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Abstract. In this paper, we get new contraction-proximal point algorithms for solving the
unconstrained convex optimization problems which have the following iterative form:{

xn+1 = αnh(xn) + βnxn + µnVλnxn,

Vλn = proxλng(I − λn∇f)xn.

Furthermore, we present the algorithm with bounded error: xn+1 = αnh(xn) + βnxn +

µnVλnxn + en, where h is a τ -contractive mapping with 0 ≤ τ < 1, Vλn is an averaged

operator and en is the sequence error generated by itself of iteration. We also get the

relative strong convergence under some conditions. It also extends the use of already existing

algorithms.

1. Introduction and preliminaries

Throughout this paper, suppose that H is a real Hilbert space with inner
product 〈·, ·〉 and induced norm ‖ · ‖. Γ0(H) is the space of convex functions
in H that are proper, lower semicontinuous and convex.
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Consider the following unconstrained convex optimization problem:

min
x∈H

f(x) + g(x), (1.1)

where f, g ∈ Γ0(H). It is often the case where f is differential and g is
subdifferential. It was firstly proposed in 1978 by Mangasarian, Meyer and
Robinson [8].

As we know, there already exists a lot of methods solving the unstrained
convex minimization problem [8] which is a quite popular sector. Because some
corresponding practical problems are arisen from image or signal processing,
machine learning can be transferred into the machine form. And, in 2005,
there comes a new iterative form which involves the proximal operator [2].
Combettes and Wajs proposed a classical method for solving such problem.
For any initial guess x0 ∈ H, it generates the following iterative sequence as

xn+1 = (proxλng(I − λn∇f))xn, (1.2)

where λn ∈ (0, 2
L) and it is well known that the algorithm converges weakly.

Subsequently, Xu [11] proposed the relaxed proximal point algorithm:

xn+1 = (1− αn)xn + αn(proxλng(I − λn∇f))xn, (1.3)

where λn ∈ (0, 2
L), αn ∈ (0, 4

2+L lim supn→∞ λn
) and obtained weak convergence

under appropriate conditions. However, it is well known that strongly conver-
gent algorithms are very important for solving the problem in infinite dimen-
sional spaces. In 2015, Duan and Song in [3] proposed a generalized viscosity
approximately algorithm:

xn+1 = αnh(xn) + (1− αn)(proxλng(I − λn∇f))xn, (1.4)

where λn ∈ (0, 2
L), αn ∈ (0, 2+λnL4 ) and prove its strong convergence under

appropriate assumptions.
Now, in this paper, motivated by works of [2], [3], [12], and many other

articles, we extend the above algorithms as:

xn+1 = αnh(xn) + βnxn + µn(proxλng(I − λn∇f))xn, (1.5)

where λn ∈ (0, 2
L), αn ∈ (0, 2+λnL4 ), βn ∈ [0, 1) and µn ∈ (0, 1) satisfy with

αn + βn + µn = 1. It is worth noting that this algorithm may be regarded as
the combination of algorithms (1.4) and (1.5). As a matter of fact, if we let
ρn = µn

1−αn , then we have

xn+1 = αnh(xn) + (1− αn)[(1− ρn)xn + ρn(proxλng(I − λn∇f))xn]. (1.6)

Next, we also prove the convergence of such following iterative form:

xn+1 = αnh(xn) + βnxn + µn(proxλng(I − λn∇f))xn + en, (1.7)

where en is the error sequence generated by (1.7). Namely, (1.6) is the exact
version of algorithm (1.7).
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Especially, taking h(xn) = u, where u ∈ H is fixed, then, under some condi-
tions, the corresponding algorithm holds as following:

xn+1 = αnu+ βnxn + µn(proxλng(I − λn∇f))xn + en. (1.8)

Now, we recall some results which will be useful in proving our main results.
Firstly, we use “→” stands for strong convergence and “⇀” stands for weak
convergence. And the weak ω-limit set of a sequence {xn} will be denoted by
ωw(xn).

A mapping h : H → H is called τ -contractive if there exists a contraction
constant τ ∈ [0, 1) such that ‖h(x)− h(y)‖ ≤ τ‖x− y‖, for all x, y ∈ H. If we
take τ = 1, namely, ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ H, then T is called
nonexpansive. And, a mapping is called Lipschitzian if there exists a positive
constant L such that ‖Fx− Fy‖ ≤ L|x− y‖, for all x, y ∈ D(A). We denote
a mapping F is η-inverse strongly monotone(η-ism), if there exists a constant
η > 0 satisfies the following inequality 〈Fx − Fy, x − y〉 ≥ η‖Fx − Fy‖2, for
all x, y ∈ H. Also, a mapping V : H → H is called α-averaged(α-av for short)
if V = (1− α)I + αT , where α ∈ (0, 1), T : H → H is nonexpansive.

