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Abstract. In this paper, we study the minimax problem in a partial ordered Hausdorff
topological vector space. We obtain a vector form Ky Fan minimax inequality theorem
which involves two vector-valued functions. The proof of this theorem don’t use separation
theorems and nonlinear scalarization functions. Forthermore, we also use the fixed point
theorem of set-valued mappings by Browder [1] to prove some results of minimax problem

of two vector-valued functions, and the minimax theorem in [16] is extended to vector form.

1. INTRODUCTION

In 1928, von Neumann [15] obtained minimax theorem on finite dimensional
simplex, it plays an important role in modern analysis, and has important ap-
plications in game theory and economics. This theorem is generalized by many
scholars. In 1958, Sion [17] proved a minimax theorem under the conditions
of compact convex, semicontinuous functions and quasi convexity by using
Knaster, Kuratowski, Mazurkiewicz [10] and Helly’s theorem. Park [16] pro-
posed a simple method to prove Sion’s minimax theorem in 2010. With the
development of vector optimization, vector-valued minimax theorem has been
widely studied in recent decades. In 1989, Ferro [7] proved a minimax theorem
with general conditions of vector-valued function by using the separation the-
orem. In 1991, Ferro [8] gave another symmetric form of minimax theorem;
In 1991, Tanaka [18] didn’t use Ferro’s inclusive assumptions, but obtained
weakly minimax theorem. Tan et al. generalized the results of Tanaka in
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1996. In 2010, Li et al. [13] gave a class of minimax problems in lexicographic
order.

On the other hand, Ky Fan established a minimax inequality theorem in
1972. This theorem has wide applications in variational inequality, game the-
ory, and control theory, etc. Ky Fan’s minimax inequality is generalized to the
vector-valued form in recent years. In 1996, Chang et al. [2] proved minimax
inequality for vector-valued functions on W-spaces. In 1998, Li and Wing
[14] gave a type of minimax inequality for vector-valued functions. Ky Fan’s
minimax inequality for vector set-valued mappings are also studied by [11],
[12].

Theorem 1.1. (Ky Fan Minimax Inequality) Let E be a Hausdorff topological
vector space and let X be a nonempty compact convex subset of E. Suppose
that f : X x X — R satisfies the following:

(1) For each fized y € X, f(-,y) is lower semicontinuous;
(2) For each fizred x € X, f(z,-) is quasiconcave.

Then

win sup £(z.y) < sup f(z,).
reX yex T€X

In this paper, we establish a new type of Ky Fan minimax inequality for
two vector-valued functions and we extend the result of [3] to the vector form.
Finally, we adopt the method of [16] to prove a minimax theorem of two
vector-valued functions.

2. PRELIMINARIES

Let E be a Hausdorff topological vector space and let C' C F be a closed
convex cone, i.e., C' is a closed set of &, A\C' C C for A > 0 and C + C C C
C is said to be a pointed closed convex cone in E if C' N C = {6}, where 6 is
the zero in E. Let C be a pointed closed convex cone C on E. Then there
is a partial order ”<” on FE defined by = < y if and only if y —x € C. Let
intC' # (), where intC' denotes the interior of C', we have

r<ysy—xcintC; xLysy—axd¢intC.

A subset D C E is said to be upper bounded if there exists v € E such that
x < v for all z € D, in an analogous way, we define lower bounded of D. A
subset D C FE is said to be bounded if it is both upper bounded and lower
bounded.

Let A C E be a nonempty set, a point z € A is said to be a minimal point
of Aif AN(z —C) = {z}. MinA will be the set of all minimal points of A,
similarly, MaxA will be the set of all maximal points of A. A point z € A
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is said to be a weakly minimal point of A if A((z — intC) = 0, Min,, A will
denote the set of all weakly minimal points, in an analogous way, Max,, A will
denote the set of all weakly maximal points. It is easy to know that MinA C

Min,, A and MaxA C Max,, A provided intC' # (), (see Ferro [7, 8]).

Definition 2.1. ([7]) Let E,Y be Hausdorff topological vector spaces, X C E
a nonempty convex subset, C' C Y a pointed closed convex cone, and f : X —
Y a function.

(1) f is said to be properly quasi C-convex, if
either f(tx1 + (1 —t)zo) < f(x1) or f(txr + (1 —t)xa) < f(x2)

for every 1,29 € X and t € [0, 1].
(2) f is said to be quasi C-convex if, for each r € X, we have

{reX: flx)<r}

1S convex.

Obviously, properly quasi C-convex function implies that quasi C-convex,
but the reverse is not true.

A function f is properly quasi C-concave for all z € X if and only if —f is
properly quasi C-convex; f is quasi C-concave for all x € X if and only if — f
is quasi C-convex.

