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Abstract. In this paper, we prove an a-posteriori convergence theorem for Newton-Kantorovich

approximations where the Fréchet derivative of the involved operator satisfies the Hölder

continuity and center-Hölder continuity conditions.

1. Introduction

Let X and Y be Banach spaces, we denote with B(x0, R) the closed ball in X
centered at x0 and of radius R. We assume that the operator f : B(x0, R) → Y
is Fréchet differentiable at interior points of B(x0, R) with f ′(x0) invertible.
In previous papers [3], [4] and [5] we studied the convergence of Newton-
Kantorovich approximations

xn = xn−1 − f ′(xn−1)−1f(xn−1) , (n ∈ N) (1.1)

under the Hölder continuity condition for f ′, i.e. we suppose that the constant

k := sup
x,y∈ ◦B(x0,R) ,x6=y

‖f ′(x)− f ′(y)‖
‖x− y‖θ

, (0 < θ ≤ 1), (1.2)

is finite.
The first who considered the approximations (1.1) under the hypothesis

(1.2) has been Vertgeim in [11] and [12]. He defined

b := ||f ′(x0)−1||, a := ||f ′(x0)−1f(x0)||, ξ := aθbk ,
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and he showed that, if ξ ≤
(

θ

1 + θ

)θ

, then the modified Newton-Kantorovich

method defined by

xn = xn−1 − f ′(x0)−1f(xn−1) , (n ∈ N) (1.3)

converges to a solution of the equation f(x) = 0.
In [12], Vertgeim gived also some sufficient conditions for the convergence of

the Newton-Kantorovich method, but there is an unknown area, called terra
incognita, between the convergence regions of two methods. In [10], [6], [3],
[7], [8], [4] and [5], there are further steps to recovering this area, but a gap
between the two regions remains.

Galperin’s approach to the problem in [7] and [8] is very original since
he makes use of the theory of two-dimensional generators. Moreover, fixed
0 < θ ≤ 1, the value of the Galperin’s convergence curve is larger than the
convergence’s curve defined in [5], but we think that our results can be in-
teresting since the values of Galperin’s convergence curves are not directly
computable.

In this paper, f ′ satisfies the Hölder continuity condition and therefore also
the weaker center-Hölder continuity condition. We recall that an operator g :
B(x0, R) → Y satisfies the center-Hölder continuity condition if the constant

k0 := sup
x∈ ◦B(x0,R), x 6=x0

‖g(x)− g(x0)‖
‖x− x0‖θ

, (0 < θ ≤ 1), (1.4)

is finite.
Note that k0 is, at least in some cases, strictly less than k (for examples

when θ = 1 and
k

k0
is arbitrarily large see [2]). The case k0 < k < +∞

here considered has been studied by Argyros in a significant paper [1]. He
established an a-posteriori convergence theorem which, in some cases, improves

the result in [3]. Moreover, he proved that, if ξ0 := aθbk0 ≤
(

θ

1 + θ

)θ

, then

the approximations (1.3) converge.
Using techniques similar to the ones used in [4] and [5], we obtain an im-

provement of the results in [5] (Theorem 2.3) and in [1] (Theorem 3.1) which
will be given in the following sections.
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2. New estimates for a majorizing sequence

If ξ0 = aθ bk0 is strictly less than 1, we can define the sequence

r0 = 0, r1 = a, rn+1 = rn +
bk(rn − rn−1)1+θ

(1 + θ)(1− bk0rθ
n)

, (n ∈ N) . (2.1)

It is easy to show that the sequence (rn)n∈N is a majorizing sequence of (1.1),
i.e.,

||xn − xn−1|| ≤ rn − rn−1 , (n ∈ N) . (2.2)

In the sequel, we suppose 0 < θ < 1 since the case θ = 1 is well known. In

fact, in this case, the sequence (rn)n∈N converges, if and only if, ab(k+k0) ≤ 1
2
.

