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Abstract. This paper is dedicated to a generalized (α, ε)-quasi-efficient solution to semi-

infinite multiobjective optimization problems (SMP). Relationships between the mentioned

solution of (SMP) and the corresponding solution of the scalar problem due to Chankong–

Haimes are established. Using this equivalence, ε-optimality conditions of Karush–Kuhn–

Tucker (KKT) type are derived under the Farkas–Minkowski constraint qualification. In

addition, we formulate dual problems of Wolfe and Mond–Weir types for (SMP), and prove

weak and strong duality theorems.

1. Introduction

Multiobjective optimization problems aim to optimize the objective func-
tions simultaneously and to find the best optimal compromise solution. How-
ever, frequently, it is not easy (or sometimes impossible) to find an optimal
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solution which is satisfied to all criteria at once. Hence, another important so-
lution notion, namely efficient and properly efficient solution, should be taken
into consideration. On the other hand, from a computational point of view it
may be more meaningful to find not exact solutions but approximate ones. In-
deed, one can consider approximate solutions with a small error while solving
optimization problem by a numerical method; moreover, in some problems, if
error value tends to zero, the limit of approximate solution is an exact solution,
if it exists. First, approximate solutions were introduced by Kutateladze [10]
and independently defined for multiobjective programming by Loridan [13].
In 1986 White [19] analyzed six different concepts of ε-solutions. Approxi-
mate solutions have got a keen interest by many researchers; see, for example,
[18, 20, 14, 11] and references therein. In 2008 Beldiman et al. [1] suggested a
unitary concept of approximate quasi efficient solutions which later was gen-
eralized by C. Gutiérrez et al. [8] and which is the main issue of this research.

To explore approximate solutions for multiobjective optimization problems,
it is reasonable to use some scalarization methods, several of which are de-
scribed, for example, in Engau and Wiecek [5]. In literature, one can find
relationship theorems for approximate solutions of multiobjective optimiza-
tion problems and related scalar problems for convex [11] and noncnovex [1]
cases. One of the most well-known methods, namely weighted-sum scalar-
ization method, is widely used for establishing relationship between properly
efficient solutions for multiobjective optimization problems and optimal so-
lutions of related scalar problems; see, for example [4, 11, 16]. But there is
a strict restriction on choosing parameter vector, i.e. all components should
be strictly positive and normalized so that sum of components are equal to
one. On the other hand, the mentioned method can not be used for explor-
ing efficient solutions. Due to this fact we consider scalarization method due
to Chankong–Haimes [2] to find generalized quasi-(α, ε)-efficient solutions for
(SMP).

Another hot topic is establishing ε-optimality conditions for approximate
solutions; see, for example [8, 16] and references therein. There are also
many papers dealing with ε-duality for approximate solutions; see, for ex-
ample [12, 14, 15]. However, for the best of our knowledge, there are not so
many papers considering ε-duality theorems and relationship between semi-
infinite multiobjective optimization problem (SMP) and its dual problem for
generalized approximate solutions. Our research is motivated by this fact.
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This paper is organized as follows. In Section 2, the problem statement and
main notions are described. Section 3 provides relationships between gener-
alized (α, ε)-quasi-proper efficient solution to (SMP) and generalized (αj , εj)-
quasi-optimal solution of the corresponding scalar problem by using weighted-
sum scalarization method. Using this equivalence, ε-optimality conditions of
KKT type are established under Farkasw–Minkowski (FM) constraint qual-
ification. Section 4 deals with the scalarization method due to Chankong–
Haimes and aims to propose ε-optimality conditions of KKT type for (α, ε)-
quasi-efficient solution to (SMP). Section 5 is devoted to duality relations
which is meant to be our main result. Namely, both weak and strong ε-duality
theorems for Wolfe type and Mond–Weir type dual problems are established.
Finally, we provide conclusions in brief.

2. Preliminaries

Let us consider the following semi-infinite multiobjective optimization prob-
lem:

(SMP) Minimize f(x) :=
(
f1(x), f2(x), ..., fm(x)

)
subject to gt(x) 5 0, t ∈ T,

x ∈ C,

where fi(x) : Rm → R ∪ {+∞}, i ∈ I := {1, 2, ...,m} and gt(x) : Rn →
R ∪ {+∞}, t ∈ T (possibly infinite) are proper lower semicontinuous (l.s.c.)
convex functions, and C is a closed convex subset of Rm. The feasible set of
(SMP) is denoted by FM := {x ∈ C | gt(x) 5 0, t ∈ T}.