Definition 2.2. ([9]) Let D C E be a nonempty set and C' C E be a pointed
closed convex cone.

(1) A point z € FE is said to be the supremum of D and denote it by sup D,
if it satisfies the following:
(a) x <z,VxeD; (b)x<yVreD=_z<y.

(2) A point z € FE is said to be the infimum of D and denote it by inf D,
if it satisfies the following:
(a) z<z,VxeD; (b)y<z,VreD=z>uy.

(3) C is said to be a minihedral cone if sup{z, y} exists for all z,y € E.

(4) C is said to be strongly minihedral cone if any nonempty subset of D
which is upper bounded has the supremum.

Remark 2.3. C is a minihedral cone implies that inf{z,y} exists for all
x,y € E. C is a strongly minihedral cone implies that any nonempty subset
of D which is lower bounded has the infimum.

Definition 2.4. Let E,Y be Hausdorff topological vector spaces and C C Y
be a pointed closed convex cone.
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(1) f: E—Y is quasi C-lower semicontinuous if f~!(y — C) is closed set
for each y € Y.

(2) f: E —Y is quasi C-upper semicontinuous if f~!(y + C) is closed set
for each y € Y.

In [5], we know that if F is compact and f is quasi C-upper semicontin-
uous, then there exists a maximal point for f. Similarly, f is quasi C-lower
semicontinuous and F is compact imply that there exists a minimal point for

f.

Using generalized semicontinuous introduced by [3], a function f is said to be
C-lower semicontinuous from above at zp € X if for each sequence {z,} C X,
xn — xo such that f(x,11) < f(x,),Vn > 1 implies that f(xg) < f(x,) for
each n > 1. f issaid to be C-upper semicontinuous from below at zy € X if for
each sequence {x,} C X, x, — x¢ such that f(x,41) > f(z,),Vn > 1 implies
that f(zo) > f(zy) for each n > 1. By Theorem 2.3 in [3], if F is compact and
Y is a separable Huasdorff partial ordered topological vector space, then there
exists the solution of Pareto’s problem for f satisfying lower semicontinuous
from above or upper semicontinuous from below condition.

Definition 2.5. ([16]) Let E be a Hausdorff partial ordered topological vector
space and X C F be a nonempty convex subset. A set-valued map T : X — 2%
is said to be a Fan-Browder map if it satisfies the following conditions:

(1) T'(z) is nonempty convex set for all x € X;
(2) There exists some finite set {y1,y2, - yn} C X such that

n
X = U int7 L.
i=1

Lemma 2.6. ([6]) Let E be a Hausdorff topological vector space and D C E
be a nonempty subset. A set-valued map G : D — 2F is closed valued, and for
any finite set {x1,x2,- -+ ,xn} C D such that co{x1,x2, - ,xn} C Ul G(i).
If G(x) is compact for at least one x € D, then (\,cp G(x) # 0.

Lemma 2.7. ([1]) Let X C E be nonempty compact conver subset and T :
X — 2% be a map satisfying the following conditions:

(1) T(x) is a nonempty convex set for all v € X ;
(2) T-ly ={z € X : y € Tx} is open set for ally € X.

Then T has a fixzed point.
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3. MAIN RESULTS

Theorem 3.1. Let X,Y be Hausdorff topological vector spaces, D C X be a
compact convex subset, and C' C'Y be a strongly minihedral cone with intC #
(). Suppose that f,g: Dx D —'Y are two upper bounded functions and satisfy
the following conditions:

(1) y — g(x,y) is quasi C-lower semicontinuous for all x € D;

(2) x = f(x,y) is properly quasi C-concave for all y € D;

(3) g(z,y) < f(z,y) for each (z,y) € D x D.

Then, for every z € Miny U, p Supzep 9(x,y) such that
2 % sup f(z, 7).

zeD

Proof. Since C is a strongly minihedral cone and f(z,y) has upper bounded for
all (z,y) € D x D, we have sup,cp g(z,y) # 0 and sup,cp f(x,x) # 0. Since
g(z,y) is quasi C-lower semicontinuous for each fixed x € D, we know that
sup,ecp 9(x,y) is quasi C-lower semicontinous. Hence, Minsup,cp g(z,y) # 0
for all y € D, we get Ming, U, p sup,ep 9(z,y) # 0.

