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Abstract. In this paper, we study the minimax problem in a partial ordered Hausdorff

topological vector space. We obtain a vector form Ky Fan minimax inequality theorem

which involves two vector-valued functions. The proof of this theorem don’t use separation

theorems and nonlinear scalarization functions. Forthermore, we also use the fixed point

theorem of set-valued mappings by Browder [1] to prove some results of minimax problem

of two vector-valued functions, and the minimax theorem in [16] is extended to vector form.

1. Introduction

In 1928, von Neumann [15] obtained minimax theorem on finite dimensional
simplex, it plays an important role in modern analysis, and has important ap-
plications in game theory and economics. This theorem is generalized by many
scholars. In 1958, Sion [17] proved a minimax theorem under the conditions
of compact convex, semicontinuous functions and quasi convexity by using
Knaster, Kuratowski, Mazurkiewicz [10] and Helly’s theorem. Park [16] pro-
posed a simple method to prove Sion’s minimax theorem in 2010. With the
development of vector optimization, vector-valued minimax theorem has been
widely studied in recent decades. In 1989, Ferro [7] proved a minimax theorem
with general conditions of vector-valued function by using the separation the-
orem. In 1991, Ferro [8] gave another symmetric form of minimax theorem;
In 1991, Tanaka [18] didn’t use Ferro’s inclusive assumptions, but obtained
weakly minimax theorem. Tan et al. generalized the results of Tanaka in
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1996. In 2010, Li et al. [13] gave a class of minimax problems in lexicographic
order.

On the other hand, Ky Fan established a minimax inequality theorem in
1972. This theorem has wide applications in variational inequality, game the-
ory, and control theory, etc. Ky Fan’s minimax inequality is generalized to the
vector-valued form in recent years. In 1996, Chang et al. [2] proved minimax
inequality for vector-valued functions on W-spaces. In 1998, Li and Wing
[14] gave a type of minimax inequality for vector-valued functions. Ky Fan’s
minimax inequality for vector set-valued mappings are also studied by [11],
[12].

Theorem 1.1. (Ky Fan Minimax Inequality) Let E be a Hausdorff topological
vector space and let X be a nonempty compact convex subset of E. Suppose
that f : X ×X → R satisfies the following:

(1) For each fixed y ∈ X, f(·, y) is lower semicontinuous;
(2) For each fixed x ∈ X, f(x, ·) is quasiconcave.

Then
min
x∈X

sup
y∈X

f(x, y) ≤ sup
x∈X

f(x, x).

In this paper, we establish a new type of Ky Fan minimax inequality for
two vector-valued functions and we extend the result of [3] to the vector form.
Finally, we adopt the method of [16] to prove a minimax theorem of two
vector-valued functions.

2. Preliminaries

Let E be a Hausdorff topological vector space and let C ⊂ E be a closed
convex cone, i.e., C is a closed set of E, λC ⊆ C for λ ≥ 0 and C + C ⊆ C;
C is said to be a pointed closed convex cone in E if C ∩ C = {θ}, where θ is
the zero in E. Let C be a pointed closed convex cone C on E. Then there
is a partial order ”≤” on E defined by x ≤ y if and only if y − x ∈ C. Let
intC 6= ∅, where intC denotes the interior of C, we have

x < y ⇔ y − x ∈ intC; x ≮ y ⇔ y − x /∈ intC.

A subset D ⊂ E is said to be upper bounded if there exists v ∈ E such that
x ≤ v for all x ∈ D, in an analogous way, we define lower bounded of D. A
subset D ⊂ E is said to be bounded if it is both upper bounded and lower
bounded.

Let A ⊂ E be a nonempty set, a point z ∈ A is said to be a minimal point
of A if A

⋂
(z − C) = {z}. MinA will be the set of all minimal points of A,

similarly, MaxA will be the set of all maximal points of A. A point z ∈ A
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is said to be a weakly minimal point of A if A
⋂

(z − intC) = ∅, MinwA will
denote the set of all weakly minimal points, in an analogous way, MaxwA will
denote the set of all weakly maximal points. It is easy to know that MinA ⊂
MinwA and MaxA ⊂ MaxwA provided intC 6= ∅, (see Ferro [7, 8]).

Definition 2.1. ([7]) Let E, Y be Hausdorff topological vector spaces, X ⊂ E
a nonempty convex subset, C ⊆ Y a pointed closed convex cone, and f : X →
Y a function.

