
Nonlinear Functional Analysis and Applications
Vol. 22, No. 5 (2017), pp. 1065-1079

ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2017 Kyungnam University Press

KUPress

CONE METRIC SPACE WITH BANACH ALGEBRA AND
FIXED POINT RESULTS FOR T -HARDY-ROGERS TYPE

CONTRACTIONS

Young-Oh Yang

Department of Mathematics
Jeju National University, Jeju, 63243, Korea

e-mail: yangyo@jejunu.ac.kr

Dedicated to Professor Jong Kyu Kim on the occasion of his retirement

Abstract. In this paper, we prove some common fixed and periodic point theorems for T -

Hardy-Rogers type contraction of self mappings on cone b-metric spaces over Banach algebras

with solid cone, by using properties of spectral radius. Our results improve and generalize

the main results of Xu and Radenovic(Fixed Point Theory and Applications, 2014:102) and

several well-known theorems in the literature of T -contraction mappings. Also we give

examples as an application of the main result.

1. Introduction

Since Banach proved his famous fixed point theorem in 1922, fixed points
of mappings satisfying certain contractive conditions has been studied at the
center of strong research activity. In 2007, Huang and Zhang [4] introduced
cone metric space and proved some fixed point theorems. Afterward, several
fixed and common fixed point results on cone metric spaces have been proved
in ([1],[8],[10]). Recently, A. Beiranvand [2], Filipovic et al. [3], Morales and
Rojas [7] have extended the concept of T -contraction mappings to cone metric
space by proving fixed point theorems.

In 2013, in order to generalize the Banach contraction principle to more
general form, Liu and Xu [6] introduced the concept of cone metric spaces
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over Banach algebras, by replacing Banach spaces with Banach algebras as
the underlying spaces of cone metric spaces, and proved some fixed point the-
orems of generalized Lipschitz mappings with weaker and natural conditions
on generalized Lipschitz constants by means of spectral radius.

In this paper, we prove some common fixed and periodic point theorems for
T -Hardy-Rogers type contraction of self mappings on cone b-metric spaces over
Banach algebras with solid cone, by using properties of spectral radius. Our
results improve and generalize Theorem 3.1, 3.2 and 3.3 of Xu and Radenovic
[9], and Theorem 2.1, 2.2 and 2.3 of Liu and Xu [6] as well as several well-
known theorems in the literature of T -contraction mappings. Also we give
examples as an application of the main result.

We recall some definitions and other results that will be needed in the sequel.
Let A always be a real Banach algebra. That is, A is a real Banach space

in which an operation of multiplication is defined, subject to the following
properties (for all x, y, z ∈ A, α ∈ R):

(1) (xy)z = x(yz);
(2) x(y + z) = xy + xz and (x+ y)z = xz + yz;
(3) α(xy) = (αx)y = x(αy);
(4) ‖xy‖ ≤ ‖x‖‖y‖.

In this paper, we shall assume that A is a real Banach algebra with a unit
(i.e., a multiplicative identity) e. An element x ∈ A is said to be invertible if
there is an inverse element y ∈ A such that xy = yx = e. The inverse of x is
denoted by x−1.

Let A be a real Banach algebra with a unit e and θ the zero element of A.
A nonempty closed subset P of Banach algebra A is called a cone if

(1) {θ, e} ⊂ P ;
(2) αP + βP ⊂ P for all nonnegative real numbers α, β ;
(3) P 2 = PP ⊂ P ;
(4) P ∩ (−P ) = {θ} i.e, x ∈ P and −x ∈ P imply x = θ.

For any cone P ⊆ A, we can define a partial ordering � with respect to P
by x � y if and only if y − x ∈ P . x ≺ y stands for x � y but x 6= y. Also,
we use x � y to indicate that y − x ∈ intP where intP denotes the interior
of P . If intP 6= ∅ then P is called a solid cone. A cone P is called normal if
there exists a number K such that for all x, y ∈ A,

θ � x � y implies ‖x‖ ≤ K‖y‖. (1.1)

The least positive number K satisfying condition (1.1) is called the normal
constant of P .

In the following we always assume that P is a solid cone of A and � is the
partial ordering with respect to P .
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Definition 1.1. Let X be a nonempty set, s ≥ 1 be a constant and A be
a real Banach algebra. Suppose the mapping d : X × X → A satisfies the
following conditions:

(1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, y) � s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is called a cone b-metric on X, and (X, d) is called a cone b-metric
space over the Banach algebra A.

