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Abstract. The purpose of this paper is to introduce a viscosity approximation method
for the implicit midpoint rule of nonexpansive mappings in Banach spaces. The strong
convergence of this viscosity method is proved under certain assumptions imposed on the
sequence of parameters. Applications to nonlinear variation inclusion problem and nonlinear
Volterra integral equations are included. The results presented in the paper extend and

improve some recent results announced in the current literature.

1. INTRODUCTION

The viscosity approximation method for nonexpansive mapping in Hilbert
spaces was introduced by Moudafi [11], based on the ideas of Attouch [2].
Refinements in Hilbert spaces and extensions to Banach spaces were obtained
by Xu [17].
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Let X be a real Banach space, T : X — X a nonexpansive mapping (i.e.,
|Tx —Ty|| < ||z —y| for all z,y € X) and f: X — X a contraction mapping
(ie., || f(z) — f()| < allz —y| for all 2,y € X and some « € [0, 1)).

The explicit viscosity method for nonexpansive mappings generates a se-
quence {z,} through the iteration process:

Tn+1 = anf(xn) + (I - an)Txnvn >0, (11)

where I is the identity of X and {a,} is a sequence in (0, 1). It is well known
[8,11,17] that under certain conditions, the sequence {x,} converges in norm
to a fixed point of T

The implicit midpoint rule is one of the powerful methods for solving or-
dinary differential equations, see [3,4,7,14-16] and the references therein. For
instance, consider the initial value problem for the differential equation y'(t) =
f(y(t)) with the initial condition y(0) = yo, where f is a continuous function
from R? to RY. The implicit midpoint rule is that which generates a sequence
{yn} via the relation

=] (1.2

The implicit midpoint rule has been extended [1] to nonexpansive mappings,
which generates a sequence {z,} by the implicit procedure:

Tnt1 + Th
2
Recently, Xu et al [18] in a Hilbert spaces introduced the following process:

Tn4+1 = (1 - tn)l‘n + tnT( ),’I’L >0, (13)

x +x
Tnt1 = anf(‘rn) + (1 - an)T(M

where T' is a nonexpansive mapping. They proved that the sequence {z,}
converges strongly to a fixed point of T

),n >0, (1.4)

Motivated and inspired by the research going on in this direction. The
purpose of this paper is to introduce a viscosity approximation method for the
implicit midpoint rule of nonexpansive mappings in the framework of Banach
spaces. More precisely, we consider the following iterative algorithm:

Tpnt1 + T
2
Under certain assumptions imposed on the sequence of parameters, the strong

convergence of this viscosity method is proved. Applications to nonlinear vari-
ation inclusion problem and nonlinear Volterra integral equations are included.

Tnt1 = nf(xn) + A + 0,T( )+ en,n > 1, (1.5)
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2. PRELIMINARIES

Throughout the paper, X is a real Banach space with norm || - || and dual
space X*. Let T be a nonlinear mapping. We denote the fixed point set of T’
by Fix(T).

Let p: [0,00) — [0,00) be the modulus of smoothness of X defined by

1
p(t) =sup{5 (o +tyll +llz —tyl) —1: 2,y € X, 2] = llyll = 1}.  (2.1)

A Banach space X is said to be uniformly smooth if @ —0ast— 0. Let
q be a fixed real number with ¢ > 1. Then a Banach space E is said to be
q-uniformly smooth if there exists a constant b > 0 such that p(t) < bt? for
all t > 0. It is well known that every g-uniformly smooth Banach space is
uniformly smooth.

Let J,(¢ > 1) denote the generalized duality mapping from X into 2X" given
by

Jo(x) = {g(x) € X*: (, jg(x)) = [l2]|%, [ljg(x)]| = ="'}, Ve € X, (2.2)
where (-,-) denotes the duality pairing between X and X*. In particular,

Jo = J is called the normalized duality mapping on X. It is also known (e.g.,
[[19], p.1128]) that

Jo(x) = ||2||72J(2),z # 0. (2.3)
We next provide some properties for the duality mapping.