(1) f is said to be properly quasi C-convex, if

either f(tx1 + (1− t)x2) ≤ f(x1) or f(tx1 + (1− t)x2) ≤ f(x2)

for every x1, x2 ∈ X and t ∈ [0, 1].
(2) f is said to be quasi C-convex if, for each r ∈ X, we have

{x ∈ X : f(x) < r}

is convex.

Obviously, properly quasi C-convex function implies that quasi C-convex,
but the reverse is not true.

A function f is properly quasi C-concave for all x ∈ X if and only if −f is
properly quasi C-convex; f is quasi C-concave for all x ∈ X if and only if −f
is quasi C-convex.

Definition 2.2. ([9]) Let D ⊂ E be a nonempty set and C ⊆ E be a pointed
closed convex cone.

(1) A point z ∈ E is said to be the supremum of D and denote it by supD,
if it satisfies the following:
(a) x ≤ z, ∀x ∈ D; (b) x ≤ y,∀x ∈ D ⇒ z ≤ y.

(2) A point z ∈ E is said to be the infimum of D and denote it by inf D,
if it satisfies the following:
(a) z ≤ x,∀x ∈ D; (b) y ≤ x, ∀x ∈ D ⇒ z ≥ y.

(3) C is said to be a minihedral cone if sup{x, y} exists for all x, y ∈ E.
(4) C is said to be strongly minihedral cone if any nonempty subset of D

which is upper bounded has the supremum.

Remark 2.3. C is a minihedral cone implies that inf{x, y} exists for all
x, y ∈ E. C is a strongly minihedral cone implies that any nonempty subset
of D which is lower bounded has the infimum.

Definition 2.4. Let E, Y be Hausdorff topological vector spaces and C ⊂ Y
be a pointed closed convex cone.
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(1) f : E → Y is quasi C-lower semicontinuous if f−1(y −C) is closed set
for each y ∈ Y .

(2) f : E → Y is quasi C-upper semicontinuous if f−1(y+C) is closed set
for each y ∈ Y .

In [5], we know that if E is compact and f is quasi C-upper semicontin-
uous, then there exists a maximal point for f . Similarly, f is quasi C-lower
semicontinuous and E is compact imply that there exists a minimal point for
f .

Using generalized semicontinuous introduced by [3], a function f is said to be
C-lower semicontinuous from above at x0 ∈ X if for each sequence {xn} ⊂ X,
xn → x0 such that f(xn+1) ≤ f(xn), ∀n ≥ 1 implies that f(x0) ≤ f(xn) for
each n ≥ 1. f is said to be C-upper semicontinuous from below at x0 ∈ X if for
each sequence {xn} ⊂ X, xn → x0 such that f(xn+1) ≥ f(xn),∀n ≥ 1 implies
that f(x0) ≥ f(xn) for each n ≥ 1. By Theorem 2.3 in [3], if E is compact and
Y is a separable Huasdorff partial ordered topological vector space, then there
exists the solution of Pareto’s problem for f satisfying lower semicontinuous
from above or upper semicontinuous from below condition.

Definition 2.5. ([16]) Let E be a Hausdorff partial ordered topological vector
space andX ⊂ E be a nonempty convex subset. A set-valued map T : X → 2X

is said to be a Fan-Browder map if it satisfies the following conditions:

(1) T (x) is nonempty convex set for all x ∈ X;
(2) There exists some finite set {y1, y2, · · · yn} ⊆ X such that

X =
n⋃

i=1

intT−1yi.

Lemma 2.6. ([6]) Let E be a Hausdorff topological vector space and D ⊂ E
be a nonempty subset. A set-valued map G : D → 2E is closed valued, and for
any finite set {x1, x2, · · · , xn} ⊂ D such that co{x1, x2, · · · , xn} ⊂

⋃n
i=1G(xi).

If G(x) is compact for at least one x ∈ D, then
⋂

x∈DG(x) 6= ∅.

Lemma 2.7. ([1]) Let X ⊂ E be nonempty compact convex subset and T :
X → 2X be a map satisfying the following conditions:

(1) T (x) is a nonempty convex set for all x ∈ X;
(2) T−1y = {x ∈ X : y ∈ Tx} is open set for all y ∈ X.