In the papers [4] and [5], we give some conditions involving the parameters
a, b and k which assure the convergence of (1.1). In this paper the hypotheses
for the convergence involve not only the parameters a, b, k but also k0 and we
improve previous results from [4] and [5].

In the last section we give a comparison with Theorem 5 of [1] and we show
that our result is an improvement of Theorem 5. As in above papers [4]
and [5], we use two parallel induction processes on the sequences (rn)n∈N and(

rn+1

rn

)

n∈N
. Similarly as in [5], in order to prove our main result, we need

prove that the inequality
(
1− 1

t

)θ

[(
k0(1 + θ)

) 1
1−θ +

(
kt(t− 1)θ

) 1
1−θ

]1−θ
≤ 1

k0(1 + θ) + kt
(2.3)

holds for every t ≥ 1 and for every 0 < θ < 1.
If t = 1 the above inequality is obviously satisfied. For t > 1, we have yet
observed in [5] that, rewriting the inequality (2.3) in the following way

(
t−1

t

) θ
1−θ

(
1 + 1

(t−1)θ
kt(t−1)θ

k0(1+θ)

) 1
1−θ

1 +
(kt(t−1)θ

k0(1+θ)

) 1
1−θ

≤ 1 ,

we can apply this elementary inequality

(1 + δ x)α

1 + xα
≤ (1 + δ

α
α−1 )α−1 , x ≥ 0, α, δ > 0

with

δ :=
1

(t− 1)θ
, x :=

kt(t− 1)θ

k0(1 + θ)
, α :=

1
1− θ

.
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Finally we have

(
t−1

t

) θ
1−θ

[
1 + 1

(t−1)θ
kt(t−1)θ

k0(1+θ)

] 1
1−θ

1 +
(kt(t−1)θ

k0(1+θ)

) 1
1−θ

≤
(

t− 1
t

) θ
1−θ (

1 +
1

t− 1

) θ
1−θ = 1 .

Let h0 : [1,+∞[→ R be defined by

h0(t) :=

(
1− 1

t

)θ
1 + θ[(

k0(1 + θ)
) 1

1−θ +
(
kt(t− 1)θ

) 1
1−θ

]1−θ
. (2.4)

Since h0(1) = lim
t→+∞h0(t) = 0 and h(t) > 1 for t > 1, the function h0 has a

global maximum on ]1, +∞[ which we denote by c0. As in [5], we can explicitly
calculate c0. In fact, h′0(t) = 0 if and only if

θ(
(
k0(1 + θ)

) 1
1−θ + (kt(t− 1)θ)

1
1−θ ) = ((1 + θ)t− 1)(kt(t− 1)θ)

1
1−θ

from which it follows that

(t(t− 1)θ)
1

1−θ =
θ k

1
1−θ

0 (1 + θ)
θ

1−θ

k
1

1−θ (t− 1)
.

So resolving for t we obtain

c0 =
k +

√
k2 + 4k0 k (1 + θ)θ θ1−θ

2k
. (2.5)

Now we can prove the following.

Theorem 2.1. Let h0 be defined by (2.4) and c0 by (2.5). Setting

r(c0) =
(1 + θ)

1
θ

b
1
θ

((
k0(1 + θ)

) 1
1−θ + (kc0(c0 − 1)θ)

1
1−θ

) 1−θ
θ

, (2.6)

suppose that
aθb ≤ h0(c0) . (2.7)

Then the estimates

rn ≤ r(c0)

(
1− 1

cn
0

)
,

rn+1

rn
≤

1− 1
cn+1
0

1− 1
cn
0

(2.8)

hold for all n ∈ N. Consequently, the sequence (rn)n∈N, being increasing and
bounded, is converging to some r∗ ≤ r(c0) < 1.
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Proof. We prove the estimate (2.8) by induction on n. We proceed with two
parallel induction processes on the two inequalities in (2.8).
If n = 1, we have from (2.7)

r1 = a ≤
(

1− 1
c0

)
(1 + θ)

1
θ

b
1
θ

((
k0(1 + θ)

) 1
1−θ + (kc0(c0 − 1)θ)

1
1−θ

) 1−θ
θ

= r(c0)

(
1− 1

c0

)

and

r2

r1
= 1 +

bkaθ

(1 + θ)(1− bk0aθ)
.