Definition 2.1. Let ε and α be in Rm+\{0}. A point x̄ ∈ FM is said to be

(1) an ε-efficient solution for (SMP), if there is no other x ∈ FM such that

fi(x) 5 fi(x̄)− εi,∀i ∈ I,

with at least one strict inequality;
(2) an α-quasi-efficient solution for (SMP), if there is no other x ∈ FM

such that

fi(x) 5 fi(x̄)− αi‖x− x̄‖,∀i ∈ I,

with at least one strict inequality.

Gutiérrez et al. [8] gave a notion of α-quasi-efficient solution with the help
of function φ which is meant to be continuous. In our case we modifies this
function, i.e. φ : Rm × Rm → R+ is l.s.c convex function such that

φ(x, x̄)

{
= 0, if x = x̄,
> 0, if x 6= x̄.
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Combining notions given by Beldiman et al.[1] and Gutiérrez et al. [8], we
introduce a new concept of generalized approximate solutions.

Definition 2.2. Let ε and α be in Rm+\{0}. A point x̄ ∈ FM is said to
be a generalized (α, ε)-quasi-efficient solution for (SMP), if there is no other
x ∈ FM such that

fi(x) 5 fi(x̄)− αiφ(x, x̄)− εi, for all i ∈ I,

with at least one strict inequality.

Remark 2.3. If ε = 0, Def. 2.2 covers α-quasi-efficient solution given by
Gutiérrez et al. [8]. If αφ(x, x̄) = 0, the above definition reduces to an ε-
efficient solution. If εi = αi = 0 for all i ∈ I, we get the concept of efficient
solution for (SMP). In special case, when φ(x, x̄) = ‖x− x̄‖, Def. 2.2 reduces
to the unitary approximate notions given by Beldiman et al. [1].

Due to Chankong–Haimes method for j ∈ I and x̄ ∈ C we associated to
(SMP) the following scalar problem,

(Pj(x̄)) Minimize fj(x)
subject to fi(x) 5 fi(x̄), i ∈ Ij := I \ {j},

gt(x) 5 0, t ∈ T
x ∈ C.

For the problem

min{fj(x) | x ∈ C,Gt(x) 5 0, t ∈ T}

we define Gt as follows (with the assumption that T ∩ I = ∅):

Gt(·) =

{
ft(·)− ft(x̄), t ∈ Ij ,
gt(·), t ∈ T, and T = T ∪ Ij . (2.1)

Similarly, generalized approximate solutions for (Pj(x̄)) can be proposed as
follows.

Let εj = 0 and αj = 0. A point x̄ ∈ Fj := {x ∈ C | Gt(x) 5 0, t ∈ T} is
said to be a generalized (αj, εj)-quasi-optimal solution for (Pj(x̄)) if

fj(x̄) 5 fj(x) + αjφ(x, x̄) + εj , ∀x ∈ Fj ,

where Fj is a feasible set of (Pj(x̄)).

Further on, we will consider ε > 0 and α > 0 case to deal with concept of
generalized solutions. However, all theorems can be reduced to corresponding
approximate solutions by putting ε or α equal to zero and still hold true.
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Now, we give some basic concepts and notions. The following linear space
shall be used for semi-infinite programming [6].

R(T ) := {λ = (λt)t∈T | λt = 0 for all t ∈ T but only finitely many λt 6= 0}.

With λ ∈ R(T ), its supporting set, T (λ) = {t ∈ T | λt 6= 0}, is a finite subset
of T .

The nonnegative cone of R(T ) is denoted by

R(T )
+ = {λ = (λt)t∈T ∈ R(T ) | λt = 0, t ∈ T}.

With λ ∈ R(T ) and gt, t ∈ T , we understand that∑
t∈T

λtgt =

{ ∑
t∈T (λ) λtgt, if T (λ) 6= ∅,

0, if T (λ) = ∅.