Example 1.2. Let A = C[a, b] be the set of continuous functions on [a, b] with
the supremum. Define multiplication in the usual way. Then A is a Banach
algebra with a unit 1. Set P = {x ∈ A : x(t) ≥ 0, t ∈ [a, b]} and X = R. We
define a mapping d : X × X → A by d(x, y)(t) = |x − y|pet for all x, y ∈ X
and for each t ∈ [a, b], where p > 1 is a constant. This makes (X, d) into a
cone b-metric space over Banach algebra with the coefficient s = 2p−1. But
it is not a cone metric space over Banach algebra since it does not satisfy the
triangle inequality.

Definition 1.3. Let (X, d) be a cone b-metric space over a Banach algebra
A. Let {xn} be a sequence in X and x ∈ X.

(1) If for every c ∈ A with θ � c, there exists a natural number N such
that d(xn, x)� c for all n > N , then {xn} is said to be convergent and
{xn} converges to x, and the point x is the limit of {xn}. We denote
this by

lim
n→∞

xn = x or xn → x (n→∞).

(2) If for all c ∈ A with θ � c, there exists a positive integer N such that
d(xn, xm)� c for all m,n > N , then {xn} is called a Cauchy sequence
in X.

(3) A cone b-metric space (X, d) is said to be complete if every Cauchy
sequence in X is convergent.

(4) A self mapping T : X → X is said to be continuous at a point x ∈ X
if lim

n→∞
xn = x implies lim

n→∞
Txn = Tx for every sequence {xn} in X.

Definition 1.4. Let E be a real Banach space with a solid cone P . A sequence
{xn} ⊂ P is called a c−sequence if for any c ∈ A with θ � c, there exists a
positive integer N such that xn � c for all n ≥ N .

Let E be a real Banach space with a cone P . Then the following properties
are often used, particularly when dealing with cone b-metric spaces in which
the cone need not be normal (for details see ([8], [9]):
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(p1) If a� b and b� c, then a� c.
(p2) If a � b and b� c, then a� c.
(p3) If a � b+ c for each θ � c, then a � b.
(p4) If θ � u� c for each θ � c, then u = θ.
(p5) If {xn}, {yn} are sequences in E such that xn → x, yn → y and xn � yn

for all n ≥ 1, then x � y.

Lemma 1.5. ([5], [9]) Let A be a real Banach algebra with a unit e and P be
a solid cone in A. We define the spectral radius ρ(x) of x ∈ A by

r(x) = lim
n→∞

‖xn‖1/n = inf
n≥1
‖xn‖1/n.

(1) If 0 ≤ r(x) < 1, then e− x is invertible,

(e− x)−1 =

∞∑
i=0

xi and r((e− x)−1) ≤ 1

1− r(k)
.

(2) If r(x) < 1, then ‖xn‖ → 0 as n→∞.
(3) If x ∈ P and r(x) < 1, then (e− x)−1 ∈ P .
(4) If k, u ∈ P , r(k) < 1 and u � ku, then u = θ.
(5) r(x) ≤ ‖x‖ for all x ∈ A.
(6) If x, y ∈ A and x, y commute, then we have the following inequalities:

(a) r(xy) ≤ r(x)r(y),
(b) r(x+ y) ≤ r(x) + r(y),
(c) |r(x)− r(y)| ≤ r(x− y).

Lemma 1.6. ([8], [9]) Let (X, d) be a complete cone b-metric space over a
Banach algebra A and let P be a solid cone in A. Let {xn} be a sequence in
X. Then we have the following statements:

(1) If ‖xn‖ → 0 as n→∞, then {xn} is a c−sequence.
(2) If k ∈ P is any vector and {xn} is c−sequence in P , then {kxn} is a

c−sequence.
(3) If x, y ∈ A, a ∈ P and x � y, then ax � ay.
(4) If {xn} converges to x ∈ X, then {d(xn, x)}, {d(xn, xn+p)} are c-

sequences for any p ∈ N.

Definition 1.7. Let T and f be two self mappings of a cone b-metric space
(X, d) over a Banach algebra A.