Let a = sup,cp f(x,z), define two maps F : D — 2P and G : D — 2P by

Fx)={yeD: f(z,y) <a}, G)={yeD:g(x,y) <a},

for all x € D. By the assumption (1), G(x) is closed set for all z € D. By the
assumption (2), we get {z € D : o — f(x,y) ¢ C} is convex set for all y € D.
In fact, let z1,z9 € D such that

a—f(xl,y)¢C, a—f(:m,y)géC’,

for all y € D. Now, suppose that f(z(t),y) < « is true for all y, where
x(t) = txy + (1 — t)xg for every t € (0,1). Fixed each y € D, f(z,y) is
properly quasi C-concave for all € D, then there exists g such that

either f(z(to),y) > f(z1,y) or f(x(to),y) > f(z2,y)

holds. So we have x1 ¢ D or x9 ¢ D, which is a contradiction. Thus for any
finite points x; € D,i = 1,2, --n, we have

co{xi,ma, -+ ,xn} C U F(z;).
i=1
By the assumption (3), F(x) C G(x) for all x € D, for every finite set
{z1,29, -, 2} of D such that

co{xi,xa, -+ ,xn} C U G(z;).
i=1
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By Lemma 2.6, we have (),.p G(x) # 0, thus there exists yo € D such that

Yo € G(x),
for all x € D, that is, g(x,yo) < a implies that sup,cp g(x,yo) < a for all
x € D. Thus, for every z € Min,, UyeD sup,ep 9(x,y), we have z ¥ a. O

Remark 3.2. Theorem 3.1 is Ky-Fan’s minimax inequality when ¥ = R,

=g

By using the generalized semicontinuous introduced by [3], we may get the
following result.

Theorem 3.3. Let X be a Hausdorff topological vector space, Y be a separable
Banach space, D C X be a compact conver subset, and C C Y be a strongly
manihedral cone with intC # (). Suppose that f,g: D x D —'Y are two upper
bounded functions and satisfy the following conditions:

(1) sup,ep 9(z,y) is C-lower semicontinuous from above on D;
(2) {y € D : g(z,y) <sup,ep f(z,z)} is closed for all x € D;
(3) x — f(x,y) is properly quasi C-concave for all y € D;

(4) g(z,y) < f(x,y) for each (z,y) € D x D.

Then, for every z € Min,, UyeD sup,ep 9(x,y) such that

2 # sup f(x, ).
€D

Theorem 3.4. Let X and Y be nonempty convexr subsets of two Hausdorff
topological vector spaces, respectively, F' be a Hausdorff topological vector space,
and C C F be a strongly minihedral cone with intC # 0. Suppose that
fis,t,g : X xY — F are functions such that f(xz,y) is lower bounded for
all (x,y) € X xY, and g(x,y) is upper bounded for all (x,y) € X XY, and
satisfy the following assumptions:
(1) f(z,9) < s(z,y) < tz,y) < glz,y) for each (z,y) € X x ¥;
(2) For each y €Y, s(x,y) is quasi C-concave for all x € X and for each
x €Y, t(x,y) is quasi C-convex for all y € X;
(3) For each r € F, there exists x; € X,i = 1,2,--- ,m such that Y =
U int{ly € Y : f(zi,y) > 7}
(4) For each r € F, there exists y; € Y,j = 1,2,--- ,n such that X =
Ujoiint{z € X : g(z,y;) <r}.
Then, sup,cx infyey g(z,y) £ infyey sup,cx £(z,7).

Proof. Since C'is a strongly minihedral cone, f(z,y) has lower bounded and
g(x,y) has upper bounded for all (z,y) € D x D, by the assumption (1), we
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know that both sup,cy infyey g(x,y) and infyey sup,ex f(z,y) exist. Now,
suppose that

sup inf g(x, inf su x,
xe)r;yeyg( y)%y@,x@gf( y)

is not true. Then there exists r € F' such that

sup inf g(z,y) < r < inf su xz,y).

zegyeyg( y) yeyxegf( y)
Let a function 7' : X x Y — 2%>Y defined by T(z,y) = {7 € X : s(7,y) >
r} x{g € Y : t(x,y) < r}. Then, by the assumption (2), we get T'(z,y) is
convex for each (z,y) € X x Y. For each (Z,7) € X x Y, we have

T 'z, ={reX tx,y) <r}x{yeY:s@y) >r}

D{reX:g(x,y) <r}x{yeY: f(z,y) >r}
Dint{r € X : g(x,y) <r} xint{y € Y : f(z,y) > r}.

By (3) and (4), we obtain that X x Y is covered by {int7!(z;,y;) : 1 <i <
m,1 < j < n}, and then T is a Fan-Browder map. By Lemma 2.7, we get a
point (xg,y0) € X x Y such that (xg,yo) € T(x0,y0). By the definition of T,
we have

t(x(]vy()) <r< S($07y0)7
which is a contradiction. This completes the proof. O

Remark 3.5. For F' = R in Theorem 3.4, we obtain the results of [16] in
scalar case.