To establish ε-optimality conditions of KKT-type we need some notions
related to ε-subdifferential concept.

Let h : Rn → R∪{+∞} be a proper l.s.c convex function. The ε-subdifferential
of h at x̄ ∈ dom h is the set ∂εh(x̄) defined by

∂εh(x̄) = {x∗ ∈ Rn | h(y) = h(x̄)− ε+ 〈x∗, y − x̄〉, ∀y ∈ dom h}.

Consider a function h : Rn → R ∪ {+∞}. The conjugate of h, h∗ : Rn →
R ∪ {+∞} is defined as

h∗(x∗) = sup
x∗∈Rn

{〈x∗, x〉 − h(x)}.

The ε-subdifferential definition in term of conjugate function h∗ of h is as
follows:

∂εh(x̄) = {x∗ ∈ Rn | h∗(x∗) + h(x̄) 5 〈x∗, x̄〉+ ε}.

The indicator function δK of a subset K ⊂ Rn is the function defined as
follows:

δK =

{
0, if x ∈ K,

+∞, if x ∈ Rn\K.

Note that if K is convex, then δK is also convex.

Let C be a nonempty closed convex subset of Rn. The ε-normal set of C
at x̄ is the set

Nε(C; x̄) = {x∗ ∈ Rn | 〈x∗, y − x̄〉 5 ε, ∀y ∈ C}.

where ε > 0 and x̄ ∈ C.
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If ε = 0, the ε-normal set reduces to the normal cone N(C; x̄) to C at x̄
that is

N(C; x̄) = {x∗ ∈ Rn | 〈x∗, y − x̄〉 5 0, ∀y ∈ C}.

It is easy to check that

∂εδC(x̄) = Nε(C; x̄) = {x∗ ∈ Rn | δ∗C(x∗) 5 〈x∗, x̄〉+ ε}.

For ε-subdifferential calculus the following propositions (see [[3], Theorem
2.115 and Theorem 2.117]) are very useful.

Proposition 2.4. [Sum Rule] Consider two proper convex functions φi : Rn →
R̄, i = 1, 2 such that ri dom φ1 ∩ ri dom φ2 6= ∅, where ri denotes the relative
interior (see [[3], Definition 2.1.13]). Then for ε > 0,

∂ε(φ1 + φ2)(x̄) =
⋃

ε1=0,ε2=0,ε1+ε2=ε

(
∂ε1φ1(x̄) + ∂ε2φ2(x̄)

)
for every x̄ ∈ dom φ1 ∩ dom φ2.

Proposition 2.5. [Scalar Product Rule] For a proper convex function φ :
Rn → R̄ and any ε ≥ 0,

∂ε(λφ)(x̄) = λ∂ε/λφ(x̄), ∀λ > 0.

3. ε-optimality for (SMP)

In this section, we study the relationships between corresponding approxi-
mate solutions of (SMP) and (Pj(x̄)) and establish ε-optimality conditions.

Theorem 3.1. Let x̄ ∈ C and ε, α ∈ Rm+\{0}. A feasible point x̄ is a general-
ized (α, ε)-quasi-efficient solution for (SMP) if and only of x̄ is a generalized
(αj , εj)-quasi-optimal solution for (Pj(x̄)) for each j ∈ I.

Proof. Let x̄ be a generalized (αj , εj)-quasi-optimal solution for (Pj(x̄)) for
each j ∈ I. Hence,

fj(x̄) 5 fj(x) + αjφ(x, x̄) + εj , for all j ∈ I.
If x̄ is not a generalized (α, ε)-quasi-efficient solution for (SMP) then there
exists x ∈ FM such that

fi(x) 5 fi(x̄)− αiφ(x, x̄)− εi, for all i ∈ I,
with at least one strict inequality. Suppose that the strict inequality takes
place at k. We get fk(x) < fk(x̄)−αkφ(x, x̄)−εk, i.e., fk(x)+αkφ(x, x̄)+εk <
fk(x̄). Hence, there exists k ∈ I such that x̄ is not a generalized (αk, εk)-
quasi-optimal solution for (Pk(x̄)) that is a contradiction. Conversely, let x̄ be
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a generalized (α, ε)-quasi-efficient solution for (SMP). Hence, there exists no
other x ∈ FM such that

fi(x) 5 fi(x̄)− αiφ(x, x̄)− εi, for all i ∈ I,

with at least one strict inequality. If there exists j ∈ I such that x̄ is not a gen-
eralized (αj , εj)-quasi-optimal solution for (Pj(x̄)) then there exists x ∈ Fj(x̄)
such that

fj(x) + αjφ(x, x̄)− εj < fj(x̄),

which is a contradiction. �

To obtain ε-optimality conditions, let us define the following sets:

