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Abstract. In this paper, we prove an a-posteriori convergence theorem for Newton-Kantorovich
approximations where the Fréchet derivative of the involved operator satisfies the Holder

continuity and center-Holder continuity conditions.

1. INTRODUCTION

Let X and Y be Banach spaces, we denote with B(xg, R) the closed ball in X
centered at zp and of radius R. We assume that the operator f : B(xo,R) — Y
is Fréchet differentiable at interior points of B(xzg, R) with f’(x¢) invertible.
In previous papers [3], [4] and [5] we studied the convergence of Newton-
Kantorovich approximations

T =Tn_1 — f(@pn_1)  f(zn_1), (neN) (1.1)

under the Holder continuity condition for f’, i.e. we suppose that the constant

/ ot
k:i=  sup I/ (’x) ngy)H . (0<6<1), (1.2)
° x —
z,y€B(zo, ) x#Y Y
is finite.
The first who considered the approximations (1.1) under the hypothesis
(1.2) has been Vertgeim in [11] and [12]. He defined

b= If"(xo) I, a=If(z0) " fzo)ll, &:=a’bk,
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0
0
and he showed that, if £ < (14—9) , then the modified Newton-Kantorovich

method defined by

n = tp-1 = f'(20) " flzn-1), (n€EN) (1.3)

converges to a solution of the equation f(z) = 0.

In [12], Vertgeim gived also some sufficient conditions for the convergence of
the Newton-Kantorovich method, but there is an unknown area, called terra
incognita, between the convergence regions of two methods. In [10], [6], [3],
(7], [8], [4] and [5], there are further steps to recovering this area, but a gap
between the two regions remains.

Galperin’s approach to the problem in [7] and [8] is very original since
he makes use of the theory of two-dimensional generators. Moreover, fixed
0 < 8 < 1, the value of the Galperin’s convergence curve is larger than the
convergence’s curve defined in [5], but we think that our results can be in-
teresting since the values of Galperin’s convergence curves are not directly
computable.

In this paper, f’ satisfies the Holder continuity condition and therefore also
the weaker center-Holder continuity condition. We recall that an operator g :
B(zo, R) — Y satisfies the center-Holder continuity condition if the constant

lg(x) = g(zo)|

o 0<OS), (1.4)

ko := sup
acel%(:po,R), TF#x0

is finite.
Note that ko is, at least in some cases, strictly less than k (for examples

k
when 6 = 1 and o is arbitrarily large see [2]). The case kg < k < +o0
0
here considered has been studied by Argyros in a significant paper [1]. He
established an a-posteriori convergence theorem which, in some cases, improves

6
0
the result in [3]. Moreover, he proved that, if £ := a%bky < (14—0> , then

the approximations (1.3) converge.

Using techniques similar to the ones used in [4] and [5], we obtain an im-
provement of the results in [5] (Theorem 2.3) and in [1] (Theorem 3.1) which
will be given in the following sections.
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2. NEW ESTIMATES FOR A MAJORIZING SEQUENCE

If &9 = a? bk is strictly less than 1, we can define the sequence

bk(rp — rn_1)'t?
(1 + 0)(1 — bkorfl) ’

ro = 07 rn =a, Tn4+1l = Tn + (n S N) . (21)
It is easy to show that the sequence (7, )nen is a majorizing sequence of (1.1),
ie.,

l|zn — -1l <rn—rn—1, (nEN). (2.2)
In the sequel, we suppose 0 < 6 < 1 since the case § = 1 is well known. In
1
fact, in this case, the sequence (r,,)nen converges, if and only if, ab(k+ ko) < 3

In the papers [4] and [5], we give some conditions involving the parameters
a,b and k which assure the convergence of (1.1). In this paper the hypotheses
for the convergence involve not only the parameters a, b, k but also ky and we
improve previous results from [4] and [5].

In the last section we give a comparison with Theorem 5 of [1] and we show
that our result is an improvement of Theorem 5. As in above papers [4]
and [5], we use two parallel induction processes on the sequences (r,),en and

r
(nH . Similarly as in [5], in order to prove our main result, we need
T /) neN
prove that the inequality
0
1-1 1

<
1 1 71-6 —
[wdy+mﬁj+wma—lﬁfj} Fol1+6) + kt
holds for every t > 1 and for every 0 < 6 < 1.
If t = 1 the above inequality is obviously satisfied. For ¢ > 1, we have yet
observed in [5] that, rewriting the inequality (2.3) in the following way
t-1\ 125 1 kt(t-1)\ 155
()" (0 + = wzy) ™ <1
kt(t—1)0\ 125 -
1+ (o) ™°

we can apply this elementary inequality

I

(1+(5.’L‘)a @ -1
Wg(l‘i‘éa*l)a y xZ0,0z,5>0
with
1 kt(t —1)° 1
d = T = 7( ) o= —.

t—1)7" ko(1+0) 1-0
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Finally we have

g 14 1 kt(t—1)0

(t—l)ﬁ v
t (t—1)? ko(1+9) 1—0 6
t—1 1 -0
< () (1 + —) —1.