(1) f is said to be T -contraction if there exists k ∈ P with 0 ≤ r(k) < 1
such that

d(Tfx, Tfy) � kd(Tx, Ty) (1.2)

for all x, y ∈ X.
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(2) f is said to be T -contractive, if for every x, y ∈ X with Tx 6= Ty,

d(Tfx, Tfy) ≺ d(Tx, Ty).

If T = I, the identity mapping, then the Definition (1.2) reduces to Banach
contraction mapping. It is obvious that every T -contraction mapping is T -
contractive but the converse need not be true.

Definition 1.8. ([2], [3]) Let T be a self mapping of a cone b-metric space
(X, d) over a Banach algebra A. Then

(1) T is said to be sequentially convergent, if the sequence {xn} in X is
convergent whenever {Txn} is convergent.

(2) T is said to be subsequentially convergent, if {xn} has a convergent
subsequence whenever {Txn} is convergent.

2. Common fixed point results

In this section, we prove a new common fixed point theorem for T -Hardy-
Rogers type contraction on cone b-metric spaces over Banach algebras with
solid cone, by using properties of spectral radius.

Theorem 2.1. Let (X, d) be a complete cone b-metric space (X, d) over a
Banach algebra A with coefficient s ≥ 1 and P be a solid cone. Let T : X → X
be a continuous and one to one mapping. Moreover, let f and g be two maps
of X satisfying

d(Tfx, Tgy) � a1d(Tx, Ty) + a2[d(Tx, Tfx) + d(Ty, Tgy)] (2.1)

+a3[d(Tx, Tgy) + d(Ty, Tfx)],

for all x, y ∈ X, where ai ∈ P commute for i = 1, 2, 3 and

sr(a1) + (s2 + 1)r(a2) + (s3 + s)r(a3) < 1. (2.2)

Then,

(1) there exist ux ∈ X such that lim
n→∞

Tfx2n = lim
n→∞

Tgx2n+1 = ux.

(2) if T is subsequentially convergent, then {fx2n} and {gx2n+1} have a
convergent subsequence.

(3) there exist a unique vx ∈ X such that fvx = gvx = vx, that is, f and
g have a unique common fixed point.

(4) if T is sequentially convergent, then iterate sequences {fx2n} and {gx2n+1}
converge to vx.

Proof. Let x0 be any point of X. Define {xn} by

x1 = fx0, x2 = gx1, · · · , x2n+1 = fx2n, x2n+2 = gx2n+1
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for n = 0, 1, 2, · · · . First, we prove that {Txn} is a Cauchy sequence. By (2.1),

d(Tx2n+1, Tx2n+2) = d(Tfx2n, T gx2n+1)

� a1d(Tx2n, Tx2n+1) + a2[d(Tx2n, T fx2n)

+d(Tx2n+1, T gx2n+1)]

+a3[d(Tx2n, T gx2n+1) + d(Tx2n+1, T fx2n)]

= a1d(Tx2n, Tx2n+1) + a2[d(Tx2n, Tx2n+1)

+d(Tx2n+1, Tx2n+2)]

+a3[d(Tx2n, Tx2n+2) + d(Tx2n+1, Tx2n+1)]

� (a1 + a2 + sa3)d(Tx2n, Tx2n+1)

+(a2 + sa3)d(Tx2n+1, Tx2n+2).

Since r(a2) + sr(a3) < 1 by hypothesis (2.2), e− a2 − sa3 is invertible. Thus

d(Tx2n+1, Tx2n+2) � kd(Tx2n, Tx2n+1),

where k = (e− a2 − sa3)−1(a1 + a2 + sa3) and r(k) < 1 by hypothesis (2.2).
Similarly, we get

d(Tx2n+3, Tx2n+2) � kd(Tx2n+2, Tx2n+1).

Thus, for all n

d(Txn, Txn+1) � kd(Txn−1, Txn) � k2d(Txn−2, Txn−1)

� · · · � knd(Tx0, Tx1). (2.3)

If m,n ∈ N such that m > n, then we have, since r(sk) < 1,

d(Txn, Txm) � s[d(Txn, Txn+1) + d(Txn+1, Txm)]

� sd(Txn, Txn+1) + s2[d(Txn+1, Txn+2) + d(Txn+2, Txm)]

...

� sd(Txn, Txn+1) + s2d(Txn+1, Txn+2) + · · ·
+sm−n−1d(Txm−2, Txm−1) + sm−nd(Txm−1, Txm)

� (skn + s2kn+1 + · · ·+ sm−nkm−1)d(Tx0, Tx1)

� skn[e+ sk + (sk)2 + · · · ]d(Tx0, Tx1)

= skn(e− sk)−1d(Tx0, Tx1).