Si = {x ∈ Rn | fi − fi(x̄) 5 0} for i ∈ Ij ,
St = {x ∈ Rn | gt(x) 5 0} for t ∈ T.

Since Gt is defined by (2.1), with the help of Proposition 2.2. in Strodiot
et al. [17], it is possible to establish the following lemma:

Lemma 3.2. Let ε = 0. Let x̄ ∈ S =

(⋂
t∈T (v) St

)⋂(⋂
i∈Ij Si

)
and the

following constraint qualification of the Slater type holds:

(CQ) ∃x0 ∈ C : G(x0) < 0,

where G = supt∈T Gt. Then x∗ ∈ Nε(S; x̄), iff there exist v = 0 and ε̄ = 0 such
that

x∗ ∈ ∂ε̄(vG)(x̄) and ε̄− ε 5 (vG)(x̄) 5 0.

It is worth mentioning that Slater type (CQ) should be replaced by another
one suitable for semi-infinite programming (see [7]).

Definition 3.3. The convex semi-infinite programming problem is said to
satisfy the Farkas–Minkowski (FM) qualification if

{vtgt(x), t ∈ T (v), x ∈ C}

is a (FM) system, i.e. its characteristic cone K := cone{
⋃
t∈T (v) epi(vtgt)

∗ +

epiδ∗C} is closed.

Remark 3.4. According to [[3], Proposition 11.16] if (CQ) holds then (FM)
is also satisfied.

Up to now we are ready to establish ε-optimality conditions for (Pj(x̄)).
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Theorem 3.5. Let εj = 0, αj > 0 and x̄ be a feasible point of (Pj(x̄)). Suppose
that (FM) constraint qualification holds. Then x̄ is a generalized (αj , εj)-quasi-
optimal solution to (Pj(x̄)) if and only if there exist ε̄0j = 0, ε̄0i = 0 for i ∈ Ij,
ε̄t = 0 for t ∈ T (v̄), ε̄b, ε̄q = 0, λ̄i = 0 for i ∈ Ij and v̄t ∈ R(T )

+ , such that

0 ∈ ∂ε̄0jfj(x̄) +
∑

i∈Ij ∂ε̄0i(λ̄ifi)(x̄) +
∑

t∈T (v̄) ∂ε̄t(v̄tgt)(x̄)

+αj∂βbφ(·, x̄) +Nε̄q(C; x̄), (3.1)

ε̄0j +
∑

i∈Ij λ̄iε̄0i +
∑

t∈T (v̄) v̄tε̄t + β̄b + ε̄q − εj 5
∑

t∈T (v̄) v̄tGt(x̄) 5 0, (3.2)

where β̄b =
ε̄b

αj
.

Proof. If x̄ is a generalized (αj , εj)-quasi-optimal solution, then

fj(x̄) 5 fj(x) + αjφ(x, x̄) + εj .

We can rewrite it as follows:

fj(x̄) + αjφ(x̄, x̄) 5 fj(x) + αjφ(x, x̄) + εj .

Hence, x̄ is an εj-optimal solution of the following problem:

Minimize fj(·) + αjφ(·, x̄)
subject to fi(x) 5 fi(x̄), i ∈ Ij ,

gt(x) 5 0, t ∈ T,
x ∈ C.