Lemma 2.1. (Cioranescu [6]) Let 1 < g < co. Then, we have the followings:

(i) The Banach space X is smooth if and only if the duality mapping J,
is single-valued.

(ii) The Banach space X is uniformly smooth if and only if the duality
mapping Jq is single-valued and norm-to-norm uniformly continuous
on bounded subsets of X.

Using the concept of subdifferential, we know the following inequality:

Lemma 2.2. ([5]) Let ¢ > 1 and X be a real normed space with the generalized
duality mapping J, . Then, for any z,y € X, we have

lz +yll* < [l + ¢y, Jo(z + ), (2.4)
for all jo(z +y) € Jy(x +v).
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Lemma 2.3. ([13]) Let C be a closed convexr subset of a uniformly smooth
Banach space X and T : C — C be a nonexpansive mapping with a fized
point. For each fized u € C' and every t € (0,1), the unique fixed point x € C
of the contraction C' > x — tu+ (1 — t)Tz converges strongly as t — 0 to a
fized point of T

Lemma 2.4. ([9]) Let {a,} and {n.} be sequences of nonnegative real numbers
such that

An+1 < (1 _’Yn)an_‘_Tn'i_nnan > 17 (25)
where {7y} is a sequence in (0,1) and {1,} is a real sequence. Assume that

> np < 0o. Then the following results hold:
n=1

(i) If 7o < M for some M >0, then {a,} is a bounded sequence.

o0 o0
(ii) If X2 ym = oo and either limsup = < 0 or }_ |ma| < oo, then
n=1 n—oo n=1
lim a, = 0.

n—o0
Lemma 2.5. ([10]) Let ¢ > 1. Then the following inequality holds:
1 -1 a
ab< —af + L= pat (2.6)
q q

for arbitrary positive real numbers a and b.

Lemma 2.6. ([12]) Let X be a real smooth Banach space with the generalized
duality mapping jq for g > 1. Let m € N be fized. Let {x;}"; C X andt; >0

m
foralli=1,2,...,m with Y t; <1. Then we have
i=1

q < i

q—(q—l)iti'

m
tills |7
=1

(2.7)

m
IS
=1

3. MAIN RESULTS

In this section, we first establish a crucial proposition and then prove our
main theorem.

Proposition 3.1. Let X be a g-uniformly smooth Banach space, T : X — X
a nonexpansive mapping with Fiz(T) # 0, f : X — X a contraction with
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coefficient o € [0,1) and {e,} a sequence in X. Let {x,} be generated by
r1 € X and

Tpt1 + T

Tnt1 = nf(xn) + Anxpn + 0,T( 5

) +en,n>1, (3.1)

where {an}, {M\n} and {05} are sequences ! in [0,1] with a + Ay + 0 = 1. If
Z llen|l < oo or hm llenll/am =0, and Z ay, = 00, then {x,} is bounded.

Proof. Let {y,} be defined by

+
Yn+1 = anf(yn) + )\nyn + 6nT(W) (3'2)
Then, we have
|Zn11 — Yntall = llan(f(zn) = f(Yn)) + M@0 — yn)
xT +x +
< an| f(zn) = fFyn)ll + Anllzn — ynll
Tnt1 +T Ynt1 T Y
TN iR (Coska U s
< anallry — ynll + Anllzn — yall
1
+ 50z = ynll + lzns1 = ynaall) + lleall.
It implies that
1 1
(1- §5n)”xn+l — Yn+1ll < (ana+ Ay + ién)Hxn — Ynll + llenl]-
Therefore, we obtain that
200,00 + 20, + 6
[Zn41 = Yngrll < — |y — vl + 5—5- || enl|
2 — 0y, (3.3)
20, (1 — @) 2 '
=0 -5 lzn =yl + 5—- HenH
2—90,

By the assumptions and Lemma 2.4 (ii), we conclude that

Jim [|az, = yn|| = 0.
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We next show that {y,} is bounded. Indeed, for p € Fiz(T), we have

