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Abstract. Let C be a closed and convex subset of a real Hilbert space H, T be a pseudo-

contractive semigroup on C and A be a Lipschitz monotone mapping from C into H. In this

paper, we propose and investigate an iterative scheme for finding a common element of the set

of common fixed points of T and the set of solutions of the variational inequality V I(A,C).

As a consequence, we prove that the scheme generated by the new method converges strongly

under mild conditions on the parameters involved.

1. Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H.
A mapping T : C → H is called Lipschitz if there exists L > 0 such that

||Tx− Ty|| ≤ L||x− y|| ∀x, y ∈ C. (1.1)
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If in (1.1) L = 1 the T is called nonexpansive. A mapping T : C → C is said
to be pseudo-contractive if it satisfies the inequality

〈Tx− Ty, x− y〉 ≤ ||x− y||2, ∀x, y ∈ C.

It is not hard to show that T is a pseudo-contraction if and only if T satisfies
the following property:

||Tx− Ty||2 ≤ ||x− y||2 + ||(I − T )x− (I − T )y||2, ∀x, y ∈ C.

A mapping T is said to be k-strictly pseudo-contractive if there exists k ∈
(0, 1) such that T satisfies the property

||Tx− Ty||2 ≤ ||x− y||2 + k||(I − T )x− (I − T )y||2, ∀x, y ∈ C.

We note that the class of pseudo-contractive mappings includes the class of
k-strictly pseudo-contractive and the class of nonexpansive mappings.

A one-parameter family T := {T (t) : t ≥ 0} is said to be a pseudo-
contractive semigroup on C if the following conditions are satisfied:

(1) T (0)x = x for all x ∈ C;
(2) T (s+ t) = T (s)T (t) for all s, t ∈ R+;
(3) T (t) is pseudo-contractive for each t ≥ 0;
(4) for each x ∈ C, the mapping T (·)x from [0,∞) into C is continuous.

If the mapping T (t) in condition (3) is replaced with (3)′ T (t) is k-strictly
pseudo-contractive for each t ≥ 0, then T := {T (t) : t ≥ 0} is said to be a
k-strictly pseud-contractive semigroup on C. If the mapping T (t) in condition
(3) is replaced with (3)′′ T (t) is nonexpansive for each t ≥ 0, then T := {T (t) :
t ≥ 0} is said to be a nonexpansive semigroup on C. We denote by F (T ) the
set of common fixed points of pseudo-contractive semigroup T , that is,

F (T ) = ∩t≥0F (T (t)) = {x ∈ C : T (t)x = x for each t ≥ 0}.

A semigroup T := {T (t) : t ≥ 0} is said to be Lipschitz if there exists a
bounded measurable function L : [0,∞)→ [0,∞) such that for any x, y ∈ C,

||T (t)x− T (t)y|| ≤ L(t)||x− y||, for any t ≥ 0 . (1.2)

In the sequel we denote the Lipschitz constant L, by L = sup
t≥0

L(t) <∞.

We remark that the class of pseudo-contractive semigroups includes the class
of nonexpansive semigroups. The following example shows that the inclusion
is proper.
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Example 1.1. Let Ω := {(a, 0, 0, b), a, b ∈ R} which is a subspace of R4. For
t ≥ 0, let T (t) : Ω→ R4 be defined by

T (t)(x) =


1 0 0 0
0 1 0 t
−t 0 1 0
0 0 0 1

x.

Then one can easily show that T = {T (t) : 0 ≤ t ≤ β}, for some β > 0, is
Lipschitz pseudo-contractive semigroup which is not nonexpansive semigroup
(see, [12]).

It is well known that the semigroup theory has applications in partial dif-
ferential equations, evolutionary equations and fixed point theories. We note
that the nonexpansive semigroup and pseudo-contractive semigroup have been
studied by several authors (see, for example, [7, 21, 26] and the references
therein) and are directly linked to solutions of differential equations.

Let C be a nonempty, closed and convex subset of H. Let T := {T (t) :
t ≥ 0} be a semigroup from K into itself and let f : K → K be a contractive
mapping. It follows from the Banach’s fixed point theorem that the following
implicit viscosity iteration process is well defined:

xn = αnf(xn) + (1− αn)T (tn)xn, ∀n ≥ 1, (1.3)

where αn ∈ (0, 1) and T (tn) ∈ T . Several authors studied the convergence of
iteration process (1.3) for nonexpansive semigroups in certain Banach spaces
(see, for example, [11, 32] and the references therein). In 2007, Chen and He
[7] studied the convergence of (1.3) for nonexpansive semigroups in reflexive
Banach spaces with weakly sequentially continuous duality mappings.

An interesting work is to extend the above results to the class of pseudo-
contractive semigroup mappings. In [18], Qin and Cho proved the convergence
of the following implicit iteration process for Lipschitz pseudo-contractive
semigroup mappings under appropriate conditions:

x0 ∈ K,xn = αnxn−1 + βnT (tn)xn + γnun,∀n ≥ 1, (1.4)

where {αn}, {βn} and {γn} are sequences in (0, 1), {tn} is a sequence in (0,∞)
and {un} is a bounded sequence in K. Furthermore, Li et al. [12] discussed
the convergence of (1.4) for pseudo-contractive semigroup and obtained con-
vergence results under some mild conditions. Subsequent research related to
pseudo-contractive semigroup can be referred in [8, 13, 18].