Since r(k) < 1, it follows that ‖kn‖ → 0 as n→∞. By Lemma 1.6, it follows
that for θ � c and large n, skn(e − sk)−1d(Tx0, Tx1) � c. Thus, according
to (p2), d(Txn, Txm)� c. Hence, it follows that {Txn} is a Cauchy sequence
in X by Definition. Since X is a complete cone b-metric space, there exist
ux ∈ X such that Txn → ux as n→∞. Thus,

lim
n→∞

Tfx2n = ux, lim
n→∞

Tgx2n+1 = ux. (2.4)



Cone metric space with Banach algebra and fixed point results 1071

Now, if T is subsequentially convergent, then by definition {fx2n} (resp.
{gx2n+1}) has a convergent subsequence. Thus, there exist vx1 ∈ X and
{fx2ni} (resp. vx2 ∈ X and {gx2ni+1}) such that

lim
n→∞

fx2ni = vx1 , lim
n→∞

gx2ni+1 = vx2 . (2.5)

Because of continuity T and by (2.5), we have

lim
n→∞

Tfx2ni = Tvx1 , lim
n→∞

Tgx2ni+1 = Tvx2 . (2.6)

Now, by (2.4) and (2.6) and because of injectivity of T , there exist vx ∈ X
(set vx = vx1 = vx2) such that Tvx = ux.

On the other hand, by hypothesis (2.2), we have

d(Tvx, T gvx)

� sd(Tvx, T gx2ni+1) + s2d(Tgx2ni+1, Tfx2ni)

+ s2d(Tfx2ni , T gvx)

� sd(Tvx, Tx2ni+2) + s2d(Tx2ni+2, Tx2ni+1)

+ s2a1d(Tx2ni , T vx)

+ s2a2[d(Tx2ni , Tx2ni+1) + d(Tvx, T gvx)]

+ s2a3[d(Tx2ni , T gvx) + d(Tvx, Tx2ni+1)]

� sd(Tvx, Tx2ni+2) + s2k2ni+1d(Tx0, Tx1) + s2a1d(Tx2ni , T vx)

+ s2a2d(Tvx, T gvx) + s2k2nia2d(Tx0, Tx1)

+ s2a3d(Tvx, Tx2ni+1) + s2a3d(Tx2ni , T gvx)

� sd(Tvx, Tx2ni+2) + s2(k2ni+1 + k2nia2)d(Tx0, Tx1)

+ s2(a1 + sa3)d(Tx2ni , T vx) + s2a3d(Tvx, Tx2ni+1)

+ s2(a2 + sa3)d(Tvx, T gvx).

Since r(k) < 1, {k2ni+1}, {k2ni} are c-sequences. Also by (2.6) and Lemma
1.6, {d(Tvx, Tx2ni+2)}, {d(Tx2ni , T vx)}, {d(Tvx, Tx2ni+1)} are c-sequences in
cone P . Thus the above inequality implies

d(Tvx, T gvx) � s2(a2 + sa3)d(Tvx, T gvx) + zn

where {zn} is a c-sequence in cone P . Since for each c� θ there exists n0 ∈ N
such that zn � c for n ≥ n0, we have

d(Tvx, T gvx) � s2(a2 + sa3)d(Tvx, T gvx) + c

for each n ≥ n0 and thus, by (p3).

d(Tvx, T gvx) � s2(a2 + sa3)d(Tvx, T gvx).
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Since r(s2a2 + s3a3) < 1 and s2a2 + s3a3 ∈ P , by Lemma 1.5, we have
d(Tvx, T gvx) = θ, that is, Tvx = Tgvx. Since T is one to one, then gvx = vx.

Now, we shall show that fvx = vx.

d(Tfvx, T vx) = d(Tfvx, T gvx)

� a1d(Tvx, T vx) + a2[d(Tvx, T fvx) + d(Tvx, T gvx)]

+a3[d(Tvx, T gvx) + d(Tvx, T fvx)]

= (a2 + a3)d(Tvx, T fvx).

