p−m(dx, dy, d2z)Hb

(k)
m (cx, cy, c2z)Tp−q(α)Tq(α)

=
n∑

m=0

n−m∑
q=0

m∑
p=0

cn+p−m−q dm−p+q

(n−m− q)!q!(m− p)!p!

× Hb
(k)
n−m−q(dx, dy, d

2z)Hb
(k)
m−p(cx, cy, c

2z)Tp(α)Tq(α).

(4.5)

Proof. Consider a function

g(t) : =
Lik
(
1− e−ct

)
Lik
(
1− e−dt

)
log(1 + ct) log(1 + dt)

(1 + ct)dx (1 + dt)cx e2cdyt e2c
2d2zt2

×
1−

(
−e−ct

)α
1 + ect

1−
(
−e−dt

)α
1 + edt

.

(4.6)
It is noted that g(t) is symmetric in c and d. By applying (1.3) and (2.1) to
the function g(t), we obtain

g(t) =

{ ∞∑
n=0

Hb
(k)
n (dx, dy, d2z)

(ct)n

n!

}{ ∞∑
m=0

Hb
(k)
m (cx, cy, c2z)

(dt)m

m!

}

×


∞∑
p=0

Tp(α)
(ct)p

p!



∞∑
q=0

Tq(α)
(dt)q

q!

 .

(4.7)

First, we apply (1.12) with p = 1 to combine the first two series and the last
two series in (4.7). Then, we apply (1.12) with p = 1 to combine the resulting
two series to get

g(t) =
∞∑
n=0

{ n∑
p=0

n−p∑
m=0

p∑
q=0

cn−m−q dm+q

(n− p−m)!m!(p− q)!q!

× Hb
(k)
n−p−m(dx, dy, d2z)Hb

(k)
m (cx, cy, c2z)Tp−q(α)Tq(α)

}
tn.

(4.8)

Secondly, we apply (1.12) with p = 1 to combine the first and fourth series
and the second and third series. Then, we apply (1.12) with p = 1 to combine
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the resulting two series to find

g(t) =

∞∑
n=0

{ n∑
m=0

n−m∑
q=0

m∑
p=0

cn+p−m−q dm−p+q

(n−m− q)!q!(m− p)!p!

× Hb
(k)
n−m−q(dx, dy, d

2z)Hb
(k)
m−p(cx, cy, c

2z)Tp(α)Tq(α)

}
tn.

(4.9)

Finally, equating the coefficients of tn in (4.8) and (4.9), we obtain the desired
identity (4.5). �
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