Let C be a nonempty, closed and convex subset of E and let A : C → H
be a nonlinear mapping. The variational inequality problem is to find x∗ ∈ C
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such that

〈Ax∗, x− x∗〉 ≥ 0,∀x ∈ C. (1.5)

We shall denote the solution set of the variational inequality (1.5) by V I(C,A).
It is known that the solution set V I(C,A) is closed and convex whenever A
is monotone and continuous. The theory of variational analysis has emerged
as a very natural generalization of the theory of boundary value problems
and allows us to consider new problems arising from many fields of applied
mathematics, such as mechanics, physics, engineering, the theory of convex
programming, and the theory of control: see, for instance, [14, 16, 23, 26, 28].

There are several iterative methods for solving V I(C,A) (see, e.g., [1, 2, 5,
6, 10, 16, 29]). The basic idea consists of the projected gradient method {xn}
given by

xn+1 = PC [xn − αnAxn], n ≥ 0, (1.6)

where A is monotone mapping. A mapping A : C → H is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, for all x, y ∈ C. (1.7)

A is called γ-inverse strongly monotone if there exists a positive real number
γ such that

〈Ax−Ay, x− y〉 ≥ γ||Ax−Ay||2, for all x, y ∈ C. (1.8)

We observe that any γ-inverse strongly monotone A is Lipschitz with L = 1
γ .

Clearly, the class of monotone mappings includes the class of γ-inverse
strongly monotone mappings.

In [15], Nadezhkina1 and Takahashi suggested the following modified Ko-
rpelevich’s method for a solution of a variational inequality V I(C,A) for
L-Lipschitz continuous monotone mapping A in infinite-dimensional Hilbert
spaces. Let {xn} be a sequence generated from an arbitrary x0 ∈ C by{

yn = PC [xn − λnAxn],
xn+1 = αnxn + (1− αn)PC [xn − λnAyn], n ≥ 0,

(1.9)

where PC is a metric projection from H onto C, {λn} ⊂ [a, b] for some a, b ∈
(0, 1/L) and {αn} ⊂ [c, d] for some c, d ∈ (0, 1). Then, they proved that the
sequences {xn}, {yn} converge weakly to the minimum-norm point of V I(C,A).

Several authors studied to obtain strong convergence by modifying the orig-
inal method of Korpelevich’s. For example, in [2, 9, 27], it is proved that some
very interesting Korpelevich-type algorithms strongly converge to a solution
of V I(C,A).

Recently, the problem of finding a common point of element of common
fixed point set of a nonexpansive semigroup mappings and a solution set of a
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variational inequality has been considered by many authors; see, for example,
[4, 24] and the references therein.

In [4], Buong introduced a hybrid method and showed that under appro-
priate conditions, the sequences generated by the method converges strongly
to an element of the set of common fixed points of a nonexpansive semigroup
T and the solution V I(A,C) for a monotone Lipschitz continuous mapping
A. Moreover, in 2014, Thuy [24] studied another hybrid algorithm for find-
ing a common element of the set of fixed points of a nonexpansive semigroup
and the set of solutions of a variational inequality for a monotone, Lipschitz
continuous mapping in Hilbert spaces.

More recently, Boikanyo and Zegeye [3] studied the problem of finding a
common element of the set of common fixed points of a nonexpansive semi-
group T and the set of solutions to a variational inclusion for Lipschitz mono-
tone mapping A by considering the following iterative algorithm:

{
yn = PC [xn − λnAxn]
xn+1 = αnf(xn)+(1−αn)[anxn+bnPC [xn−λnAyn]+cnS(tn)xn],

(1.10)

where {an}, {bn} and {cn} are sequences of reals in (0, 1), λn > 0 and αn ∈
(0, 1). They proved that under appropriate assumptions on these parameters,
both sequences {yn} and {xn} converge strongly to a point x̂ ∈ F = F (T ) ∩
V I(A,C), which is the unique solution of the variational inequality 〈(I −
f)x̂, x− x̂〉 ≥ 0 for all x ∈ F.

The above results naturally bring us to the following question.

Question. Can we produce an iterative scheme that converges to a common
point of the set of common fixed points of a pseudo-contractive semigroup and
the set of solutions to a variational inequality for Lipschitz monotone mapping?