Let C be a nonempty closed convex subset of H. We use PC to denote the
projection form H onto C; namely, for x ∈ H, PC is the unique point in C
with the property:

‖x− PCx‖ = min
y∈C
‖x− y‖.

It is well known that PCx is characterized by:

〈x− PCx, z − PCx〉 ≤ 0, ∀z ∈ C.
Then, we will give some elementary properties of norms and proximal-operator
in Hilbert spaces.

Lemma 1.1. For all x, y ∈ H, there holds the following relation:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Proposition 1.2. ([1]) If T1, T2, · · · , Tn are averaged mappings, we can get
that TnTn−1 · · ·T1 is averaged. In particular, if Ti is αi-av, i = 1, 2, then T2T1
is (α2 + α1 − α2α1)-av.

Proposition 1.3. ([11]) Let T : H → H be an operator from H to H.

(i) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(ii) If T is v-ism, then for γ > 0, γT is v
γ -ism.

(iii) T is averaged if and only if the complement I − T is v-ism for some
v > 1

2 . Indeed, for α ∈ (0, 1), T is α-averaged if and only if the

complement I − T is 1
2α -ism.



4 P. C. Duan and Y. Gao

Lemma 1.4. ([4]) (Demiclosedness Principle) Let H be a real Hilbert
space, and let T : H → H be a nonexpensive mapping with Fix(T ) 6= ∅. If
{xn} is a sequence in H converges weakly to x and if {(I − T )xn} converges
strongly to y, then (I − T )x = y; in particulary, if y = 0, then x ∈ Fix(T ).

Lemma 1.5. ([5]) Assume {sn} is a sequence of nonnegative real numbers
such that

sn+1 ≤ (1− γn)sn + γnδn, n ≥ 0,

sn+1 ≤ sn − ηn + ϕn, n ≥ 0,

where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative real
numbers and {δn} and {ϕn} are two sequences in R such that

(i) Σ∞n=0γn =∞;
(ii) limn→∞ ϕn = 0;

(iii) limk→∞ ηnk = 0 implies lim supk→∞ δnk ≤ 0 for any subsequence {nk} ⊂
{n}.

Then limn→∞ sn = 0.

Lemma 1.6. ([11]) Let {sn} be a nonnegative real sequence satisfying

sn+1 ≤ (1− γn)sn + εn.

where the sequences {γn} ⊂ (0, 1) and {εn} are real sequences. Then sn → 0
as n→∞ provided that

(i) Σ∞n=0γn =∞;
(ii) lim supn→∞

εn
γn
≤ 0 or Σ∞n=0|εn| <∞.

Definition 1.7. ([6],[7]) The proximal operator of ϕ ∈ Γ0(H) is defined by

proxϕ(x) = arg min
v∈H

{
ϕ(v) +

1

2
‖v − x‖2

}
, x ∈ H.

The proximal operator of ϕ of order λ > 0 is defined as the proximal operator
of λϕ, that is,

proxλϕ(x) = argmin
v∈H

{
ϕ(v) +

1

2λ
‖v − x‖2

}
, x ∈ H.

Follows this, some properties of proximal operator will also be listed.

Lemma 1.8. ([2],[9]) Let ϕ ∈ Γ0(H) and λ ∈ (0,∞). Then we have the
following statements.

(i) If C is a nonempty closed convex subset of H and ϕ = IC is the
indicator function of C, then the proximal operator proxλϕ = PC for
all λ > 0, where PC is the metric projection from C onto H.
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(ii) The operator proxλϕ = (I + λ∂ϕ)−1 = J∂ϕλ , the resolvent of the subd-
ifferential ∂ϕ of ϕ.

(iii) If f : H → R is a differentiable functional, then we denote by ∇f the
gradient of f . Assume that ∇f is Lipschitz continuous on H. Then
the operator Vλ = proxλg(I − λ∇f) is 2+λL

4 -av for each 0 < λ < 2
L .

The proximal operator can be used to minimize the sum of two convex
functions.

Lemma 1.9. ([12]) The proximal identity

proxλϕx = proxµϕ

(
µ

λ
x+ (1− µ

λ
)proxλϕx

)
(1.9)

holds for ϕ ∈ Γ0(H), λ > 0 and µ > 0.

It is useful in inducing some important equalities.