From (2.7) and (2.3), it follows that

r2

r1
≤ 1 +

bkh0(c0)
(1 + θ)(1− bk0h0(c0))

≤ 1 +
k

(k0(1 + θ) + kc0)

(
1− k0(1+θ)

k0(1+θ)+kc0

)

= 1 +
1
c0

=
1− 1

c20

1− 1
c0

,

where the first equality follows from an easy computation.
Suppose now

rn−1 ≤ r(c0)

(
1− 1

cn−1
0

)
,

rn

rn−1
≤

1− 1
cn
0

1− 1
cn−1
0

.

We have

rn ≤
1− 1

cn
0

1− 1
cn−1
0

rn−1 ≤ r(c0)

(
1− 1

cn
0

)

and

1− rn−1

rn
≤

1
cn−1
0

− 1
cn
0

1− 1
cn
0

.
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Then

rn+1

rn
= 1 +

bkrθ
n

(
1− rn−1

rn

)1+θ

(1 + θ)(1− bk0rθ
n)

≤ 1 +

bkrθ(c0)

(
1− 1

cn
0

)θ (
1

cn−1
0

− 1
cn
0

)1+θ

(1 + θ)

(
1− 1

cn
0

)1+θ(
1− bk0rθ(c0)

(
1− 1

cn
0

)θ)

= 1 +
bkrθ(c0)(c0 − 1)1+θ

(1 + θ)(cn
0 − 1)

(
cθn
0 − bk0rθ(c0) (cn

0 − 1)θ
) .

If we consider the real function w0(x) := cθx
0 − bk0r

θ(c0)(cx
0 −1)θ, x ∈ [1, +∞[,

it is easily seen that w0 has an unique global minimum point x∗0. In fact

w′0(x) = θ log c0 cθx
0

(
1− bk0r

θ(c0)
( cx

0

cx
0 − 1

)1−θ
)

= 0

is equivalent to cx
0 = (1− (bk0r

θ(c0))
1

1−θ )−1 which has a unique root x∗0.
Moreover, from w′0(x

∗
0) = 0 it follows

bk0r
θ(c0) =

(
c
x∗0
0 − 1
cx∗0

)1−θ

and therefore

w0(x) ≥ w0(x∗0) = c
θx∗0
0 −(cx∗0

0 −1) c
(θ−1)x∗0
0 = c

(θ−1)x∗0
0 =

(
1−(bk0r

θ(c0))
1

1−θ
)1−θ

.

Consequently

rn+1

rn
≤ 1 +

bkrθ(c0)(c0 − 1)1+θ

(1 + θ)(cn
0 − 1)

(
1− (bk0rθ(c0))

1
1−θ

)1−θ
.
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and from rθ(c0) :=
1 + θ

b
((

k0(1 + θ)
) 1

1−θ + (kc0(c0 − 1)θ)
1

1−θ

)1−θ
we have

rn+1

rn
≤ 1+

k(c0−1)1+θ

(cn
0−1)

((
k0(1+θ)

) 1
1−θ+(kc0(c0−1)θ)

1
1−θ

)1−θ
(

1−
(
k0(1+θ)

) 1
1−θ

(
k0(1+θ)

) 1
1−θ+(kc0(c0−1)θ)

1
1−θ

)1−θ

= 1 +
c0 − 1

c0(cn
0 − 1)

=
1− 1

cn+1
0

1− 1
cn
0

.