It is our purpose in this paper to propose an iterative scheme which con-
verges strongly to a point of common fixed point set of a pseudo-contractive
semigroup and the set of solutions to a variational inequality for Lipschitz
monotone mapping. As a consequence, we obtain a convergence theorem for
approximating a common fixed point of a one-parameter pseudo-contractive
semigroup. The results obtained in this paper improve and extend the results
of Takahashi and Toyoda [23], Buong [4], Thuy [24] and Boikanyo and Zegeye
[3] to more general class of pseudo-contractive semigroups.
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2. Preliminaries

In the sequel, H represents a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖. It is known that for any x, y ∈ H, the inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, (2.1)

holds true. In addition, it can be proved easily that if α, β, γ are any real
numbers in (0, 1) with α+ β + γ = 1, then for any x, y, z ∈ H, we have

‖αx+ βy + γz‖2 = α ‖x‖2 + β ‖y‖2 + γ ‖z‖2 − αβ ‖x− y‖2

−αγ ‖x− z‖2 − βγ ‖y − z‖2 , (2.2)

(see e.g., [17, 30]). If C is nonempty, closed and convex, then the nearest point
projection of H onto C is denoted by PC , that is, ||x − PCx|| ≤ ||x − y|| for
all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C.
We know that for any given x ∈ H, we have

〈x− PCx, y − PCx〉 ≤ 0, (2.3)

for all y ∈ C, (see e.g., [22]). Note that (2.3) implies

‖PCx− y‖2 ≤ ‖x− y‖2 − ‖x− PCx‖2 , (2.4)

for all y ∈ C. Moreover, the following equivalence holds:

x∗ ∈ V I(A,C) ⇔ x∗ = PC(x∗ − λAx∗), λ > 0.

A space X is said to satisfy Opial’s condition if, for any sequence {xn} with
xn ⇀ x, then

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||, for all y ∈ X with y 6= x. (2.5)

It is well known that every Hilbert space satisfies Opial’s condition. We con-
clude this section by giving two lemmas that will be used in proving our main
result.

Lemma 2.1. ([25]) Let {sn} be a sequence of non-negative real numbers sat-
isfying

sn+1 ≤ (1− an)sn + anbn + cn, n ≥ 0,

where {an}, {bn}, {cn} satisfy the conditions:

(i) {an} ⊂ [0, 1], with
∑∞

n=0 an =∞,
(ii) cn ≥ 0 for all n ≥ 0 with

∑∞
n=0 cn <∞, and

(iii) lim supn→∞ bn ≤ 0.

Then limn→∞ sn = 0.
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Lemma 2.2. ([14]) Let {sk} be a sequence of real numbers that does not
decrease at infinity, in the sense that there exists a subsequence {skj} of {sk}
such that skj < skj+1 for all j ≥ 0. Define an integer sequence {mk}k≥k0 as

mk = max{k0 ≤ l ≤ k : sl < sl+1}.

Then mk →∞ as k →∞ and for all k ≥ k0

max{smk
, sk} ≤ smk+1. (2.6)

3. Main Results

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and A : C → H be a Lipschitz monotone mapping with Lipschitz con-
stant L. Let T = {T (t) : t > 0} be a Lipschitz pseudo-contractive semigroup
on C with M := supt≥0{L(t)} < ∞, where L(t) is the Lipschitz constant of
the mapping T (t). Assume that F := F (T )∩V I(C,A) is not empty. Let {xn}
be the sequence generated by yn = PC [xn − λnAxn]

zn = (1− βn)xn + βnT (tn)xn
xn+1 = αnu+ (1− αn)[anxn + bnPC [xn − λnAyn] + cnT (tn)zn], n ≥ 1,

(3.1)
where {λn} ⊂ [a, b] ⊂ (0, L−1), and {an}, {bn}, {cn}, {αn} ⊂ (0, 1) with an +
bn + cn = 1. Assume that lim infn→∞ bn > 0, lim infn→∞ cn > 0 and bn + cn ≤
βn < β with β < 1√

1+M2+1
. Then {xn} is bounded.

Proof. We begin by showing that for any q ∈ F and for all n ≥ 0,

‖xn+1 − q‖2 ≤ αn ‖u− q‖2 + (1− αn) ‖xn − q‖2 . (3.2)

Denote un := PC(xn−λnAyn) and vn := anxn+bnPC(xn−λnAyn)+cnT (tn)zn.
Then

vn = anxn + bnun + cnT (tn)zn.

For any q ∈ F, we have from (2.2)

‖vn − q‖2 = ‖an(xn − q) + bn(un − q) + cn[T (tn)zn − q]‖2

= an ‖xn − q‖2 + bn ‖un − q‖2 + cn ‖T (tn)zn − q‖2

−anbn ‖xn − un‖2 − ancn ‖xn − T (tn)zn‖2

−bncn ‖un − T (tn)zn‖2 . (3.3)
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Again from (2.2), we have

‖zn − q‖2 = ‖(1− βn)(xn − q) + βn(T (tn)xn − q)‖2

= (1− βn) ‖xn − q‖2 + βn ‖T (tn)xn − q‖2

−βn(1− βn) ‖xn − T (tn)xn‖2

≤ (1− βn) ‖xn − q‖2 + βn[‖xn − q‖2 + ‖xn − T (tn)xn‖2]
−βn(1− βn) ‖xn − T (tn)xn‖2

= ‖xn − q‖2 + β2n ‖xn − T (tn)xn‖2 , (3.4)

where the inequality follows from the pseudo-contractive property of the semi-
group. In addition,