Yn+1 T Y

el LI )l
Yn+1 + Y

< anllf(yn) = Il + Aallyn — pll + 6| T(F——= 5 =) —p

< an([1f(yn) = F()I + 11/ (P) = PID) + Anllyn — pl]

1
+ §5n(||yn — |l + lyn+1 — pll)
< analyn = pll + anllf(p) — 2l + Anllyn — pl|

lYn+1 = pll = llon(f(yn) — p) + An(yn — p) + Sn(T'(

1
+ §5n(llyn —pll + lyn+1 — pl)-
It implies that

1 1
(1- §5n)||yn+1 —pll < (ana+ Ay + §5n)||yn —pll + anl f(p) — pl|-
Hence, we have

200p00 + 20, + 0 2«
[yn+1 —pll < = " lyn = ol + 5—— £ () — pl
2 — 0y 2 — 0y (3.4)
200, (1 — @) 200, '
— (=2 Yy, _ll.
( 2 4. Myn = pll + 5= 5n||f(p) pll
This shows that {y,} is bounded from Lemma 2.4 (i) and hence {z,} is also
bounded. O

Lemma 3.2. Let X be a uniformly convex and q-uniformly smooth Banach
space, T : X — X a nonexpansive mapping with Fiz(T) # 0, and f : X — X
a contraction with coefficient o € [0,1). Let {x,,} be generated by y1 € X and

Yn+1 = anf(yn) + Anyn + 0, T

(LTI > 1, (35)

where {an}, {A\} and {6,} are sequences in [0,1] with oy + Ay + 6, = 1.
Assume that

o0
(i) > ap =00, lim ay = 0;
ne1 n—00

(i) > (Jom — an—1] + |0n — Op—1]) < 00;

n=1
(iii) liminf 4, > 0;
n—oo
Then we have the following statements:

(1) nlggo lYn+1 — ynll = 0.
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(2) lim HTyn - yn” =0.
n—oo
(3) limsup(z — £(2), jg( — yns1)) < 0, for = € Fia(T),

n—oo

Proof. (1) To see this, we apply (3.2) to get

+
i1 = gll =llans () + A + 82T (LI

2
+ Yn—
- (anflf(ynfl) + A—1Yn—1 + 5n71T(w»H
Yn+1 + Yn Yn + Yn—
< (16 (T(FH) = T(F=57)
n + n—
+ (On — 5n—1)T(%)

+an(f(yn) = f(yn—1)) + (an — @n—1) f(Yn-1)

+ A (Yn = Yn—1) + (Ao — A1) Yn—1l
1
< §5n(”yn+1 - ynH + ||yn - ynfln)

+ Yn—1
+ 18 = G [T
+ ana||yn - ynfln + |an — an71|||f(ynfl)||
+ )\nHyn - yanH + |)\n - )\n71|||yn71||

1 1
< Sallymss = vall + (58 + ana + ) g = v

Yn + Yn—1
10 = bt 1T 4 e = a1 (-

+ |)‘n - >\n71|||yn71”-

Since {y,} is bounded, so are {f(y,)} and {T(%)} Let

Yn + Yn—1
M > sup{||yn—1l, [|f (yn-2) I, | T(F——="—)|I}-
n>1 2

It implies that

(1= 50nlmss = vl < (o + e+ Ay = v
+ ([0 = On1| + |an — an—1| + Ay = A1) M
< (50 + -+ M)l — |
+ 2M (|05, — Sp—1] + |y — An—1]).
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Hence, we have

(300 + ana+\y)
Y1 — ynll < 2t 1 115 - lyn — Yn—1l|
— 16,
2M
+715(|5n_6n—1‘+’an_an—1|)
2% (3.6)
20, (1 — @)
< (12 Yy
<=2y, g
AM
+ m(wn — 5n—1| + |C¥n — Oén_l‘).
By virtue of the conditions (i) and (ii), it follows from Lemma 2.4 that
lim |[yn+41 — yall = 0. (3.7)
n—oo

(2) Since,

1 Tyn — Ynll < | TYn — Ynt1ll + [¥ns1 — ynll

n+1 1 Un
= Hanf(yn) + Ay + (snT(%)