Since r(a2+a3) < 1 by hypothesis (2.2), using the definition of partial ordering
on P and properties of cone P , we have d(Tfvx, T vx) = θ. and so Tfvx = Tvx.
Since T is one to one, then fvx = vx. Thus, fvx = gvx = vx, that is, vx is a
common fixed point of f and g.

Now, we shall show that vx is a unique common fixed point. Suppose that
v′x be another common fixed point of f and g. Then

d(Tvx, T v
′
x) = d(Tfvx, T gv

′
x)

� a1d(Tvx, T v
′x) + a2[d(Tvx, Tfvx) + d(Tv′x, T gv

′
x)]

+a3[d(Tvx, T gv
′
x) + d(Tv′x, T fvx)]

= (a1 + 2a3)d(Tvx, T v
′
x).

Since r(a1+2a3) < 1 by hypothesis (2.2), by the same arguments as above, we
conclude that d(Tvx, T v

′
x) = θ, which implies the equality Tvx = Tv′x. Since

T is one to one, then vx = v′x. Thus f and g have a unique common fixed
point.

Ultimately, if T is sequentially convergent, then we replace n for ni. Thus,
we have

lim
n→∞

fx2n = vx, lim
n→∞

gx2n+1 = vx.

Therefore if T is sequentially convergent, then iterate sequences {fx2n} and
{gx2n+1} converge to vx. �

The following results are obtained from Theorem 2.1.

Corollary 2.2. Let (X, d) be a complete cone b-metric space (X, d) over a
Banach algebra A with coefficient s ≥ 1 and P be a solid cone. Let f and g
be two maps of X satisfying

d(fx, gy) � a1d(x, y) + a2[d(x, fx) + d(y, gy)] + a3[d(x, gy) + d(y, fx)]

for all x, y ∈ X where ai ∈ P commute for i = 1, 2, 3 and

sr(a1) + (s2 + 1)r(a2) + (s3 + s)r(a3) < 1.

Then f and g have a unique common fixed point.

Proof. The proof follows by taking T = I in Theorem 2.1. �



Cone metric space with Banach algebra and fixed point results 1073

Corollary 2.3. Let (X, d) be a complete cone b-metric space (X, d) over a
Banach algebra A with coefficient s ≥ 1 and P be a solid cone. Let T : X → X
be a continuous and one to one mapping. Moreover, let f be a map of X
satisfying

d(Tfx, Tfy) � a1d(Tx, Ty) + a2[d(Tx, Tfx) + d(Ty, Tfy)]

+ a3[d(Tx, Tfy) + d(Ty, Tfx)],

for all x, y ∈ X where ai ∈ P commute for i = 1, 2, 3 and

sr(a1) + (s2 + 1)r(a2) + (s3 + s)r(a3) < 1.

Then,

(1) for each x0 ∈ X, {Tfnx0} is a Cauchy sequence.
(2) there exist ux0 ∈ X such that lim

n→∞
Tfnx0 = ux0.

(3) if T is subsequentially convergent, then {fnx0} has a convergent sub-
sequence.

(4) there exist a unique vx0 ∈ X such that fvx0 = vx0, that is, f has a
unique fixed point.

(5) if T is sequentially convergent, then for each x0 ∈ X the iterate se-
quence {fnx0} converges to vx0.

Proof. The proof follows by taking f = g in Theorem 2.1. �

Corollary 2.4. Let (X, d) be a complete cone b-metric space (X, d) over a
Banach algebra A with coefficient s ≥ 1 and P be a solid cone. Let f be a map
of X satisfying

d(fx, fy) � a1d(x, y) + a2[d(x, fx) + d(y, fy)] + a3[d(x, fy) + d(y, fx)]

for all x, y ∈ X where ai ∈ P commute for i = 1, 2, 3 and

sr(a1) + (s2 + 1)r(a2) + (s3 + s)r(a3) < 1.

Then f has a unique fixed point.

Proof. The proof follows by taking T = I and f = g in Theorem 2.1. �

The following Corollary extends Theorem 3.3 of Xu and Radenovic [9].

Corollary 2.5. Let (X, d) be a complete cone b-metric space (X, d) over a
Banach algebra A with coefficient s ≥ 1 and P be a solid cone. Let T : X → X
be a continuous and one to one mapping. Moreover, let f be a map of X
satisfying

d(Tfx, Tfy) � k[d(Tx, Tfx) + d(Ty, Tfy)]

for all x, y ∈ X where k ∈ P and (s2 + 1)r(k) < 1. Then,

(1) for each x0 ∈ X, {Tfnx0} is a Cauchy sequence.