kt(t—1)0\ 135
L+ (k0(1+9))1 ’

Let hg : [1,+00[— R be defined by

[4
1 1+46
h(t):z(l—) - —7 -

Since ho(1) = . li+m ho(t) =0 and h(t) > 1 for t > 1, the function hy has a

(2.4)

global maximum on |1, +oo[ which we denote by cy. As in [5], we can explicitly
calculate ¢p. In fact, hy(t) = 0 if and only if

B((ko(1+ )77 + (kt(t — 1)) 77) = (1 + 6)t — 1)(kt(t — 1)) 77
from which it follows that

(t(t —1)0) 170 = 0ki=" (146)1-0 |

So resolving for ¢t we obtain

k4 k2 +4kok (1 +6)7 010

2.
0 2%k (2:5)
Now we can prove the following.
Theorem 2.1. Let hy be defined by (2.4) and co by (2.5). Setting
1
(1+0)e
r(co) = 1 - — 7 (2.6)
b ((ko(l +0)) ™7 + (keo(co — 1)%@) ?
suppose that
aeb E ho(Co) . (27)
Then the estimates
1 Tril 1- c"%
m<r(eo) | 1= o ), T < (2:8)
o Tn 1-— o

hold for all n € N. Consequently, the sequence (ry)nen, being increasing and
bounded, is converging to some ry < r(co) < 1.
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Proof. We prove the estimate (2.8) by induction on n. We proceed with two
parallel induction processes on the two inequalities in (2.8).
If n =1, we have from (2.7)

< 1) (146)s
rm=a<|1- . - NG
°/ bh ((k:o(l +0)) ™7 + (keolco — 1)9)m) ?

=r(co) (1 - 1)
Co

r9 bka?
=1+ .
1 (1 + 9)(1 — bkoa(’)

From (2.7) and (2.3), it follows that

and

Q S 4 bkho(Co)
T (1 + (9)(1 — bkoho(Co))
k
< 1+
0
(ko(1 + ) + kco) (1 -~ m)
1-— 1L
1 c
= 1 —|— _——= 718 s
Co - =

co

where the first equality follows from an easy computation.
Suppose now

1
1 T T
Tp—1 < T(CO) 1- ) b > 1
n—1 r 1 1
Cy n—1 o1
0
We have
1
rp < 1 'n—1 < T(CO) 1- ey
0871 0
and
1 1
1— Tn—1 0871 g
T 1- %
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140
bkr? <1 — T’;”)
Tn+1

= 1
" A1 = bkor?)

0 1+6
0 1 11
bkr?(co) (1 cg> (cgl CS)
< 1+ 170 7
(1+46) (1 — 13) <1 — bkor?(co) (1 — %) )

bkr? (co)(co — 1)1 H0
(140)(cf — 1)(08” — bkor?(co) (¢ — 1)9) '

Then

= 1+

If we consider the real function wo(z) := c§* — bkor?(co)(c —1)?, = € [1, +oc],
it is easily seen that wg has an unique global minimum point z{. In fact

T _
cg—1

L 1-0
wh(x) = 0log co &* (1 — bkor?(co) ( “ ) > =0

1
is equivalent to ¢ = (1 — (bkor®(co))T=9) "1 which has a unique root z.
Moreover, from w{(z§) = 0 it follows

« 1-6
Ty 1

bk?g’l“e(Co) = <CO P )
cro

and therefore

wo(@) > wo(ag) = ¢ —(cg0 1) e~V = eI = (1 (bkor®(eo)) 7).
Consequently
Tnil <14 bkr?(co)(co — 1)1 0

1

T (L 0) (e~ D1 - (hort(eo) ™)
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146

and from 1 (cg) := we have

b((ko(l + 0))ﬁ + (keo(co — 1)9)1719)1—9

Tn+1
Tn

<1+

k(C()—l)He

1 1-6
(e ~1{ (ko(1+0)) ¢9+(kco(co—1)9)¢9)1_9<1— ( GiD) )1i9>

ko(l—i—@)) m—l—(kco (co—1)?

L 1ok

co — cr

:1+C(Cn—1): 1—OL
0 0 661

O

As direct consequence of Theorem 2.1 we have the following theorem on the
convergence of the sequence (1.1).

Theorem 2.2. Suppose that (2.7) holds, with ¢y given by (2.5), and that

Ty 1= (bk‘)_%t* < R. Then the Newton-Kantorovich approrimations (1.1) are
well defined for all n, belong to B(xg,rs) and converge to the unique solution
x4 of the equation f(x) = 0. Moreover, the following estimates hold

Hxn_«rn—ngrn_rn—lp (HEN),
l|zn —z]| <7 — 70, (REN).

Theorem 2.2 is a real improvement of Theorem 2.3 of [5] in case kg < k .
In the sequel we give an elementary example in which ky < k.

Example 2.3. We consider the function f(x) = z? in the interval [-2, 2] and
2
we choose xg = 1 as initial point. Fixed 0 < 6 < 1, 0 # 3" it is a simple

computation to verify that

|[f"(x) = f'(1)]

ko = sup 7 =3 sup |z +1llz—110=9
_9<x<2 |z — 1| —9<a<2
and
/ gl
f o @I
—2<ay<2ary 1T Y

2-6
4
= 3 sup |z+yllz—yt?l= 3< > (1—6)7.