< anllf(Yn) = Tynll + Aallyn — Tynl|
Ynt+1 T Y
+ (M\ﬂ%) — Tyl + | Yn+1 — Ynll
< anllf(Yn) — Tynll + Aallyn — Tynl|

- Tyn” + ||yn+1 - ynH

1
+ ién”ynJrl - yn” + HynJrl - yn”

It then follows that

1
(A=A TYn = ynll < anllf(yn) = Tyall + (A + 500)[Yn+1 = ynll,

and we have

Q 1+ 16
[Tyn — ynll < 1 —n)\n 1f(yn) = Tynll + 1 _2)\: [9n+1 = ynll
oy, 1+ %(LL
= -7 —Tamn — .
o+ 0, £ (yn) Ynl| + o, + 0, lYn+1 — ynll

By conditions (i), (iii) and (3.7), we obtain that
Tim [Ty — g = 0. (3.8)

(3) Let 2y = tf(2z) + (1 — )Tz, for t € (0,1). Then it follows from Lemma
2.3 that z; — z € Fiz(T) as t — 0.
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On the other hand, from Lemma 2.2 we have
[zt = ynl|? = t(f(2t) = yn) + (1 = ) (T2 — ) |

< (L= 8)YT2 — yull? + qt(f(2t) — Yns Jg(2t — Yn))

<@ =UT2 — Tynll + [ Tyn — yul)?
+ qt{f(2t) — 2t,Jg(zt — yn)) + at{ze — Yn, Jg(2t — Yn))

< (=02t = ynll + 1 Tyn — yul)?
+qt(f(zt) — 2t,3q (2t — yn)) + qtllze — ynll?.

This shows that

, (1—¢)* g, qt— g
(o= (), da(z = yn)) < == (e =l 1Ty =yl + ==l =l
(3.9)
From (3.8), we obtain
. ) 1—1¢)4 t—1
lim sup(zr — F(z2), gz — yn)) < S ngr 1 2= Ly
nee a at (3.10)
_A—0itat-1,
qt ’
where M = limsup ||z — ynl|, for ¢ € (0,1). Note that (1—t)‘;7:qt—1 — 0 as

n—oo
t — 0. From Lemma 2.1 (ii), we know that j, is norm-to-norm uniformly

continuous on bounded subsets of X. Since zz — z as t — 0, we have
17q(2t = yn) = Jq(z = yn)|l = 0O

as t — 0. Observe that

[zt = f(21)dq (2t — yn)) — (2 = f(2),Jq(z — yn))]

< Wzt —z+ 2= f(2) + f(2) = f(2),Jq(2t — yn)) — (2 = [(2),Ja(z — yn))|

< [zt = 2, Jq(ze — yn ) + [z = f(2), Jag (2t = yn) = Ja(2 — yn))]

+(f(2) = f(2), Jq (2t — yn))]

< (L4 a)llze = zllllze =yl + 12 = F) g (2t = yn) = do(z = wa) |71

So, as t — 0, we get

(2t = f(20), Jq (2t = yn)) = (2 = (2),Ja(2 = yn))- (3.11)
From (3.10), as t — 0, it follows that
limsup(z — f(2), jq(2 — yn)) < 0. (3.12)

Combining (3.7) and (3.12), we get that
limsup(z — f(2),4q(2 — Yns+1)) < 0. (3.13)

n—o0
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this ompletes the proof. O

Theorem 3.3. Let X be a uniformly convex and q-uniformly smooth Banach
space, T : X — X a nonexpansive mapping with Fix(T) # 0, f: X — X a
contraction with coefficient o € [0,1) and {e,} a sequence in X. Let {x,} be
generated by r1 € X and

(anrl + xn)

Tnt1 = anf(xn) + Ay + 0, T 5

ten,n>1, (3.14)

where {an}, {An} and {6,} are sequences in [0,1] with o, + A + 6
Assume that

g

(i) ap = 00, lim a = 0;
n n—00

I
_

13

(ii) (lon = 1| + |6 = dn—1]) < 00;
n=1

(iii) liminf 6, > O;

n—o0

() 3 flea]l < o0 or Jim_flen ||/arn = 0.

n=1

Then the sequence {x,} defined by (3.14) is strongly convergent to a fized point
z of T.