¤

As direct consequence of Theorem 2.1 we have the following theorem on the
convergence of the sequence (1.1).

Theorem 2.2. Suppose that (2.7) holds, with c0 given by (2.5), and that
r∗ := (bk)−

1
θ t∗ ≤ R. Then the Newton-Kantorovich approximations (1.1) are

well defined for all n, belong to B(x0, r∗) and converge to the unique solution
x∗ of the equation f(x) = 0. Moreover, the following estimates hold

||xn − xn−1|| ≤ rn − rn−1 , (n ∈ N) ,

||xn − x∗|| ≤ r∗ − rn , (n ∈ N) .

Theorem 2.2 is a real improvement of Theorem 2.3 of [5] in case k0 < k .
In the sequel we give an elementary example in which k0 < k.

Example 2.3. We consider the function f(x) = x3 in the interval [−2, 2] and

we choose x0 = 1 as initial point. Fixed 0 ≤ θ ≤ 1 , θ 6= 2
3
, it is a simple

computation to verify that

k0 = sup
−2≤x≤2

|f ′(x)− f ′(1)|
|x− 1|θ = 3 sup

−2≤x≤2
|x + 1| |x− 1|1−θ = 9

and

k = sup
−2≤x,y≤2 ,x 6=y

|f ′(x)− f ′(y)|
|x− y|θ

= 3 sup
−2≤x,y≤2

|x + y| |x− y|1−θ = 3

(
4

2− θ

)2−θ

(1− θ)1−θ .
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In order to prove that k0 < k, we need show that
(

4
2− θ

)2−θ

(1− θ)1−θ > 3 .

Setting

s(θ) :=

(
4

2− θ

)2−θ

(1− θ)1−θ , 0 ≤ θ < 1 ,

we have s(0) = lim
θ→1

s(θ) = 4; moreover

s′(θ) =

(
4

2− θ

)2−θ

(1− θ)1−θ log

(
2− θ

4(1− θ)

)
,

and s′(θ) ≥ 0 if, and only if, θ ≥ 2
3
.

So s attains its minimum value only in
2
3

and

s(θ) > s

(
2
3

)
= 3 for all 0 ≤ θ ≤ 1 , θ 6= 2

3
.

3. A Comparison with previous results

In this section, we prove that Theorem 2.2 improves Theorem 5 of [1].
We begin by recalling Lemma 1 of [1] of which we make use in the sequel.

Lemma 3.1. ([1]) Assume there exist parameters k, k0, a ≥ 0, θ ∈]0, 1[ and
q ∈ [0, 1[ such that (

k +
(1 + θ)k0

(1− q)θ

)
aθb ≤ (1 + θ)q . (3.1)

Then the sequence (2.1) is increasing and converges to some t∗ such that 0 ≤
t∗ ≤ a

1−q .

Putting t = 1
q (t > 1), condition (3.1) becomes:

(
k +

k0 (1 + θ)
(1− 1

t )
θ

)
aθb ≤ (1 + θ)

1
t

i.e.,

aθb ≤
(

1− 1
t

)θ
1 + θ[

k0(1 + θ)t + kt1−θ (t− 1)θ
] .



“Terra Incognita” of the Newton-Kantorovich method 181

Define g : [1, +∞[→ R by

g(t) :=

(
1− 1

t

)θ
1 + θ[

k0(1 + θ)t + kt1−θ (t− 1)θ
] ,

to show that our result is an improvement of Theorem 5 [1], we will prove in
Theorem 3.3 below that g(t) ≤ h0(c0) for all t ≥ 1.

In order to simplify the proof of this theorem, we prove before the following.

Lemma 3.2. Set

α(t) :=

(
1− 1

t

) 1
1−θ

+ [tθ(1 + θ − t]
1

1−θ ,

we have max
1≤t≤1+θ

α(t) = α(1) = θ
1

1−θ and, in particular, α(t) < θ
1

1−θ for all 1 <

t ≤ 1 + θ.