Then T has a fixed point.
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3. Main results

Theorem 3.1. Let X,Y be Hausdorff topological vector spaces, D ⊆ X be a
compact convex subset, and C ⊂ Y be a strongly minihedral cone with intC 6=
∅. Suppose that f, g : D×D → Y are two upper bounded functions and satisfy
the following conditions:

(1) y → g(x, y) is quasi C-lower semicontinuous for all x ∈ D;
(2) x→ f(x, y) is properly quasi C-concave for all y ∈ D;
(3) g(x, y) ≤ f(x, y) for each (x, y) ∈ D ×D.

Then, for every z ∈ Minw
⋃

y∈D supx∈D g(x, y) such that

z ≯ sup
x∈D

f(x, x).

Proof. Since C is a strongly minihedral cone and f(x, y) has upper bounded for
all (x, y) ∈ D ×D, we have supx∈D g(x, y) 6= ∅ and supx∈D f(x, x) 6= ∅. Since
g(x, y) is quasi C-lower semicontinuous for each fixed x ∈ D, we know that
supx∈D g(x, y) is quasi C-lower semicontinous. Hence, Min supx∈D g(x, y) 6= ∅
for all y ∈ D, we get Minw

⋃
y∈D supx∈D g(x, y) 6= ∅.

Let α = supx∈D f(x, x), define two maps F : D → 2D and G : D → 2D by

F (x) = {y ∈ D : f(x, y) ≤ α}, G(x) = {y ∈ D : g(x, y) ≤ α},

for all x ∈ D. By the assumption (1), G(x) is closed set for all x ∈ D. By the
assumption (2), we get {x ∈ D : α− f(x, y) /∈ C} is convex set for all y ∈ D.
In fact, let x1, x2 ∈ D such that

α− f(x1, y) /∈ C, α− f(x2, y) /∈ C,

for all y ∈ D. Now, suppose that f(x(t), y) ≤ α is true for all y, where
x(t) = tx1 + (1 − t)x2 for every t ∈ (0, 1). Fixed each y ∈ D, f(x, y) is
properly quasi C-concave for all x ∈ D, then there exists t0 such that

either f(x(t0), y) ≥ f(x1, y) or f(x(t0), y) ≥ f(x2, y)

holds. So we have x1 /∈ D or x2 /∈ D, which is a contradiction. Thus for any
finite points xi ∈ D, i = 1, 2, · · ·n, we have

co{x1, x2, · · · , xn} ⊆
n⋃

i=1

F (xi).

By the assumption (3), F (x) ⊆ G(x) for all x ∈ D, for every finite set
{x1, x2, · · · , xn} of D such that

co{x1, x2, · · · , xn} ⊆
n⋃

i=1

G(xi).
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By Lemma 2.6, we have
⋂

x∈DG(x) 6= ∅, thus there exists y0 ∈ D such that

y0 ∈ G(x),

for all x ∈ D, that is, g(x, y0) ≤ α implies that supx∈D g(x, y0) ≤ α for all
x ∈ D. Thus, for every z ∈ Minw

⋃
y∈D supx∈D g(x, y), we have z ≯ α. �

Remark 3.2. Theorem 3.1 is Ky-Fan’s minimax inequality when Y = R,
f = g.

By using the generalized semicontinuous introduced by [3], we may get the
following result.

Theorem 3.3. Let X be a Hausdorff topological vector space, Y be a separable
Banach space, D ⊆ X be a compact convex subset, and C ⊂ Y be a strongly
minihedral cone with intC 6= ∅. Suppose that f, g : D ×D → Y are two upper
bounded functions and satisfy the following conditions:

(1) supx∈D g(x, y) is C-lower semicontinuous from above on D;
(2) {y ∈ D : g(x, y) ≤ supx∈D f(x, x)} is closed for all x ∈ D;
(3) x→ f(x, y) is properly quasi C-concave for all y ∈ D;
(4) g(x, y) ≤ f(x, y) for each (x, y) ∈ D ×D.

Then, for every z ∈ Minw
⋃

y∈D supx∈D g(x, y) such that

z ≯ sup
x∈D

f(x, x).