‖zn − T (tn)zn‖2 = ‖(1− βn)(xn − T (tn)zn) + βn(T (tn)xn − T (tn)zn)‖2

= (1− βn) ‖xn − T (tn)zn‖2 + βn ‖T (tn)xn − T (tn)zn‖2

−βn(1− βn) ‖xn − T (tn)xn‖2

≤ (1− βn) ‖xn − T (tn)zn‖2 + βnM
2 ‖xn − zn‖2

−βn(1− βn) ‖xn − T (tn)xn‖2 ,

where the inequality follows from the fact that the semigroup is Lipschitzian.
Using (3.1), we arrive at

‖zn − T (tn)zn‖2 ≤ (1− βn) ‖xn − T (tn)zn‖2

−βn(1− βn − β2nM2) ‖xn − T (tn)xn‖2 . (3.5)

Using the pseudo-contractive property of the semigroup, we get

‖T (tn)zn − q‖2 ≤ ‖zn − q‖2 + ‖zn − T (tn)zn‖2

≤ ‖xn − q‖2 + (1− βn) ‖xn − T (tn)zn‖2

−βn(1− 2βn − β2nM2) ‖xn − T (tn)xn‖2 , (3.6)

where the last inequality follows from (3.4) and (3.5).

On the other hand, from property (2.4) of projections, we have

‖un − q‖2 ≤ ‖xn − λnAyn − q‖2 − ‖xn − λnAyn − un‖2

= ‖xn − q‖2 − ‖xn − un‖2 + 2λn〈Ayn, q − un〉
= ‖xn − q‖2 − ‖xn − un‖2 + 2λn〈Ayn −Aq, q − yn〉

+2λn[〈Aq, q − yn〉+ 〈Ayn, yn − un〉].



Fixed points of semigroups and solutions of variational inequalities 1037

From the conditions yn ∈ C and q ∈ F, we conclude that 〈Aq, q − yn〉 ≤ 0.
Also, by the monotonicity of A, we have 〈Ayn −Aq, q − yn〉 ≤ 0. Therefore,

‖un − q‖2 ≤ ‖xn − q‖2 − ‖xn − un‖2 + 2λn〈Ayn, yn − un〉
= ‖xn − q‖2 − ‖xn − yn‖2 − ‖yn − un‖2

−2〈xn − yn, yn − un〉+ 2λn〈Ayn, yn − un〉
= ‖xn − q‖2 − ‖xn − yn‖2 − ‖yn − un‖2

−2〈xn − yn − λnAyn, yn − un〉.
Note that from the property (2.3) of projections, we have

〈xn − λnAxn − yn, un − yn〉 ≤ 0.

Therefore, using the L-Lipschitz continuity of A, we have

2〈xn − yn − λnAyn, un − yn〉 = 2〈xn − λnAxn − yn, un − yn〉
+2λn〈Axn −Ayn, un − yn〉

≤ 2λn ‖Axn −Ayn‖ ‖yn − un‖
≤ 2λnL ‖xn − yn‖ ‖yn − un‖
≤ λnL(‖xn − yn‖2 + ‖yn − un‖2).

Thus,

‖un − q‖2 ≤ ‖xn − q‖2 − (1− λnL)
(
‖xn − yn‖2 + ‖yn − un‖2

)
.

Using this last inequality and (3.6) into (3.3), we get

‖vn − q‖2 ≤ ‖xn − q‖2 − anbn ‖xn − un‖2

−cn(βn − bn − cn) ‖xn − T (tn)zn‖2 − bncn ‖un − T (tn)zn‖2

−bn(1− λnL)
(
‖xn − yn‖2 + ‖yn − un‖2

)
−cnβn(1− 2βn − β2nM2) ‖xn − T (tn)xn‖2 . (3.7)

Since βn < β and β(
√

1 +M2 + 1) < 1, it follows that

1− 2βn − β2nM2 ≥ 1− 2β − β2M2 > 0.

On using the assumptions λnL < 1 and bn + cn < βn, together with this last
inequality, we obtain from (3.7) that

‖vn − q‖ ≤ ‖xn − q‖ .
Furthermore, from (3.1) and (2.2), we have

‖xn+1 − q‖2 = ‖αn(u− q) + (1− αn)(vn − q)‖2

= αn ‖u− q‖2 + (1− αn) ‖vn − q‖2 − αn(1− αn) ‖u− vn‖2

≤ αn ‖u− q‖2 + (1− αn) ‖xn − q‖2 .
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This last inequality is exactly (3.2).

We next show that the sequence {xn} is bounded. For this, it suffices to
show that for any q ∈ F,

‖xn − q‖2 ≤ K := ‖u− q‖2 + ‖x0 − q‖2 , (3.8)

holds for all n ≥ 0. We show by induction that the sequence {xn − q} is
bounded. If n = 0, then (3.8) holds trivially. We assume that (3.8) holds for
some n = k > 0. Then from (3.2), we have

‖xk+1 − q‖2 ≤ αk ‖u− q‖2 + (1− αk) ‖xk − q‖2 .
≤ αkK + (1− αk)K = K.