Proof. Since α(1) = θ
1

1−θ and α(1 + θ) =

(
θ

1 + θ

) 1
1−θ

, it is sufficient to prove

that α has only a critical point which is a minimum point. We have

α′(t) =
1

(1− θ) t
1−2θ
(1−θ)

[
(t− 1)

θ
1−θ

t
1+θ
1−θ

− (1 + θ)(t− θ)(1 + θ − t)
θ

1−θ

]
(3.2)

and therefore α′(t) = 0 if and only if

(t− 1)θ

t1+θ (t− θ)1−θ (1 + θ − t)θ
= (1 + θ)1−θ . (3.3)

We prove that (3.3) has a unique solution in t ∈ ]1, 1 + θ[. Set

q(t) :=
(t− 1)θ

t1+θ (t− θ)1−θ (1 + θ − t)θ
,

from q([1, 1 + θ[) = [0, +∞[ it follows that (3.3) admits at least a solution. In
order to prove that this solution is unique, it is sufficient to show that q′(t) > 0
for every t ∈ [1, 1 + θ[. Since

q′(t)= tθ (t−1)θ−1 (t−θ)−θ (1+θ−t)θ−1 [2t3−(4+3θ) t2+(3θ2+4θ+2) t−θ(1+θ)2] ,

we have q′(t) > 0 if and only if

u(t) := 2t3 − (4 + 3θ) t2 + (3θ2 + 4θ + 2) t− θ(1 + θ)2 > 0.
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If θ ≥ 2
3
, then u is strictly increasing and u(t) > u(1) = θ2(1− θ) > 0.

If 0 < θ <
2
3
, then u admits only a minimum point

4 + 3θ +
√

4− 9θ2

6
and

u(t) ≥ u

(
4 + 3θ +

√
4− 9θ2

6

)
=

8−
√

(4− 9θ2)3

54
> 0 .

Finally, from (3.2) it follows that α′(1) < 0 and α′(1 + θ) > 0, i.e. the only
critical point of α is a minimum point.

¤

Finally we obtain the following theorem.

Theorem 3.3. If 0 ≤ k0 ≤ k , h0 and c0 are defined in Section 2 by (2.4) and
(2.5) respectively, we have

max
t≥1

g(t) < max
t≥1

h0(t) = h0(c0) .

Proof. We can easily verify that g′(t) ≥ 0 is equivalent to

k0(1 + θ)(1 + θ − t)− kt−θ(t− 1)1+θ ≥ 0 .

Then the function g is strictly decreasing on [1 + θ,+∞[ and achieves its
maximum in a point s ∈]1, 1 + θ[ which satisfies the equality

k0(1 + θ)(1 + θ − s) = ks−θ(s− 1)1+θ .

Moreover

max
t≥1

g(t) = g(s) =

(
1− 1

s

)θ
1 + θ

k0(1 + θ)s + k0(1+θ)s(1+θ−s)
s−1

=

(
1− 1

s

)θ
s− 1
k0θs

.

In order to prove that g(s) < h0(s) ≤ h0(c0), we note that

h0(s) =

(
1− 1

s

)θ
1 + θ

[
(
k0(1 + θ)

) 1
1−θ +

(
k0(1+θ)(1+θ−s)s1+θ

s−1

) 1
1−θ

]1−θ

=

(
1− 1

s

)θ
s− 1

k0

[
(s− 1)

1
1−θ + [s1+θ(1 + θ − s)]

1
1−θ

]1−θ
.
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Thus g(s) < h0(s) is equivalent to
(

1− 1
s

) 1
1−θ

+ [sθ(1 + θ − s)]
1

1−θ < θ
1

1−θ ,

i.e.,
α(s) < θ

1
1−θ . (3.4)

Since s belongs to open interval ]1, 1 + θ[, (3.4) follows from Lemma 2.
¤
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