1074 Young-Oh Yang

(2) there exist ux0 ∈ X such that lim
n→∞

Tfnx0 = ux0.

(3) if T is subsequentially convergent, then {fnx0} has a convergent sub-
sequence.

(4) there exist a unique vx0 ∈ X such that fvx0 = vx0, that is, f has a
unique fixed point.

(5) if T is sequentially convergent, then for each x0 ∈ X the iterate se-
quence {fnx0} converges to vx0.

Proof. The proof follows by taking f = g and a2 = k, a1 = a3 = θ in Theorem
2.1. �

The following Corollary extends Theorem 3.2 of Xu and Radenovic [9].

Corollary 2.6. Let (X, d) be a complete cone b-metric space (X, d) over a
Banach algebra A with coefficient s ≥ 1 and P be a solid cone. Let T : X → X
be a continuous and one to one mapping. Moreover, let f be a map of X
satisfying

d(Tfx, Tfy) � k[d(Tx, Tfy) + d(Ty, Tfx)]

for all x, y ∈ X where k ∈ P and (s3 + s)r(k) < 1. Then,

(1) for each x0 ∈ X, {Tfnx0} is a Cauchy sequence.
(2) there exist ux0 ∈ X such that lim

n→∞
Tfnx0 = ux0.

(3) if T is subsequentially convergent, then {fnx0} has a convergent sub-
sequence.

(4) there exist a unique vx0 ∈ X such that fvx0 = vx0, that is, f has a
unique fixed point.

(5) if T is sequentially convergent, then for each x0 ∈ X the iterate se-
quence {fnx0} converges to vx0.

Proof. The proof follows by taking f = g and a1 = a2 = θ, a3 = k in Theorem
2.1. �

Corollary 2.7. Let (X, d) be a complete cone b-metric space (X, d) over a
Banach algebra A with coefficient s ≥ 1 and P be a solid cone. Let T : X → X
be a continuous and one to one mapping. Moreover, let f be a map of X
satisfying

d(Tfx, Tfy) � kd(Tx, Ty)

for all x, y ∈ X where k ∈ P and r(k) < 1
s . That is, f be a T -contraction.

Then,

(1) for each x0 ∈ X, {Tfnx0} is a Cauchy sequence.
(2) there exist ux0 ∈ X such that lim

n→∞
Tfnx0 = ux0.

(3) if T is subsequentially convergent, then {fnx0} has a convergent sub-
sequence.
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(4) there exist a unique vx0 ∈ X such that fvx0 = vx0, that is, f has a
unique fixed point.

(5) if T is sequentially convergent, then for each x0 ∈ X the iterate se-
quence {fnx0} converges to vx0.

Proof. The proof follows by taking f = g and a1 = k, a2 = a3 = θ in Theorem
2.1. �

The following corollary extends Theorem 3.1 of [9] and is the Banach-type
version of a fixed point results for contractive mappings.

Corollary 2.8. Let (X, d) be a complete cone b-metric space (X, d) over a
Banach algebra A with coefficient s ≥ 1 and P be a solid cone. Let f be a map
of X satisfying

d(fx, fy) � kd(x, y)

for all x, y ∈ X, where k ∈ P and r(k) < 1
s . Then f has a unique fixed point.

Proof. The proof follows by taking T = I in Corollary 2.7. �

Corollary 2.9. Let (X, d) be a complete cone b-metric space (X, d) over a
Banach algebra A with coefficient s ≥ 1 and P be a solid cone. Let f be a map
of X satisfying

d(fnx, fny) � kd(x, y)

for all x, y ∈ X, where k ∈ P and r(k) < 1
s . Then f has a unique fixed point.

Proof. From Corollary 2.8, fn has a unique fixed point x∗. But fn(fx∗) =
f(fnx∗) = fx∗, So fx∗ is also a fixed point of fn. Hence fx∗ = x∗, x∗ is a
fixed point of f . Since the fixed point of f is also fixed point of fn, then fixed
point of f is unique, �

Corollary 2.10. Let (X, d) be a complete cone metric space (X, d) over a
Banach algebra A and P be a solid cone. Let T : X → X be a continuous and
one to one mapping. Moreover, let f and g be two maps of X satisfying

d(Tfx, Tgy) � a1d(Tx, Ty) + a2[d(Tx, Tfx) + d(Ty, Tgy)]

+a3[d(Tx, Tgy) + d(Ty, Tfx)]

for all x, y ∈ X, where ai ∈ P commute for i = 1, 2, 3 and

r(a1) + 2r(a2) + 2r(a3) < 1.