By using indicator functions we can obtain the following equivalent uncon-
strained problem:

Minimize fj(·) +
∑

i∈Ij δSi(·) +
∑

t∈T (v) δSt(·) + αjφ(·, x̄) + δC(·)
x ∈ Rm

So, x̄ is an εj-optimal solution of the above problem if and only if

0 ∈ ∂εj
(
fj +

∑
i∈Ij

δSi +
∑
t∈T (v)

δSt + αjφ(·, x̄) + δC
)
(x̄).
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Since there is at least one point x0 ∈ int Si ∩ int St ∩ int C and (FM) holds,
by using the Proposition 2.4 we have

∂εj

(
fj +

∑
i∈Ij

δSi +
∑
t∈T (v)

δSt + αjφ(·, x̄) + δC

)
(x̄)

=
⋃

ε0j=0,ε0i=0,εt=0,εb=0,εq=0
ε0j+

∑
i∈Ij ε0i+

∑
t∈T (v) εt+εb+εq=εj

{
∂ε0jfi(x̄) +

∑
i∈Ij

∂ε0iδSi(x̄)

+
∑
t∈T (v)

∂εtδSt(x̄) + ∂αjεbφ(·, x̄)(x̄) + ∂εqδC(x̄)

}
.

By using Proposition 2.5 we can move αj outside the ∂εb and set
εb

αj
= βb.

Hence, there exist λ̄i = 0, v̄ ∈ R(T )
+ , ε̄0j = 0, ε̄0i = 0 for i ∈ Ij , ε̄t = 0 for

t ∈ T (v̄), β̄b, ε̄q = 0 such that

0 ∈ ∂ε̄0jfj(x̄) +
∑
i∈Ij

∂ε̄0i(λ̄ifi)(x̄) +
∑
t∈T (v̄)

∂ε̄t(v̄tgt)(x̄) +αj∂βbφ(·, x̄) +Nε̄q(C; x̄).

Condition (3.2) follows from Lemma 3.2 by summing over t ∈ T (v̄) and re-
placing (CQ) by (FM) constraint qualification. �

Remark 3.6. In practice, it is more meaningful to consider the special case
φ(x, x̄) = ‖x − x̄‖. It is not difficult to check that α∂εb/α‖ · −x̄‖(x̄) = αB,
where B denotes a unit ball. Then condition (3.1) reduces to

∈ ∂ε̄0jfj(x̄) +
∑
i∈Ij

∂ε̄0i(λ̄ifi)(x̄) +
∑
t∈T (v̄)

∂ε̄t(v̄tgt)(x̄) + αjB +Nε̄q(C; x̄).

Further on, we will consider φ(x, x̄) = ‖x− x̄‖ to be more significant.

Up to now we are ready to establish ε-optimality conditions for a generalized
(α, ε)-quasi-efficient solution for (SMP) with the help of Theorem 3.1 and
Theorem 3.5.

Theorem 3.7. Let x̄ ∈ C, ε and α be in Rm+\{0} and (FM) constraint qualifi-
cation hold. Then x̄ is a generalized (α, ε)-quasi-efficient solution for (SMP) if
and only if there exist λi = 0, β̄i, i ∈ I,

∑
i∈I λi = 1, β̄t = 0, t ∈ T (v), β̄b =
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0, β̄q = 0 and v ∈ R(T )
+ such that

0 ∈
∑
i∈I

∂β̄0i(λifi)(x̄) +
∑
t∈T (v̄)

∂β̄t(vtgt)(x̄) + λjαjB +Nβ̄q(C; x̄), (3.3)

∑
i∈I

λiβ̄0i +
∑
t∈T (v)

vtβ̄t + β̄b + β̄q − λjεj 5
∑
t∈T (v)

vtgt(x̄) 5 0. (3.4)

Proof. By Theorem 3.1, x̄ is a generalized (α, ε)-quasi-efficient solution for
(SMP) if and only if x̄ is a generalized (αj , εj)-quasi-optimal solution for
(Pj(x̄)) for all j ∈ I. According to Lemma 3.5 there exist ε̄0j = 0, ε̄0i = 0 for

i ∈ Ij , ε̄t = 0 for t ∈ T (v̄), ε̄b, ε̄q = 0, λ̄i = 0 for i ∈ Ij and v̄t ∈ R(T )
+ such that

(3.1) and (3.2) holds. First, let us focus on (3.1). It implies that

0 ∈
1

1 +
∑

i∈Ij λ̄i

(
∂ε̄0jfj(x̄) +

∑
i∈Ij

∂ε̄0i λ̄ifi(x̄) +
∑
t∈T (v̄)