Proof. From Lemma 2.2, Lemma 2.5 and Lemma 2.6, we have

Hyn+1 - ZH = Han(f(yn> - Z) + )\n(yn - z)
G (UL e,

2
< [t — 2) + n(T(LEEEER) o
+ qan((f(yn) — 2), Jg(yYn+1 — 2))

< 1
T 1-(¢—1(1 an)
+6n||T(yn+1+yn) 2|
)

+ qan(f( n) f(Z 7]11(yn+1 - Z)>
+ qon(f(2) = 2, Jq(Ynt1 — 2))

(Anllyn — 2|
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An q
< m”yn |
I SN S T
anqg+1—ay 2

+ qanal|yn — 2| |yns1 — ZHqil
+ qan(f(2) = 2, 4¢(Yn+1 — 2))

An
QL — | Vr— [
< e 2]
On 1 1
P S _ q _ _ q
o Gl = 217+ G e — 21

1 qg—1
+ qana(gHyn —z||"+ THyn-&-l —z[|%)

+qon(f(z) — Zajq(yn+1 —2))
< A+ %dn + apa(ang+1—ay)

Lt o — =
n n
%571 + (C] - 1)ana(anq +1-— an) q
+ i Iyt — 21
n n

+ qan<f(z) - Zajq(ynJrl - Z)>
This implies that

(1 — gopor + ana)(ang + 1 — ap) — 30, .
[Yn+1 — 2|

ang+1—a,
Ap + 16 1—
< n T ) n+ana(anq+ Oén)Hyn_qu
g + 1— o,
+ qan<f(z) - Zyjq(yn+1 - Z)>
Hence
Hyn+1 - ZHq
An + 560 + apa(ong + 1 — ap) ‘
[yn — 2|

< (1 — gona + ana)(ang + 1 — ay) — 16,
qan(anq +1-— Ozn)
(1 — qana+ apa)(ang+1—ay) — %%
anq(l —a—aay(qg—1)) ,
(1= qana + ) ang + 1 — ) — o, 10 71
qap(ang +1 — ap)
(1 — qana + ana)(ang + 1 — ap) — 26,

< (1-

1117

<f(Z) - zajq(yn—i-l - Z))

<f(Z) - zajq(yn—i-l - Z)>

(3.15)
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Now, let
= anQ(l _a_aan(q_ 1))
" (1 — gapa + ana)(ang+ 1 — ay) — %(5n
and
gon(ong +1 -« 4
7 = ncn ) () = 22 dalymss — 2).

(1 — gapa + ana)(ang +1 —ay) — %571

Then it follows from conditions (i) and (3.13) that v, C (0,1), > v, = o0
n=1
and
. Tn . onq + 1—a, )
1 - =1 _ L <o
17131—>Sol<1>p Tn lﬁsogp 1—a—aay(qg—1) (f(2) = 2, dq(Ynt1 = 2)) <0

From Lemma 2.4, we have lim y,, = z € Fiz(T), by Proposition 3.1, lim |z,—
n—oo n—o0

ynll =0, so lim x, = z € Fiz(T). This completes the proof. O
n—oo

For the case A\, = 0 for all n > 1, then we obtain the following result:

Corollary 3.4. Let X be a uniformly convex and q-uniformly smooth Banach
space, T : X — X a nonexpansive mapping with Fiz(T) #0, f: X - X a
contraction with coefficient o € [0,1) and {e,} a sequence in X. Let {x,} be
generated by r1 € X and

Tn4+1 + Tn
2
where {ay,} is a sequences in [0,1]. Assume that

Tnt1 = anf(xn) + (1 —ap)T( )+ en,n > 1, (3.16)

8

(1) ay = 0o, lim oy, = 0;
n n— oo

I
N

13

(i)

|ty — 1| < 00 or lim <2t = (;
n—oo 9n

I
_.

n

13

(iii)

llen|| < 00 or lim |le,||/an = 0.
n—o0

I
i

n

Then {xzy} strongly converges to some z € Fix(T).