Proposition 1.10. ([12]) Let f, g ∈ Γ0(H). Let x∗ ∈ H and λ > 0. Assume
that f is finite-valued and differential on H. Then x∗ is a solution to (1.10)
if and only if x∗ solves the fixed point equation

x∗ = (proxλg(I − λ∇f))x∗. (1.10)

2. Main results

In what follows, we assume that f, g ∈ Γ0(H), h(x) is a τ -contractive map-
ping of H with 0 ≤ τ < 1 and (1.1) is consist. Let S be the nonempty
solution set of (1.1), {αn} ⊂ (0, 2+λnL4 ), {βn} ⊂ [0, 1), 0 < lim infn→∞ µn ≤
lim supn→∞ µn < 1, and αn + βn + µn = 1. We first show the convergence of
algorithm (1.6), and then extend to the algorithm (1.7).

Theorem 2.1. Let the following conditions hold:

(a) limn→∞ αn = 0;
(b) Σ∞n=1αn =∞;
(c) 0 < lim infn→∞ λn ≤ lim supn→∞ λn <

2
L .

Then, for any initial guess x0 ∈ H, define Vλn = proxλng(I − λn∇f), the
sequence {xn} generated by

xn+1 = αnh(xn) + βnxn + µnVλnxn (2.1)

converges strongly to z. Where z is a solution of (1.1) and it is also the unique
solution of variational inequality 〈h(z)− z, x̃− z〉 ≤ 0 for all x̃ ∈ S.

Proof. The proof is divided into several steps.
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Step 1. We will show that {xn} is bounded. Let yn = (1−ρn)xn+ρnVλn(xn),
where ρn = µn

1−αn , 0 < lim infn→∞ ρn ≤ lim supn→∞ ρn < 1. Then, It follows
that

xn+1 = αnh(xn) + (1− αn)yn. (2.2)

So, for any z ∈ S, we get

‖xn+1 − z‖ = ‖αnh(xn) + (1− αn)yn − z‖
≤ αn‖h(xn)− z‖+ (1− αn)‖yn − z‖. (2.3)

We also know

‖yn − z‖ = ‖(1− ρn)xn + ρnVλnxn − z‖
= ‖(1− ρn)(xn − z) + ρn(Vλnxn − z)‖
≤ (1− ρn)‖xn − z‖+ ρn‖xn − z‖
= ‖xn − z‖. (2.4)

So,

‖xn+1 − z‖ ≤ αn‖h(xn)− z‖+ (1− αn)‖xn − z‖
≤ αn‖h(xn)− h(z)‖+ αn‖h(z)− z‖+ (1− αn)‖xn − z‖
≤ (1− αn(1− τ))‖xn − z‖+ αn‖h(z)− z‖

= (1− αn(1− τ))‖xn − z‖+ αn(1− τ)
‖h(z)− z‖

1− τ
. (2.5)

By induction, we obtain

‖xn+1 − z‖ ≤ max

{
‖x0 − z‖,

‖h(z)− z‖
1− τ

}
.

Hence, the sequence {xn} is bounded.

Step 2. Show that

lim
k→∞

‖xnk − Vλnkxnk‖ → 0, ∀ {nk} ⊂ {n}. (2.6)

‖xn+1 − z‖2 = ‖αnh(xn) + βnxn + µnVλnxn − z‖2

= ‖αnh(xn) + (1− αn)yn − z‖2

= ‖(1− αn)(yn − z) + αn(h(xn)− z)‖2

≤ (1− αn)2‖yn − z‖2 + 2αn〈h(xn)− z, xn+1 − z〉
≤ (1− αn)2‖yn − z‖2 + 2αnτ‖xn − z‖‖xn+1 − z‖ (2.7)

+2αn〈h(z)− z, xn+1 − z〉
≤ (1− αn)2‖yn − z‖2 + αnτ‖xn − z‖2 + αnτ‖xn+1 − z‖2

+2αn〈h(z)− z, xn+1 − z〉.
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So, combine (2.4) and (2.7), we get that

‖xn+1 − z‖2 ≤ (1− αn)2‖xn − z‖2 + αnτ‖xn − z‖2

+αnτ‖xn+1 − z‖2 + 2αn〈h(z)− z, xn+1 − z〉. (2.8)

Namely,

(1− αnτ)‖xn+1 − z‖2 ≤ ((1− αn)2 + αnτ)‖xn − z‖2 (2.9)

+2αn〈h(z)− z, xn+1 − z〉.
Thus we have

‖xn+1 − z‖2

≤ (1− 2αn(1− τ)

1− αnτ
)‖xn − z‖2 +

2αn(1− τ)

1− αnτ
1

1− τ
〈h(z)− z, xn+1 − z〉

+
2αn(1− τ)