∂ε̄t v̄tgt(x̄)

+ αjB +Nε̄q(C, x̄)

)
. (3.5)

Set

Nβ̄q(C; x̄) =
1

1 +
∑

i∈Ij λ̄i
Nε̄q(C; x̄);

λj =
1

1 +
∑

i∈Ij λ̄i
;

λi =
λ̄i

1 +
∑

i∈Ij λ̄i
, i ∈ Ij ;

vt =
v̄t

1 +
∑

i∈Ij λ̄i
, t ∈ T (v);

β0j =
1

1 +
∑

i∈Ij λ̄i
¯ε0j ;

β0i =
1

1 +
∑

i∈Ij λ̄i
ε̄0i, i ∈ Ij ;

βt =
1

1 +
∑

i∈Ij λ̄i
ε̄t, t ∈ T

(3.6)

and note that Nβ̄q(C; x̄) ⊂ Nε̄q(C; x̄) from (3.5) and by using Proposition 2.5

we deduce

0 ∈
∑
i∈I

∂β̄0i(λifi)(x̄) +
∑
t∈T (v)

∂β̄t(vtgt)(x̄) + λjαjB +Nβ̄q(C; x̄).
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It is easy to check that
∑

i∈I λi = 1. Since the feasible set of (SMP) is
FM := {x ∈ C | gt(x) 5 0, t ∈ T}, without loss of generality, we can reduce∑

t∈T̄ (v̄) v̄tGt to
∑

t∈T (v̄) v̄tgt. Hence, using the same method, we have∑
i∈I

λiβ̄0i +
∑
t∈T (v)

vtβ̄t + β̄b + β̄q − λjεj 5
∑
t∈T (v)

vtgt(x̄) 5 0,

where β̄q =
ε̄q

1 +
∑

i∈Ij λ̄i
. �

4. ε-Duality

In this section, we discuss about weak and strong ε-duality theorems. First,
we propose Wolfe type dual problem due to (SMP) as follows:

(MD)W Maximize f(y) +
∑

t∈T vtgt(y)e
subject to 0 ∈

∑
i∈I ∂β̄0i(λifi)(y) +

∑
t∈T (v) ∂β̄tvtgt(y)

+λTαB +Nβ̄q(C; y),∑
i∈I λiβ̄0i +

∑
t∈T (v) vtβ̄t + β̄b + β̄q − λT ε 5 0,

λ > 0, λT e = 1, e = (1, ..., 1) ∈ Rm,
(y, λ, v) ∈ C × Rm × R(T )

+ .

Now we derive ε-weak Duality theorem.

Theorem 4.1. [ε-Weak Duality] Let x and (y, λ, v) be feasible solutions to
(SMP) and (MD)W, respectively. Then the following cannot hold:

fi(x) 5 fi(y) +
∑
t∈T (v)

vtgt(y)− αi‖x− y‖ − εi, for all i ∈ I

with at least one strict inequality.

Proof. Suppose contrary to result that it holds. Multiplying by corresponding
λi > 0 and summing for i ∈ I with λT e = 1, we have∑

i∈I
λif(x) <

∑
i∈I

λifi(y) +
∑
t∈T (v)

vtgt(y)−
∑
i∈I

λiαi‖x− y‖ −
∑
i∈I

λiεi.

Hence x ∈ C and
∑

t∈T (v) vtgt(x) 5 0 and gt(y) = 0, we obtain x 6= y and,∑
i∈I

λifi(x) +
∑
t∈T (v)

vtgt(x) <
∑
i∈I

λifi(y) +
∑
t∈T (v)

vtgt(y)− λTα‖x− y‖ − λT ε.
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Since (y, λ, v) is a feasible solution to (MD)W , there exist ui ∈ ∂β̄0ifi(y), i ∈ I,

µt ∈ ∂β̄tgt, t ∈ T (v), l ∈ B and w ∈ Nβ̄q(C; y) such that

∑
i∈I

λiui(x− y) +
∑
t∈T (v)

vtµt(x− y) + λTαl(x− y) + w(x− y) = 0.