Remark 3.5. Corollary 3.4 is the Banach space version of the Xu’s result [18]
with error term.
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4. APPLICATIONS
4.1 Application to nonlinear variational inclusion problem

Let X be a real Banach space and M : X — 2% an m-accretive operator.
Then, the resolvent mapping JM : X — X associated with M is defined by

JM(z) = (I +rM) Yx),r >0, (4.1)

where [ is the identity operator on X. It is known that the m-accretiveness
of M implies that JM is a nonexpansive mapping.

The so-called monotone variational inclusion problem (in short, MVIP) is
to find «* € X such that
0€ M(z"). (4.2)
From the definition of mapping JM, it is easy to see that (MVIP) (4.2) is
equivalent to find z* € X such that

z* € Fiz(JM) for some r > 0. (4.3)

For any given starting point x1 € X, we define a sequence by

Tn41 + Tn

Tpy1 = anf(Tn) + Anzn + 5nJ7M( 9

)+ en,n > 1, (4.4)
where f: X — X is a mapping.
From Theorem 3.3, we have the following:

Theorem 4.1. Let X be a uniformly convexr and q-uniformly smooth Banach
space and J,M : X — X be the resolvent mapping associated with an m-
accretive operator M such that Fiz(JM) # 0. Let f : X — X be a contraction
with coefficient a € [0,1) and {en} be a sequence in X. Let {an}, {\n} and
{6n} be sequences in [0,1] with oy + Ay + 6, = 1. Assume that

o0
(i) > ap =00, lim ay, = 0;
n=1 n—0o0

(ii) Z (|an - Ozn,l‘ + |5n — 5n71|) < 00;
n=1

(iii) liminfd, > 0;
n—oo

o
(iv) > |len]] < o0 or lim ||ey||/an = 0.
n:l n—oo

Then the sequence {x,} defined by (4.4) is strongly convergent to the solution
of monotone variational inclusion problem (4.2).
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4.2 Application to nonlinear Volterra integral equations

Let us consider the following nonlinear Volterra integral equation:

x(t) = g(t) —i—/o F(t,s,z(s))ds,t € [0,1], (4.5)

where ¢ is a continuous function on [0, 1] and F': [0,1] X [0,1] x R — R is
continuous and satises the following condition.

IF(t,5,2) = Ft,5,9) < |o —yl, t,5€[0,1], 2,y € R
Define a mapping T : L?[0,1] — L?[0,1] by

T((t) = g(t) + /O F(t, s,2(s)) ds, t € [0,1]. (4.6)

It is easy to see that T is a nonexpansive mapping. This means that to find
the solution of integral equation (4.6) is reduced to find a fixed point of the
nonexpansive mapping 7 in L2[0, 1].

For any given function 1 € L?[0, 1], define a sequence of functions {z,} in
L?[0,1] by

Tpnt1 + T

Tnt1 = nf(xn) + A + 0,T( 5

)+ en,n > 1, (4.7)

where f is a mapping on L?[0, 1].

From Theorem 3.2 we have the following.

Theorem 4.2. Let F,g,T be the same mappings as above. Let f be a con-
traction on L*[0,1] with coefficient a € [0,1) and {e,} be a sequence in
L2[0,1]. Let Fix(T) # 0 and {an}, {\n} and {6,} be sequences in [0,1]
with o, + Ay + 0, = 1. Assume that

o0
(i) > an =00, lim ap =0;
n=1 n—oo

(i) > (Jom — an—1| + [6n — On—1]) < 00;
n=1

(iii) liminf 4, > 0;

n—oo
o0

(iv) > |len]] < oo or lim ||ey||/am = 0.
n=1 n—oo

Then the sequence {x,} defined by (4.7) is strongly convergent in L?[0,1] to
the solution of integral equation (4.5).
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