This shows that (3.8) also holds for n = k + 1. Hence, {xn} is bounded. �

Theorem 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and A : C → H be a Lipschitz monotone mapping with constant L.
Let T := {T (t) : t > 0} be a Lipschitz pseudo-contractive semigroup on C with
M := supt≥0{L(t)} <∞, where L(t) is the Lipschitz constant of the mapping
T (t). Assume that F := F (T ) ∩ V I(C,A) is not empty. Let {xn} be the
sequence generated by (3.1) satisfying lim infn→∞ bn > 0, lim infn→∞ cn > 0
and bn + cn ≤ βn < β with β < 1√

1+M2+1
. Assume that tn > 0 (for all n ≥ 0)

satisfies lim infn→∞ tn = 0, lim supn→∞ tn > 0 and limn→∞(tn+1 − tn) = 0,
and {αn} ⊂ (0, 1) with limn→∞ αn = 0 and

∑∞
n=0 αn = ∞. Then {xn}

converges strongly to a point x̂ ∈ F, which is the unique point in the set F that
is nearest to u.

Proof. From Theorem 3.1 we have that the sequence {xn} is bounded. Now
using inequality (2.1), we get

‖xn+1 − x̂‖2 = ‖αn(u− x̂) + (1− αn)(vn − x̂)‖2

≤ (1− αn) ‖vn − x̂‖2 + 2αn 〈u− x̂, xn+1 − x̂〉
Substituting (3.7) (with x̂ instead of q) into this last inequality, we obtain

‖xn+1 − x̂‖2 ≤ (1−αn)
[
‖xn−x̂‖2−bn(1−λnL)

(
‖xn−yn‖2+‖yn−un‖2

)]
−(1− αn)bn

[
an ‖xn − un‖2 + cn ‖un − T (tn)zn‖2

]
−(1− αn)cnβn(1− 2βn − β2nM2) ‖xn − T (tn)xn‖2

−(1− αn)cn(βn − bn − cn) ‖xn − T (tn)zn‖2

+2αn 〈u− x̂, xn+1 − x̂〉 . (3.9)

Now, from this last inequality we show that the sequence {xn} converges
strongly to x̂ = PFu. It suffices to show that {xn − x̂} converges strongly to
zero. For this, we consider two possible cases on {xn−x̂}. Denote sn := xn−x̂.
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Case 1. Assume that there exists n0 ∈ N such that the sequence of real
numbers {sn} is decreasing for all n ≥ n0. It then follows that {sn} is conver-
gent. Since the sequences {bn} and {cn} are bounded below away from zero,
bn + cn ≤ βn < β and 1− 2βn − β2nM2 ≥ 1− 2β − β2M2 > 0 for all n ≥ 0, it
follows from (3.9) and the boundedness of {xn} that

lim
n→∞

‖xn − T (tn)xn‖ = 0 = lim
n→∞

‖xn − T (tn)zn‖ . (3.10)

Since, the sequence {xn} ⊂ H is bounded we can extract a subsequence {xnj}
of {xn} converging weakly to z ∈ C and satisfying

lim sup
n→∞

〈u− x̂, xn − x̂〉 = lim
j→∞
〈u− x̂, xnj − x̂〉. (3.11)

Without loss of generality, as in [20], let

lim
j→∞

tnj = lim
j→∞

∥∥xnj − T (tnj )xnj

∥∥
tnj

= 0. (3.12)

Our aim is to show that z ∈ F (T ) ∩ V I(C,A) = F. We first show that
z ∈ F (T ), that is, z = T (t)z for a fixed t > 0. It is easy to see that

∥∥xnj − T (t)xnj

∥∥ ≤
[t/tnj ]−1∑
k=0

∥∥T (ktnj )xnj − T ((k + 1)tnj )xnj

∥∥
+

∥∥∥∥T ([ t

tnj

]
tnj

)
xnj − T (t)xnj

∥∥∥∥
≤

[
t

tnj

] ∥∥xnj − T (tnj )xnj

∥∥M
+

∥∥∥∥T (t− [ t

tnj

]
tnj

)
xnj − xnj

∥∥∥∥M
≤ Mt ·

∥∥xnj − T (tnj )xnj

∥∥
tnj

+M sup
0≤v<tnj

∥∥T (v)xnj − xnj

∥∥ ,
where the second inequality follows from the fact that the semigroup is Lips-
chitzian. Passing to the limit as j → ∞ in the above inequality and making
use of (3.12) as well as the continuity of the semigroup, we arrive at

lim
j→∞

∥∥xnj − T (t)xnj

∥∥ = 0. (3.13)
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Moreover, from the Lipschitz and pseudo-contractive property of the semi-
group, we have∥∥xnj − T (t)z

∥∥2 =
∥∥xnj − T (t)xnj + T (t)xnj − T (t)z

∥∥2
=

∥∥xnj − T (t)xnj

∥∥2 +
∥∥T (t)xnj − T (t)z

∥∥2
+2
〈
xnj − T (t)xnj , T (t)xnj − T (t)z

〉
≤

∥∥xnj − T (t)xnj

∥∥2 +
[∥∥xnj − z

∥∥2 +
∥∥xnj − T (t)xnj

∥∥2]
+2
∥∥xnj − T (t)xnj

∥∥∥∥T (t)xnj − T (t)z
∥∥

≤ 2
∥∥xnj − T (t)xnj

∥∥2 +
∥∥xnj − z

∥∥2
+2M

∥∥xnj − T (t)xnj

∥∥∥∥xnj − z
∥∥ .