—2<z,y<2
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In order to prove that kg < k, we need show that

4 2—0
(2_9> (1-6)% > 3.

2—0
s(6) := (&) 1-0? o0<6<1,

we have s(0) = lim s(#) = 4; moreover

0—1

2—6
- (523 - a(8)

2
and s'(0) > 0 if, and only if, § > 3

Setting

. .. .2
So s attains its minimum value only in 3 and

s(0)>s<§>:3for3110§0§1, 97&;

3. A COMPARISON WITH PREVIOUS RESULTS

In this section, we prove that Theorem 2.2 improves Theorem 5 of [1].
We begin by recalling Lemma 1 of [1] of which we make use in the sequel.

Lemma 3.1. ([1]) Assume there exist parameters k,ko,a > 0,0 €]0,1[ and
q € [0, 1] such that

(1+0)k

Then the sequence (2.1) is increasing and converges to some t, such that 0 <

a

Putting ¢t = % (t > 1), condition (3.1) becomes:
]{70 (1 -+ 0) 0 ].
E+ ————1a"b<(1+4+0)-
<+(1_%)0 a _(+)t
ie.,

[%
a’b < (1 — 1) 1+6 .
t [ko(l O+ Rt O (¢ — 1)9]
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Define g : [1, +00[— R by

(%
1 140
=11-- ,
o) ( t) Fdl+eﬁ+kﬂ44rfnﬂ

to show that our result is an improvement of Theorem 5 [1], we will prove in
Theorem 3.3 below that g(t) < ho(co) for all ¢ > 1.
In order to simplify the proof of this theorem, we prove before the following.

Lemma 3.2. Set

a(t) = <1 - 1) o 4 [tg(l +9—t]ﬁ7

we have max «(t) = a(l) = oo and, in particular, a(t) < = foralll <

1<t<1+60
t<1486.
1
1 0 =0
Proof. Since a(1) =079 and a(1+60) = 1o , it is sufficient to prove
that a has only a critical point which is a minimum point. We have
1 (t— 1)1
— 1— 0
o(t) = — T — — (1 +0)(t—0)(146—t)T7 (3.2)
(1 _ 9) 1+ a=9) t1-0

and therefore o/(t) = 0 if and only if

(t—1)°
0t —0)1=0(1+6—1t)

s=(1+0)7. (3.3)

We prove that (3.3) has a unique solution in ¢ €]1,1 + 6[. Set
t—1)°
Q(t) = 50 ( 1-0 ) R
0 —0) 0 (1+6—¢t)
from ¢([1,1 4+ 0]) = [0, +oo[ it follows that (3.3) admits at least a solution. In

order to prove that this solution is unique, it is sufficient to show that ¢’(¢) > 0
for every ¢t € [1,1+ 6]. Since

)=t (t—1)71 (t—0) "0 (14+6—1)771 [2t3(4430) t2H30°+46+2) t—0(1+0)?] ,
we have ¢/(t) > 0 if and only if
w(t) := 2% — (44 360) 1% + (362 + 40 + 2)t — 6(1 + 6)? > 0.
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2
If 6> 3 then w is strictly increasing and wu(t) > u(1) = 02(1 — 6) > 0.

2 4+ 360 + 4 — 962
fo<o< 3 then v admits only a minimum point + +6 and
44360 + V4 — 962 8 — /(4 —962)3
u(t)ZU< ha +6 ): (54 ) >0.

Finally, from (3.2) it follows that o/(1) < 0 and o'(1 + ) > 0, i.e. the only
critical point of «/ is & minimum point.

O
Finally we obtain the following theorem.

Theorem 3.3. If 0 < kg < k, hg and ¢y are defined in Section 2 by (2.4) and
(2.5) respectively, we have

max g(t) < max ho(t) = ho(co) -

Proof. We can easily verify that ¢'(t) > 0 is equivalent to
ko(L+0)1+60—1t) —kt?(t—1)'0 > 0.

Then the function g is strictly decreasing on [1 + 6, +oo[ and achieves its
maximum in a point s €]1,1 + 0] which satisfies the equality

ko(1+0)(1+6—s)=ks (s — 1)1,
Moreover

0
1 1+60
max g(t) = g(s) = (13) ko(1 + 6)s + o0T0s(40-2)

1 ’ 1
8_
=(1-- .
< s) koOs

In order to prove that g(s) < ho(s) < ho(cp), we note that

0
1 146
ho(s) = <1 B s) 10
[ ] (1+0—s)51+9> ]

1
(ko(1+6)) ™7 + (’“(”9) 1t




“Terra Incognita” of the Newton-Kantorovich method 183

Thus ¢(s) < ho(s) is equivalent to

" ., o
1_§ +[s"(14+60—s9)|70 <077,
ie.,
1
a(s) < 019 . (3.4)
Since s belongs to open interval |1,1+ 6], (3.4) follows from Lemma 2.

(1]
2]
3]
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[12]

O
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