Theorem 3.6. Let X, Y be nonempty compact convex subsets of two Hausdorff
topological vector spaces, respectively. Let F' be a Hausdorff topological vector
space and C C F be a strongly minihedral cone with intC # 0. Suppose
that f,s,t,g : X xY — F are functions such that f(x,y) is lower bounded
and g(x,y) is upper bounded for all (z,y) € X XY, and satisfy the following
assumptions:

(1) flz,y) < s(z,y) <t(z,y) < g(x,y) for each (z,y) € X x Y,

(2) y — f(z,y) is quasi C-lower semicontinuous for all x € X and for
each x € Y, t(x,y) is quasi C-convex for ally € X;

(3) x — g(z,y) is quasi C-upper semicontinuous for all y € X and for
each y €Y, s(x,y) is quasi C-concave for all x € X.

Then, for every o € Miny, ey Supgex f(2,y), there exists

B € Maxy, U ylg}f/g(m,y)
zeX



28 C. L. Zhang

such that
B £ a.

Proof. Since C' is a strongly minihedral cone, f(z,y) has lower bounded and
g(z,y) has upper bounded for all (z,y) € D x D, and by assumption (1), we
get sup,cx f(z,y) # 0,inf ey g(x,y) # 0. Since f(x,-) is quasi C-lower semi-
continuous, sup,cx f(x,-) is also quasi C-lower semicontinuous. Similarly,
we get infyey g(-,y) is quasi C-upper semicontinuous. Since X,Y are com-
pact, we get both Miny, J ey sup,ex f(z,y) and Maxy U, cx infyey g(z,y)
exist. Suppose that there exists a € Miny, Uer sup,ex f(x,y) and each
B € Maxy |J,cx infyey g(z,y) such that 3 < a. Then, there exists r € F
such that 8 < r < a. By the similar argument of Theorem 3.4, we can obtain
a contradiction. O

Remark 3.7. If F' = R, then minyex sup,cy f(,y) < max,ex inf ey g(z,y).
It f=s=1t=g, then minye x maxex f(z,y) = maxzex minyey f(z,y).

Corollary 3.8. Let X and Y be nonempty compact convex subsets of two
Hausdorff topological vector spaces, repectively, F' be a separable Hausdorff
topological vector space and C C F be a strongly minihedral cone with intC #
(0. Suppose that f : X xY — F is bounded for all (z,y) € X XY, and satisfies
the following assumptions:
(1) y — f(x,y) is quasi C-lower semicontinuous from above and quasi
C-convex for each fixed x € X;
(2) x = f(x,y) is quasi C-upper semicontinuous from below and quasi
C-concave for each fized y € Y ;
(3) For each r € F, there exists x; € X,i = 1,2,--- ,m such that Y =
Uty eY : f(zi,y) >r}, where {y €Y : f(zi,y) > r} is open set;
(4) For each r € F, there exists y; € Y,j = 1,2,--- ,n such that X =
Uji{z € X f(2,y;) <r}, where {x € X : f(x,y;) <r} is open set.

Then, sup U, cx Minf(z,Y) £ inf{J, oy Maxf(X, y).

Proof. Since X,Y are compact, F is separable, and f(x,y) is bounded, by the
assumptions (1), (2) and Theorem 2.3 in [3], we have

sup U Minf(x,Y) # 0, inf U Maxf(X,y) # 0.
rzeX yey
Suppose that sup | J,cx Minf(z,Y) £ inf Uer Maxf(X,y) is not true, there
exists r € F' such that

sup U Minf(z,Y) < r < inf U Maxf(X,y).
zeX yey
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Obviously, which is a contradiction. O

Corollary 3.9. Let X and Y be nonempty compact convexr subsets of two
Hausdorff topological vector spaces, respectively, F' be a Hausdorff topological
vector space, and C C F be a pointed closed convex cone with intC # ().
Suppose that f,s,t,9: X xY — I satisfy the following assumptions:
(1) f(z,y) < s(z,y) < t(x,y) < g(x,y) for each (x,y) € X x Y;
(2) f(x,y) is continuous for all (z,y) € X xY and for each x € X t(x,y)
is quasit C'-convex for all y € X;
(3) g(x,y) is continuous for all (x,y) € X XY and for each y € Y ,s(x,y)
s quasi C-concave for all x € X.

Then MinJ, ¢y Maxy, f(X,y) C MaxJ,e x Mingg(z,Y) + F\intC'.

Proof. Since f, g are continuous and X,Y are compact. In [7], we get

Min U Max,, f(X,y) # 0, Max U Mingg(z,Y) # 0.
yey zeX

Suppose that the conclusion is not true. Then there exists r € F', for
a € Min{J,¢y Max, f(X,y) and for each 3 € Max|J,cx Min,g(z,Y) such
that

b<r<a,

which is a contradiction. O

Remark 3.10. If f = s =1t = g, then we get

Min U Max,, f(X,y) C Max U Min,, f(z,Y) + F\intC.
yey zeX
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