The above inequality together with (3.13) imply that

lim sup
j→∞

∥∥xnj − T (t)z
∥∥ ≤ lim sup

j→∞

∥∥xnj − z
∥∥ .

Since every Hilbert space satisfies Opial’s condition, we conclude that z =
T (t)z. Therefore, z ∈ F (T ).

It remains to show that z ∈ V I(C,A). To this end, we start by observing
that from (3.9) and our assumption that {sn} is convergent, we deduce

lim
n→∞

‖xn − yn‖ = 0 = lim
n→∞

‖yn − un‖ . (3.14)

Therefore, from the inequality

‖xn − un‖ ≤ ‖xn − yn‖+ ‖yn − un‖ ,

we obtain the limit

lim
n→∞

‖xn − un‖ = 0. (3.15)

Moreover, from (3.14) and the Lipschitz continuity of A, we have

lim
n→∞

‖Ayn −Aun‖ = 0 (3.16)

Now define (as is the case in [1]) a monotone operator T on H by

S(x) =

{
Ax+NC(x), if x ∈ C
∅, if x 6∈ C,

where NC(x) := {w ∈ H|〈x − y, w〉 ≥ 0 for all y ∈ C} is the normal cone to
C at x ∈ C. The map S is maximal monotone (see [19]) and 0 ∈ S(x) if and
only if x ∈ V I(C,A). Note that if v ∈ C and w ∈ S(v), then w−Av ∈ NC(v).
Therefore, by the definition of NC(v), we have 〈v − y, w − Av〉 ≥ 0 for all
y ∈ C. On the other hand, since unj = PC(xnj −λnjAynj ), we have from (2.3)
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that 〈xnj − λnjAynj − unj , unj − v〉 ≥ 0, or equivalently 0 ≥ 〈v − unj , (xnj −
unj )/λnj −Aynj 〉. Therefore, from unj ∈ C and w −Av ∈ NC(v), we have

〈v − unj , w〉 ≥ 〈v − unj , Av〉
≥ 〈v − unj , Av〉+ 〈v − unj , (xnj − unj )/λnj −Aynj 〉
= 〈v − unj , Av −Aunj 〉+ 〈v − unj , Aunj −Aynj 〉

+〈v − unj , (xnj − unj )/λnj 〉
≥ 〈v − unj , Aunj −Aynj 〉+ 〈v − unj , (xnj − unj )/λnj 〉.

Passing to the limit in the above inequality and using the limits in (3.15) and
(3.16), we obtain 〈v − z, w〉 ≥ 0. The maximality of S implies that 0 ∈ S(z).
That is, z ∈ V I(C,A). Since z ∈ F (T ) and z ∈ V I(C,A), it follows that
z ∈ F. Therefore from (2.3) and (3.11) we derive

lim sup
n→∞

〈u− x̂, xn − x̂〉 = 〈u− x̂, z − x̂〉 ≤ 0. (3.17)

Moreover, from (3.1), (3.10) and (3.15), we have

‖xn+1 − xn‖ ≤ αn ‖u− xn‖+ (1− αn){bn ‖un − xn‖+ cn ‖T (tn)zn − xn‖},

which implies that

lim
n→∞

‖xn+1 − xn‖ = 0.

From this last limit and (3.17), we deduce the inequality

lim sup
n→∞

〈u− x̂, xn+1 − x̂〉 ≤ 0.

Finally, we observe that (3.9) reduces to

‖xn+1 − x̂‖2 ≤ (1− αn) ‖xn − x̂‖2 + 2αn 〈u− x̂, xn+1 − x̂〉 ,

and the conclusion that {sn} converges to zero follows at once from Lemma 2.1.
Thus {xn} converges strongly to x̂ = PFu.

Case 2. Assume that there exists a subsequence {ski} of {sk} such that ski <
ski+1 for all i ≥ 0. Then in view of Lemma 2.2, we can define a nondecreasing
sequence {mk} ⊂ N such that mk →∞ as k →∞ and max{smk

, sk} ≤ smk+1

for all k ∈ N. Since λk ≤ b < L−1 for all k ≥ 0 and the sequences {bk} and
{ck} are bounded from below away from zero, it follows from (3.9) and the
boundedness of {xk} that

lim
k→∞

‖xmk
− T (tmk

)xmk
‖ = 0 = lim

k→∞
‖xmk

− T (tmk
)zmk

‖ . (3.18)

If we take any subsequence of {xmk
} that converges weakly to p, then using

similar arguments as in Case 1 above, we arrive at p ∈ F (T ).
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On the other hand, from (3.9) and our assumption that {sk} is convergent,
we deduce

lim
k→∞

‖xmk
− ymk

‖ = 0 = lim
k→∞

‖ymk
− umk

‖ . (3.19)

Therefore, from the inequality

‖xmk
− umk

‖ ≤ ‖xmk
− ymk

‖+ ‖ymk
− umk

‖ ,

we obtain the limit

lim
k→∞

‖xmk
− umk

‖ = 0. (3.20)

Moreover, from (3.19) and the Lipschitz continuity of A, we have

lim
k→∞

‖Aymk
−Aumk

‖ = 0.