So, using the convexity of fi, i ∈ I and gt, t ∈ T (v), we can obtain

∑
i∈I

λifi(x) +
∑
t∈T (v)

vtgt(x)−
(∑

i∈I
λifi(y) +

∑
t∈T (v)

vtgt(y)

− λTα‖x− y‖ − λT ε
)

=
∑
i∈I

λi

(
fi(x)− fi(y)

)
+
∑
t∈T (v)

vt

(
gt(x)− gt(y)

)
+ λTα‖x− y‖+ λT ε

=
∑
i∈I

λiui(x− y) +
∑
t∈T (v)

vtµt(x− y) + λTαl(y − x) + λT ε

−
∑
i∈I

λiβ̄0i −
∑
t∈T (v)

vtβ̄t

= −w(x− y) + λT ε−
∑
i∈I

λiβ̄0i −
∑
t∈T (v)

vtβ̄t − β̄b

= λT ε−
∑
i∈I

λiβ̄0i −
∑
t∈T (v)

vtβ̄t − β̄b − β̄q

= 0,

that is a contradiction. This completes the proof. �

Using Theorem 3.7 and Theorem 4.1, we establish ε-strong duality theorem
for a generalized (α, ε)-efficient solution.

Theorem 4.2. [ε-Strong Duality] Let ε, α ∈ Rm+\{0}. Assume that (FM)
and ε-weak duality hold. If x̄ ∈ C is a generalized (α, ε)-efficient solution for

(SMP) then there exist λ ∈ Rm and v ∈ R(T )
+ such that (x̄, λ, v) is a generalized

(α, 2ε)-efficient solution for (MD)W .
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Proof. Since x̄ is generalized (α, ε)-efficient solution for (SMP), by Theorem

3.7, there exist λi, i ∈ I and v ∈ R(T )
+ such that

0 ∈
∑
i∈I

∂β̄0i(λifi)(x̄) +
∑
t∈T (v)

∂β̄t(vtgt)(x̄) + λjαjB +Nβ̄q(C; x̄)

⊂ 0 ∈
∑
i∈I

∂β̄0i(λifi)(x̄) +
∑
t∈T (v)

∂β̄tvtgt(x̄) + λTαB +Nβ̄q(C; x̄)

holds, and then (x̄, λ, v) is feasible for (MD)W . Suppose that (x̄, λ, v) is not a
generalized (α, 2ε)-efficient solution for (MD)W . Then there exists (x∗, λ∗, v∗)
such that the following cannot hold:

fi(x
∗) +

∑
t∈T (v)

v∗t gt(x
∗)e− αi‖x∗ − x̄‖ − 2εi 5 fi(x̄) +

∑
t∈T (v)

vtgt(x̄)e,

with at least on strict inequality. Taking strict inequality at jth term, we get

fj(x
∗) +

∑
t∈T (v)

v∗t gt(x
∗)− αj‖x∗ − x̄‖ − 2εj > fj(x̄) +

∑
t∈T (v)

vtgt(x̄).

It implies that

fj(x̄) +
∑
t∈T (v)

vtgt(x̄)− fj(x∗)−
∑
t∈T (v)

v∗t gt(x
∗) + αj‖x∗ − x̄‖+ 2εj < 0.

On the other hand, by ε-weak duality (Theorem 4.1) and since

β̄0i +
∑
t∈T (v)

vtβ̄t + β̄b + β̄q − εj 5
∑
t∈T (v)

vtgt(x̄) 5 0,

the following cannot hold

fj(x̄)−
(
fj(x

∗) +
∑
t∈T (v)

v∗t gt(x
∗)

)
+
∑
t∈T (v)

vtgt(x̄) + αj‖x∗ − x̄‖+ 2εj

5 fj(x̄)−
(
fj(x

∗) +
∑
t∈T (v)

v∗t gt(x
∗)

)
+ αj‖x∗ − x̄‖+ εj

− β̄0i −
∑
t∈T (v)

vtβ̄t − β̄b − β̄q − εj

5 fj(x̄)− fj(x∗)−
∑
t∈T (v)

v∗t gt(x
∗) + αj‖x∗ − x̄‖+ εj

5 0.