Theorem 3.4. Let X and Y be nonempty convex subsets of two Hausdorff
topological vector spaces, respectively, F be a Hausdorff topological vector space,
and C ⊂ F be a strongly minihedral cone with intC 6= ∅. Suppose that
f, s, t, g : X × Y → F are functions such that f(x, y) is lower bounded for
all (x, y) ∈ X × Y , and g(x, y) is upper bounded for all (x, y) ∈ X × Y , and
satisfy the following assumptions:

(1) f(x, y) ≤ s(x, y) ≤ t(x, y) ≤ g(x, y) for each (x, y) ∈ X × Y ;
(2) For each y ∈ Y, s(x, y) is quasi C-concave for all x ∈ X and for each

x ∈ Y, t(x, y) is quasi C-convex for all y ∈ X;
(3) For each r ∈ F, there exists xi ∈ X, i = 1, 2, · · · ,m such that Y =⋃m

i=1int{y ∈ Y : f(xi, y) > r};
(4) For each r ∈ F , there exists yj ∈ Y, j = 1, 2, · · · , n such that X =⋃n

j=1int{x ∈ X : g(x, yj) < r}.
Then, supx∈X infy∈Y g(x, y) ≮ infy∈Y supx∈X f(x, y).

Proof. Since C is a strongly minihedral cone, f(x, y) has lower bounded and
g(x, y) has upper bounded for all (x, y) ∈ D ×D, by the assumption (1), we
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know that both supx∈X infy∈Y g(x, y) and infy∈Y supx∈X f(x, y) exist. Now,
suppose that

sup
x∈X

inf
y∈Y

g(x, y) ≮ inf
y∈Y

sup
x∈X

f(x, y)

is not true. Then there exists r ∈ F such that

sup
x∈X

inf
y∈Y

g(x, y) < r < inf
y∈Y

sup
x∈X

f(x, y).

Let a function T : X × Y → 2X×Y defined by T (x, y) = {x ∈ X : s(x, y) >
r} × {y ∈ Y : t(x, y) < r}. Then, by the assumption (2), we get T (x, y) is
convex for each (x, y) ∈ X × Y . For each (x, y) ∈ X × Y , we have

T−1(x, y) = {x ∈ X : t(x, y) < r} × {y ∈ Y : s(x, y) > r}
⊇ {x ∈ X : g(x, y) < r} × {y ∈ Y : f(x, y) > r}
⊇ int{x ∈ X : g(x, y) < r} × int{y ∈ Y : f(x, y) > r}.

By (3) and (4), we obtain that X × Y is covered by {intT−1(xi, yj) : 1 ≤ i ≤
m, 1 ≤ j ≤ n}, and then T is a Fan-Browder map. By Lemma 2.7, we get a
point (x0, y0) ∈ X × Y such that (x0, y0) ∈ T (x0, y0). By the definition of T ,
we have

t(x0, y0) < r < s(x0, y0),

which is a contradiction. This completes the proof. �

Remark 3.5. For F = R in Theorem 3.4, we obtain the results of [16] in
scalar case.

Theorem 3.6. Let X,Y be nonempty compact convex subsets of two Hausdorff
topological vector spaces, respectively. Let F be a Hausdorff topological vector
space and C ⊂ F be a strongly minihedral cone with intC 6= ∅. Suppose
that f, s, t, g : X × Y → F are functions such that f(x, y) is lower bounded
and g(x, y) is upper bounded for all (x, y) ∈ X × Y, and satisfy the following
assumptions:

(1) f(x, y) ≤ s(x, y) ≤ t(x, y) ≤ g(x, y) for each (x, y) ∈ X × Y ;
(2) y → f(x, y) is quasi C-lower semicontinuous for all x ∈ X and for

each x ∈ Y, t(x, y) is quasi C-convex for all y ∈ X;
(3) x → g(x, y) is quasi C-upper semicontinuous for all y ∈ X and for

each y ∈ Y, s(x, y) is quasi C-concave for all x ∈ X.

Then, for every α ∈ Minw
⋃

y∈Y supx∈X f(x, y), there exists

β ∈ Maxw

⋃
x∈X

inf
y∈Y

g(x, y)
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such that

β ≮ α.