That is, f and g be a T -contraction. Then,

(1) there exist ux ∈ X such that lim
n→∞

Tfx2n = lim
n→∞

Tgx2n+1 = ux.

(2) if T is subsequentially convergent, then {fx2n} and {gx2n+1} have a
convergent subsequence.
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(3) there exist a unique vx ∈ X such that fvx = gvx = vx, that is, f and
g have a unique common fixed point.

(4) if T is sequentially convergent, then iterate sequences {fx2n} and {gx2n+1}
converge to vx.

Proof. The proof follows by taking s = 1 in Theorem 2.1. �

Corollary 2.11. Let (X, d) be a complete cone metric space (X, d) over a
Banach algebra A and P be a solid cone. Let f be a map of X satisfying

d(fx, fy) � a1d(x, y) + a2[d(x, fx) + d(y, fy)]

+a3[d(x, fy) + d(y, fx)]

for all x, y ∈ X, where ai ∈ P commute for i = 1, 2, 3 and

r(a1) + 2r(a2) + 2r(a3) < 1.

Then f has a unique common fixed point.

Proof. The proof follows by taking s = 1, T = I and f = g in Theorem
2.1. �

Remark 2.12. In Corollary 2.11, if we suppose that (X, d) is a complete cone
metric space over a Banach algebra A and P is a normal cone with normal
constant K, then we obtain Theorem 2.1, 2.2 and 2.3 that were given by Liu
and Xu [6]. So Corollary 2.11 is a generalization of Theorem 2.1, 2.2 and 2.3
in [6].

As an application of the main result, we give the following examples:

Example 2.13. Let X = [0, 1] and let (X, d) be a complete cone b-metric
space over a Banach algebra A = C[0, 1] as defined in Example 1.2, where
d(x, y)(t) = |x − y|2et for all x, y ∈ X and for each t ∈ [0, 1]. Then the set
P = {x ∈ A : x ≥ 0} is a normal cone in A. Define two mappings T, f : X → X
by Tx = x2 and fx = x

2 . Then, we have
(1) T and f are continuous on X. Also T is one to one and subsequentially

convergent.
(2) f is a contraction.
(3) Take the constant functions a1 = a3 = θ, a2 = 1

9 in P . Then r(a1) =

r(a3) = 0, r(a2) = 1
9 and 2sr(a1) + (s2 + 1)r(a2) + (s3 + s)r(a3) = 5

9 < 1. Also
for each t ∈ [0, 1],

d(Tfx, Tfy)(t) = |x
2

4
− y2

4
|2et =

1

16
|x2 − y2|2et

� 9

16
(x4 + y4)et

= a2[d(Tx, Tfx) + d(Ty, Tfy)](t).
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Thus all the conditions of Theorem 2.1 are fulfilled. So by Theorem 2.1, f
has a unique fixed point x = 0.

(4) But there does not exist a ∈ P with r(a) < 1 such that

d(fx, fy) � a[d(x, fx) + d(y, fy)].

(5) Also if we take the constant functions a1 = k, a2 = a3 = 0( 1
16 ≤ r(k) <

1
2) in P , then

d(Tfx, Tfy)(t) =
1

16
|x2 − y2|2et � kd(Tx, Ty)

and so all the conditions of Theorem 2.1 are fulfilled. Thus by Theorem 2.1,
f has a unique fixed point x = 0.

Example 2.14. Let X = [0, 12 ] and let (X, d) be a complete cone b-metric
space over a Banach algebra A = C[0, 1] as defined in Example 1.2, where
d(x, y)(t) = |x − y|2et for all x, y ∈ X and for each t ∈ [0, 1]. Then the set
P = {x ∈ A : x ≥ 0} is a normal cone in A.

Define two mappings T, f : X → X by Tx = x2 and fx = x2
√
2
. Take

k = 1
16 ∈ P . Then f is not contractive. But f is T -contraction, because for

all t ∈ [0, 1],

d(Tfx, Tfy)(t) = |x
4

2
− y4

2
|2et =

1

4
|x2 + y2|2|x2 − y2|2et

� 1

16
|x2 − y2|2et

=
1

16
d(Tx, Ty)(t).