Again using similar arguments as in Case 1 above we can derive p ∈
V I(C,A). Therefore, for any subsequence of {xmk

} converging weakly to
p, we have p ∈ F. Consequently,

lim sup
k→∞

〈u− x̂, xmk
− x̂〉 ≤ 0. (3.21)

Moreover, from (3.1), (3.18) and (3.20), we have

‖xmk+1 − xmk
‖ ≤ αmk

‖u− xmk
‖+ (1− αmk

){bmk
‖umk

− xmk
‖

+cmk
‖S(tmk

)zmk
− xmk

‖},

which implies that

lim
n→∞

‖xmk+1 − xmk
‖ = 0.

From this last limit and (3.21), we deduce the inequality

lim sup
k→∞

〈u− x̂, xmk+1 − x̂〉 ≤ 0.

Now making use of smk
≤ smk+1 for all k ∈ N and rearranging terms in

(3.9), we derive

αmk
‖xmk+1 − x̂‖2 ≤ 2αmk

〈u− x̂, xmk+1 − x̂〉 .

Diving throughout by αmk
and passing to the limit as k → ∞ in the re-

sulting inequality, we obtain ‖xmk+1 − x̂‖ → 0 as k → ∞. Since ‖xk − x̂‖ ≤
‖xmk+1 − x̂‖, it follows that ‖xk − x̂‖ → 0 as k →∞. Thus xk → x̂ as k →∞.

We have shown in both cases that the sequence {xn} generated by (3.1)
converges strongly to x̂ = PFu. The proof is complete. �

If, in Theorem 3.3, we assume that A = 0, then we get the following corol-
lary.
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Corollary 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let T := {T (t) : t > 0} be a Lipschitz pseudo-contractive semigroup
on C with M := supt≥0{L(t)} < ∞, where L(t) is the Lipschitz constant of
the mapping T (t). Assume that F (T ) is nonempty. Let a sequence {xn} be
generated from an arbitrary x0, u ∈ C by{

zn = (1− βn)xn + βnT (tn)xn
xn+1 = αnu+ (1− αn)[(an + bn)xn + cnT (tn)zn], n ≥ 1,

(3.22)

where {an}, {bn}, {cn} ⊂ (0, 1) with an+bn+cn = 1 and satisfying lim infn→∞ bn >
0, lim infn→∞ cn > 0 and bn + cn ≤ βn < β with β < 1√

1+M2+1
. Assume

that tn > 0 (for all n ≥ 0) satisfies lim infn→∞ tn = 0, lim supn→∞ tn > 0
and limn→∞(tn+1 − tn) = 0, and {αn} ⊂ (0, 1) with limn→∞ αn = 0 and∑∞

n=0 αn = ∞. Then {xn} converges strongly to a point x̂ ∈ F (T ), which is
the unique point in the set F (T ) that is nearest to u.

If, in Theorem 3.3, we assume that T = {T (t) : t ≥ 0}, is a k-strictly pseudo-
contractive semigroup on C, then we get the following corollary. Recall that
if T is k-strictly pseudo-contractive semigroup, then T is Lipschitz (see, eg,
[31]).

Theorem 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and A : C → H be a Lipschitz monotone mapping with Lipschitz con-
stant L. Let T = {T (t) : t > 0} be a k-strictly pseudo-contractive semigroup
on C with M := supt≥0{L(t)} < ∞, where L(t) is the Lipschitz constant
of the mapping T (t). Assume that F := F (T ) ∩ V I(C,A) is not empty.
Let {xn} be the sequence generated by (3.1) satisfying lim infn→∞ bn > 0,
lim infn→∞ cn > 0 and bn + cn ≤ βn < β with β < 1√

1+M2+1
. Assume

that tn > 0 (for all n ≥ 0) satisfies lim infn→∞ tn = 0, lim supn→∞ tn > 0
and limn→∞(tn+1 − tn) = 0, and {αn} ⊂ (0, 1) with limn→∞ αn = 0 and∑∞

n=0 αn = ∞. Then {xn} converges strongly to a point x̂ ∈ F, which is the
unique point in the set F that is nearest to u.

If, in Theorem 3.3, we assume that T = {T (t) : t ≥ 0}, is a nonexpansive
semigroup on C, then we get Theorem 3.1 of [3].