So we get a contradiction. �
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Let us consider Mond–Weir type dual problem which is denoted as follows:

(MD)M Maximize f(y)
subject to 0 ∈

∑
i∈I ∂β̄0i(λifi)(y) +

∑
t∈T (v) ∂β̄tvtgt(y)

+λTαB +Nβ̄q(C; y),∑
i∈I λiβ̄0i +

∑
t∈T (v) vtβ̄t + β̄b + β̄q − λT ε 5 0,

λ > 0, λT e = 1, e = (1, ..., 1) ∈ Rm,
(y, λ, v) ∈ C × Rm × R(T )

+ .

Theorem 4.3. [ε-Weak Duality] Let x and (y, λ, v) be feasible solutions to
(SMP) and (MD)M , respectively. Then the following cannot hold

fi(x) 5 fi(y)− αi‖x− y‖ − εi, for all i ∈ I,

with at least one strict inequality.

Proof. Suppose contrary to result that it holds. Multiplying by corresponding
λi > 0 and summing for i ∈ I with λT e = 1, we have∑

i∈I
λifi(x) <

∑
i∈I

λifi(y)−
∑
i∈I

λiαi‖x− y‖ −
∑
i∈I

λiεi.

Hence x ∈ C and gt(x) 5 0 and vtgt(y) = 0, we obtain∑
i∈I

λifi(x) +
∑
t∈T (v)

vtgt(x) <
∑
i∈I

λifi(y) +
∑
t∈T (v)

vtgt(y)− λTα‖x− y‖ − λT ε.

Since (y, λ, v) is a feasible solution to (MD)M , there exist ui ∈ ∂ε̄0ifi(y), i ∈ I,
µt ∈ ∂β̄tgt, t ∈ T (v), l ∈ B and w ∈ Nβ̄q(C; y) such that∑

i∈I
λiui(x− y) +

∑
t∈T (v)

vtµt(x− y) + λTαl(x− y) + w(x− y) = 0.

Following the same method like in the proof of the Theorem 4.1 we can
obtain a contradiction. �

Using Theorem 3.7 and Theorem 4.3, we can establish ε-strong duality. It
should be mentioned that in contrast to ε-strong duality of Wolfe type, x̄ is a
generalized (α, ε)-efficient solution for (MD)M , not 2ε-efficient.

Theorem 4.4. [ε-Strong Duality] Let ε, α ∈ Rm+\{0}. Assume that (FM)
and ε-weak duality hold. If x̄ ∈ C is a generalized (α, ε)-efficient solution for

(SMP) then there exist λ ∈ Rm and v ∈ R(T )
+ such that (x̄, λ, v) is generalized

(α, ε)-efficient solution for (MD)M .
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Proof. Since x̄ is generalized (α, ε)-efficient solution for (SMP), by Theorem

3.7, there exist λi, i ∈ I and v ∈ R(T )
+ such that

0 ∈
∑
i∈I

∂β̄0i(λifi)(x̄) +
∑
t∈T (v)

∂β̄t(vtgt)(x̄) + λjαjB +Nβ̄q(C; x̄)

⊂ 0 ∈
∑
i∈I

∂β̄0i(λifi)(x̄) +
∑
t∈T (v)

∂β̄tvtgt(x̄) + λTαB +Nβ̄q(C; x̄)

holds, and then (x̄, λ, v) is feasible for (MD)M . Suppose that (x̄, λ, v) is not
generalized (α, ε)-efficient solution for (MD)M , there exists (x∗, λ∗, v∗) such
that the following cannot hold:

fi(x
∗)− αi‖x∗ − x̄‖ − εi 5 fi(x̄),

with at least on strict inequality, which contradicts ε-weak duality Theorem
4.3. �

5. Conclusion

In this paper we discussed about generalized approximate solutions to semi-
infinite multiobjective optimization problem. Relationships between general-
ized (α, ε)-quasi-efficient solution for (SMP) and generalized (αj , εj)-quasi-
optimal solution for (Pj(x̄)) were established. Using this equivalences, ε-
optimality conditions for (SMP) were derived under FM constraint qualifi-
cation due to Goberna et al. [7]. In addition, we established both weak and
strong ε-duality theorem for Wolfe type and Mond–Weir type dual problems.
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