Proof. Since C is a strongly minihedral cone, f(x, y) has lower bounded and
g(x, y) has upper bounded for all (x, y) ∈ D ×D, and by assumption (1), we
get supx∈X f(x, y) 6= ∅, infy∈Y g(x, y) 6= ∅. Since f(x, ·) is quasi C-lower semi-
continuous, supx∈X f(x, ·) is also quasi C-lower semicontinuous. Similarly,
we get infy∈Y g(·, y) is quasi C-upper semicontinuous. Since X,Y are com-
pact, we get both Minw

⋃
y∈Y supx∈X f(x, y) and Maxw

⋃
x∈X infy∈Y g(x, y)

exist. Suppose that there exists α ∈ Minw
⋃

y∈Y supx∈X f(x, y) and each

β ∈ Maxw
⋃

x∈X infy∈Y g(x, y) such that β < α. Then, there exists r ∈ F
such that β < r < α. By the similar argument of Theorem 3.4, we can obtain
a contradiction. �

Remark 3.7. If F = R, then miny∈X supx∈X f(x, y) ≤ maxx∈X infy∈Y g(x, y).
If f = s = t = g, then miny∈X maxx∈X f(x, y) = maxx∈X miny∈Y f(x, y).

Corollary 3.8. Let X and Y be nonempty compact convex subsets of two
Hausdorff topological vector spaces, repectively, F be a separable Hausdorff
topological vector space and C ⊂ F be a strongly minihedral cone with intC 6=
∅. Suppose that f : X×Y → F is bounded for all (x, y) ∈ X×Y , and satisfies
the following assumptions:

(1) y → f(x, y) is quasi C-lower semicontinuous from above and quasi
C-convex for each fixed x ∈ X;

(2) x → f(x, y) is quasi C-upper semicontinuous from below and quasi
C-concave for each fixed y ∈ Y ;

(3) For each r ∈ F , there exists xi ∈ X, i = 1, 2, · · · ,m such that Y =⋃m
i=1{y ∈ Y : f(xi, y) > r}, where {y ∈ Y : f(xi, y) > r} is open set;

(4) For each r ∈ F , there exists yj ∈ Y, j = 1, 2, · · · , n such that X =⋃n
j=1{x ∈ X : f(x, yj) < r}, where {x ∈ X : f(x, yj) < r} is open set.

Then, sup
⋃

x∈X Minf(x, Y ) ≮ inf
⋃

y∈Y Maxf(X, y).

Proof. Since X,Y are compact, F is separable, and f(x, y) is bounded, by the
assumptions (1), (2) and Theorem 2.3 in [3], we have

sup
⋃
x∈X

Minf(x, Y ) 6= ∅, inf
⋃
y∈Y

Maxf(X, y) 6= ∅.

Suppose that sup
⋃

x∈X Minf(x, Y ) ≮ inf
⋃

y∈Y Maxf(X, y) is not true, there
exists r ∈ F such that

sup
⋃
x∈X

Minf(x, Y ) < r < inf
⋃
y∈Y

Maxf(X, y).
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Obviously, which is a contradiction. �

Corollary 3.9. Let X and Y be nonempty compact convex subsets of two
Hausdorff topological vector spaces, respectively, F be a Hausdorff topological
vector space, and C ⊂ F be a pointed closed convex cone with intC 6= ∅.
Suppose that f, s, t, g : X × Y → F satisfy the following assumptions:

(1) f(x, y) ≤ s(x, y) ≤ t(x, y) ≤ g(x, y) for each (x, y) ∈ X × Y ;
(2) f(x, y) is continuous for all (x, y) ∈ X × Y and for each x ∈ X,t(x, y)

is quasi C-convex for all y ∈ X;
(3) g(x, y) is continuous for all (x, y) ∈ X × Y and for each y ∈ Y ,s(x, y)

is quasi C-concave for all x ∈ X.

Then Min
⋃

y∈Y Maxwf(X, y) ⊂ Max
⋃

x∈X Minwg(x, Y ) + F\intC.

Proof. Since f, g are continuous and X,Y are compact. In [7], we get

Min
⋃
y∈Y

Maxwf(X, y) 6= ∅, Max
⋃
x∈X

Minwg(x, Y ) 6= ∅.

Suppose that the conclusion is not true. Then there exists r ∈ F , for
α ∈ Min

⋃
y∈Y Maxwf(X, y) and for each β ∈ Max

⋃
x∈X Minwg(x, Y ) such

that
β < r < α,

which is a contradiction. �

Remark 3.10. If f = s = t = g, then we get

Min
⋃
y∈Y

Maxwf(X, y) ⊂ Max
⋃
x∈X

Minwf(x, Y ) + F\intC.
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