If, in Theorem 3.3, we assume that A, is a γ-inverse strongly monotone
mapping, then A is L-Lipschitz with constant L = 1

γ and hence we get the

following corollary.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a real
Hilbert space H and A : C → H be a γ-inverse strongly monotone mapping.
Let T = {T (t) : t > 0} be a strongly continuous semigroup of Lipschitz pseudo-
contractive mappings on C with M := supt≥0{L(t)} < ∞, where L(t) is the
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Lipschitz constant of the mapping T (t). Assume that F := F (T ) ∩ V I(C,A)
is not empty. Let {xn} be the sequence generated by yn = PC [xn − λnAxn]

zn = (1− βn)xn + βnT (tn)xn
xn+1 = αnu+ (1− αn)[anxn + bnPC [xn − λnAyn] + cnT (tn)zn], n ≥ 1,

(3.23)
where {λn} ⊂ [a, b] ⊂ (0, γ), and {an}, {bn}, {cn} ⊂ (0, 1) with an+bn+cn = 1
and satisfying lim infn→∞ bn > 0, lim infn→∞ cn > 0 and bn+cn ≤ βn < β with
β < 1√

1+M2+1
. Assume that tn > 0 (for all n ≥ 0) satisfies lim infn→∞ tn =

0, lim supn→∞ tn > 0 and limn→∞(tn+1 − tn) = 0, and {αn} ⊂ (0, 1) with
limn→∞ αn = 0 and

∑∞
n=0 αn = ∞. Then {xn} converges strongly to a point

x̂ ∈ F, which is the unique point in the set F that is nearest to u.

If, in Theorem 3.3, we assume that C = H, then the projection mapping
PC is reduced to the identity mapping in H and V I(C,A) = A−1(0). Thus,
we get the following corollary.

Corollary 3.3. Let C be a real Hilbert space H and A : H → H be a Lipschitz
monotone mapping with Lipschitz constant L. Let T = {T (t) : t > 0} be a
strongly continuous semigroup of Lipschitz pseudo-contractive mappings on H
with M := supt≥0{L(t)} < ∞, where L(t) is the Lipschitz constant of the

mapping T (t). Assume that F := F (T ) ∩ A−1(0) is not empty. Let {xn} be
the sequence generated by yn = xn − λnAxn

zn = (1− βn)xn + βnT (tn)xn
xn+1 = αnu+ (1− αn)[anxn + bn(xn − λnAyn) + cnT (tn)zn], n ≥ 1,

(3.24)
where {λn} ⊂ [a, b] ⊂ (0, L−1), and {an}, {bn}, {cn} ⊂ (0, 1) with an + bn +
cn = 1 and satisfying lim infn→∞ bn > 0, lim infn→∞ cn > 0 and bn + cn ≤
βn < β with β < 1√

1+M2+1
. Assume that tn > 0 (for all n ≥ 0) satisfies

lim infn→∞ tn = 0, lim supn→∞ tn > 0 and limn→∞(tn+1−tn) = 0, and {αn} ⊂
(0, 1) with limn→∞ αn = 0 and

∑∞
n=0 αn = ∞. Then {xn} converges strongly

to a point x̂ ∈ F, which is the unique point in the set F that is nearest to u.

We note that the method of proof of Theorem 3.3 provides the following
theorem for approximating the minimum norm point of the set of common
fixed points of T and the set of solutions of the variational inequality V I(C,A).

Theorem 3.4. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and A : C → H be a Lipschitz monotone mapping with Lipschitz
constant L. Let {T (t) : t > 0} be a Lipschitz pseudo-contractive semigroup on
C with M := supt≥0{L(t)} < ∞, where L(t) is the Lipschitz constant of the



Fixed points of semigroups and solutions of variational inequalities 1045

mapping T (t). Assume that F := F (T ) ∩ V I(C,A) is not empty. Let {xn} be
the sequence generated by

yn = PC [xn − λnAxn]
zn = (1− βn)xn + βnT (tn)xn

xn+1 = PC

(
(1− αn)[anxn + bnPC [xn − λnAyn] + cnT (tn)zn]

)
, n ≥ 1,

(3.25)
where {λn} ⊂ [a, b] ⊂ (0, L−1), and {an}, {bn}, {cn} ⊂ (0, 1) with an + bn +
cn = 1 and satisfying lim infn→∞ bn > 0, lim infn→∞ cn > 0 and bn + cn ≤
βn < β with β < 1√

1+M2+1
. Assume that tn > 0 (for all n ≥ 0) satisfies

lim infn→∞ tn = 0, lim supn→∞ tn > 0 and limn→∞(tn+1−tn) = 0, and {αn} ⊂
(0, 1) with limn→∞ αn = 0 and

∑∞
n=0 αn = ∞. Then {xn} converges strongly

to a minimum norm point x∗ of F .

Remark 3.1. Theorem 3.3 provides convergence sequence to a common point
of solution set of a variational inequality problem for Lipschitz monotone map-
ping and common fixed point set of pseudo-contractive semigroup in Hilbert
spaces.

Remark 3.2. Theorem 3.3 extends results of Takahashi and Toyoda [23] and
Iiduka and Takahashi [10] to more general class of pseud-contractive semigroup
and more general class of monotone mappings. In addition, Theorem 3.3
extends results of Buong [4], Thuy [24] and Boikanyo and Zegeye [3] to more
general class of pseud-contractive semigroups.
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