1− αnτ
αn

2(1− τ)
M, (2.10)

where M = sup ‖xn − z‖2. Furthermore, we also have

‖xn+1 − z‖2

= ‖αnh(xn) + (1− αn)yn − z‖2

= ‖αnh(xn)− αnyn + yn − z‖2

= α2
n‖h(xn)− yn‖2 + ‖yn − z‖2 + 2αn〈h(xn)− yn, yn − z〉

= ‖(1− ρn)xn + ρnVλnxn − z‖2 + α2
n‖h(xn)− yn‖2 (2.11)

+2αn〈h(xn)− yn, yn − z〉
≤ (1− ρn)‖xn − z‖2 + ρn‖Vλnxn − z‖2 − ρn(1− ρn)‖Vλnxn − xn‖2

+α2
n‖h(xn)− yn‖2 + 2αn〈h(xn)− yn, yn − z〉

= ‖xn − z‖2 − ρn(1− ρn)‖Vλnxn − xn‖2 + α2
n‖h(xn)− yn‖2

+2αn〈h(xn)− yn, yn − z〉.

Set γn = 2αn(1−τ)
1−αnτ , δn = 1

1−τ 〈h(z) − z, xn+1 − z〉 + αn
2(1−τ)M , ηn = ρn(1 −

ρn)‖Vλnxn − xn‖2, ϕn = α2
n‖h(xn) − yn‖2 + 2αn〈h(xn) − yn, yn − z〉. Then

Σ∞n=0γn = ∞ and ϕn → 0 hold obviously. In order to complete the proof by
using Lemma 1.5, we have

lim sup
k→∞

〈h(z)− z, xnk − z〉 = 〈h(z)− z, x − z〉 ≤ 0, ∀ x ∈ S. (2.12)

It suffices to verify that ηnk → 0(k →∞) implies that lim supk→∞ δnk ≤ 0 for
any subsequence (nk) ⊂ (n).

Step 3. Show that

ωw(xn) ⊂ S. (2.13)
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Here, ωw(xn) is the set of all weak cluster points of {xn}. Note that {xn} is
bounded and (2.17) together guarantee that {xn} converges weakly to a point
in S and then the proof is consist. To see (2.13), we prove as follows. Take
x̃ ∈ ωw(xn) and assume that {xnj} is a subsequence of {xn} weakly converging
to x̃. Hence by (2.6), xnj+1 ⇀ x̃ as well. Without loss of generality, we may

assume λnj → λ, hence we get that 0 < λ < 2
L . Setting Vλ = proxλg(I−λ∇f),

then Vλ is nonexpansive. Set

yj = xnj − λnj∇f(xnj ), zj = xnj − λ∇f(xnj ).

Using the proximal identify of Lemma 1.9, we deduce that

‖Vλnjxnj − Vλxnj‖
= ‖proxλnjgyj − proxλgzj‖

= ‖proxλg(
λ

λnj
yj + (1− λ

λnj
)proxλnjgyj)− proxλgzj‖

≤ ‖ λ
λnj

yj + (1− λ

λnj
)proxλnjgyj − zj‖

≤ λ

λnj
‖yj − zj‖+ (1− λ

λnj
)‖proxλnjgyj − zj‖

=
λ

λnj
|λnj − λ|‖∇f(xnj )‖+ (1− λ

λnj
)‖proxλnjgyj − zj‖. (2.14)

Since {xn} is bounded, ∇f is Lipschitz continuous, and λnj → λ, we immedi-
ately derive from the last relation that ‖Vλnjxnj − Vλxnj‖ → 0. As a result,

we find

‖xnj − Vλxnj‖ ≤ ‖xnj − Vλnjxnj‖+ ‖Vλnjxnj − Vλxnj‖ → 0. (2.15)

Now the demiclosedness of the nonexpansive mapping I − Vλ implies that
(I − Vλ)x̃ = 0. Namely, x̃ ∈ Fix(Vλ) = S.
Indeed, since z is a solution of the variational inequality of 〈h(z)−z, x̃−z〉 ≤ 0,
it is easy to see lim supk→∞ δnk ≤ 0. This shows condition (iii) in Lemma 1.5
holds and therefore the desired result at once follows. Thus we can conclude
that xn → z. �

Remark 2.2. Note that βn = 0 holds in Theorem 2.1, we can obtain the
result of the reference [3]. However, the proof of Theorem 2.1 in this paper is
simpler and the conditions are weaker than Theorem in reference [3].