So, by Theorem 2.1, f has a unique fixed point x = 0.

The following examples show that we can not omit the conditions of Theo-
rem 2.1. In the following note we have two examples which show that we can
not omit the one-to-one of T in Theorem 2.1. In first example f has more
than one fixed point and in the second example f has not a fixed point.

Example 2.15. Let X = {0, 12 , 1} and let (X, d) be a complete cone b-metric

space over a Banach algebra A = R, where d(x, y) = |x− y|2.
Case 1. Define two functions T1, f1 : X → X defined by

T1x =

{
0 x = 0, 1
1
2 x = 1

2

and f1x =

{
0 x = 0, 12
1 x = 1.

Then T1 is subsequentially convergent and since for any k ∈ (0, 1)

d(T1f1x, T1f1y) = |T1f1x− T1f1y|2 � kd|T1x, T1y) (x, y ∈ X),
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f1 is T1-contraction. But T1 is not one-to-one and f1 has two fixed points.
Case 2. If we define the functions T2, f2 : X → X by

T2x =

{
0 x = 0, 1
1
2 x = 1

2

and f2x =

{
1 x = 0, 12
0 x = 1,

then T2 is subsequentially convergent and since

d(T2f2x, T2f2y) = |T2f2x− T2f2y|2 �
1

2
|T2x− T2y|2 (x, y ∈ X)

and k = 1
2 ∈ P , f2 is T2-contraction. But T2 is not one-to-one and f2 has not

a fixed point.

The following example shows that we can not omit the subsequentially
convergent of T in Theorem 2.1.

Example 2.16. Let X = [0,∞) and let (X, d) be a complete cone b-metric
space over a Banach algebra A = R as defined in Example 2.15. We define two
mapping T, f : X → X by Tx = e−x and fx = 2x + 1 and take k = 4

e2
∈ P .

Then T is one-to-one and f is T -contraction since

d(Tfx, Tfy) = |Tfx− Tfy|2 = |e−2x−1 − e−2y−1|2

= e−2|e−x + e−y|2|e−x − e−y|2

� 4e−2|e−x − e−y|2

=
4

e2
d(Tx, Ty).

But T is not subsequentially convergent (Tn → 0 as n → ∞ but {n}∞1 has
not any convergence subsequence) and f has not a fixed point.

References

[1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings
without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416-420.

[2] A. Beiranvand, S. Moradi, M. Omid and H. Pazandeh, Two fixed point theorem for
special mappings, arxiv:0903.1504 v1 [math.FA], 9 Mar (2009).

[3] M. Filipovic, L. Paunovic, S. Radenovic and M. Rajovic, Remarks on “Cone metric
spaces and fixed point theorems of T-Kannan and T-Chatterjea contractive mappings”,
Math. Comput. Modelling, 54 (2011), 1467-1472.

[4] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive
mappings, J. Math. Anal. Appl., 332 (2007), 1467-1475.

[5] H. Huang, S. Hua, B. Z. Popovicb and S. Radenovicc, Common fixed point theorems for
four mappings on cone b-metric spaces over Banach algebras, J. Nonlinear Sci. Appl.,
9 (2016), 3655-3671.

[6] H. Liu and S. Xu, Cone metric spaces with Banach algebras and fixed point theorems of
generalized Lipschitz mappings, Fixed Point Theory and Appl., 2013, 2013:320.



Cone metric space with Banach algebra and fixed point results 1079

[7] J.R. Morales and E. Rojas, Cone metric spaces and fixed point theorems of T-Kannan
contractive mappings, Int. J. Math. Anal., 4(4) (2010), 175-184.

[8] S. Radenovic and B. E. Rhoades, Fixed Point Theorem for two non-self mappings in
cone metric spaces, Compu. and Math. with Appl., 57 (2009), 1701-1707.

[9] S. Xu and S. Radenovic, Fixed point theorems of generalized Lipschitz mappings on
cone metric spaces over Banach algebras without assumption of normality, Fixed Point
Theory and Appl., 2014, 2014:102.

[10] Y.O.Yang and H.J. Choi, Fixed point theorems on cone metric spaces with c-distance,
Jour. of Compu. Anal. and Appl., 24(5) (2018), 900-909.