Now, we are now in a position to state and prove a strong convergence
result for sequences generated from algorithm (1.7) under several alternative
conditions on the error sequences en.
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Still, we assume that f, g ∈ Γ0(H), h(x) is a τ -contractive operator of H to
H with 0 ≤ τ < 1 and (1.1) is consist. Let S be the nonempty solution set of
(1.1), αn ⊂ (0, 1), βn ⊂ [0, 1), µn ⊂ (0, 1), and αn + βn + µn = 1.

Theorem 2.3. Let the following conditions hold:

(a) limn→∞ αn = 0;
(b) Σ∞n=1αn =∞;
(c) 0 < lim infn→∞ λn ≤ lim supn→∞ λn <

2
L ;

(d) Σ∞n=1‖en‖ <∞.
Then, for any initial guess x0 ∈ H, the sequence {xn} generated by

xn+1 = αnh(xn) + βnxn + µnVλnxn + en (2.16)

converges strongly to z. where z is a solution of (1.1) and it is also the unique
solution of variational inequality 〈h(z)− z, x̃− z〉 ≤ 0 for all x̃ ∈ S.

Proof. Taking Theorem 2.1 into account, it is enough to prove that ‖xn−vn‖ →
0 as n→∞, for vn+1 = αnh(vn)+βnvn+µnVλnvn. Since Vλn is nonexpansive
and h(x) is contractive, we have

‖xn+1 − vn+1‖
≤ αnτ‖h(xn)− h(vn)‖+ βn‖xn − vn‖+ µn‖xn − vn‖+ ‖en‖
= αnτ‖xn − vn‖+ (1− αn)‖xn − vn‖+ ‖en‖
= (1− αn(1− τ))‖xn − vn‖+ ‖en‖

= (1− αn(1− τ))‖xn − vn‖+ αn(1− τ)
‖en‖

αn(1− τ)
. (2.17)

Since the sequence of errors satisfies the condition (d), it readily follows from
Lemma 1.5 that ‖xn − vn‖ → 0. This completes the proof. �

Especially, if we fix h(xn), namely, take h(xn) = u, where u ∈ H is fixed.
Then, we have the following results. And the proof is similar to Theorem 2.1.

Theorem 2.4. Let f, g ∈ Γ0(H), and assume that (1.1) is consist. Let Vλn =
proxλng(I − λn∇f), where ∇f is L-Lipschitizian. Given x0 ∈ H and define
the sequence {xn} by the following iterative algorithm:

xn+1 = αnu+ βnxn + µnVλnxn, (2.18)

where αn ⊂ (0, 1), βn ⊂ [0, 1), µn ⊂ (0, 1), and λn ∈ (0, 2
L), Suppose that

(a) limn→∞ αn = 0;
(b) Σ∞n=1αn =∞;
(c) 0 < lim infn→∞ λn ≤ lim supn→∞ λn <

2
L ;

(d) Σ∞n=1‖en‖ <∞.
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Then, {xn} converges strongly to PS(u) which is the nearest point of S to u
and is also a solution of (1.1).

Theorem 2.5. Let f, g ∈ Γ0(H), and assume that (1.1) is consist. Let Vλn =
proxλng(I − λn∇f), where ∇f is L-Lipschitzian. Given x0 ∈ H and define
the sequence {xn} by the following iterative algorithm:

xn+1 = αnu+ βnxn + µnVλnxn + en, (2.19)

where αn ⊂ (0, 1), βn ⊂ [0, 1), µn ⊂ (0, 1), and λn ∈ (0, 2
L). Suppose that

(a) limn→∞ αn = 0;
(b) Σ∞n=1αn =∞;
(c) 0 < lim infn→∞ λn ≤ lim supn→∞ λn <

2
L .

Then, {xn} converges strongly to the nearest point of S to u(PSu) which is
also the solution of (1.1).

Proof. For given initial point v0, we define {vn} recursively by

vn+1 = αnu+ βnvn + µnVλnvn, (2.20)

By Theorem 2.4, {vn} converges strongly to PSu. So it remains to show that
‖xn − vn‖ → 0. Since

‖xn+1 − vn+1‖ ≤ ‖βn(xn − vn) + µn(Vλnxn − Vλnvn)‖+ ‖en‖
≤ βn‖(xn − vn)‖+ µn‖Vλnxn − Vλnvn)‖+ ‖en‖
≤ (βn + δn)‖xn − vn‖+ ‖en‖

= (1− αn)‖xn − vn‖+ αn
‖en‖
αn

, (2.21)

it follows from Lemma 1.6 that ‖xn− vn‖ → 0. Therefore we have the desired
result. �

Acknowledgments: The authors thank the referees for their helping com-
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