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Abstract. In this paper, we have defined various type of generalized harmonic variational
inequality problems in harmonic invex set and studied their existence theorems under certain

conditions.

1. INTRODUCTION

In 2014, Insan [5] has introduced the concept of harmonically convex set
and harmonically convex functions and has studied the Hermite-Hadamard
type inequalities for harmonically convex functions as an extension work of
Hermite-Hadamard inequalities. We recall the concepts of harmonic sets and
harmonic convex function introduced by Insan [5].

Definition 1.1. ( [5]) Let K C R\ {0} be any set and f : K — R be any
map.
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(1) K is said to be harmonically convez set if
.
ter+(1—1t)y

for all z,y € K and ¢t € [0, 1],

(2) f issaid to be harmonically convex function on the harmonically con-
vex set K if

zy
f <tx+(1—t)y> <tf(y) + (1 —1)f(z)

for all z,y € K and t € [0, 1].

eK

2. GENERALIZED HARMONIC VARIATIONAL INEQUALITY PROBLEMS

Let X be a topological vector space in a separable Banach space. Let
K c X \ {0} be any set. For y = (y1,%2,---) € K and v = (v1,v9,--+) € X,
let

Kv)={y+tv: z,ye K, tel0,1]}
be a nonempty set in X. Let
M(K) = KoK
— {ny = ($1y17$23/27"') T = (l‘l,fL‘Q,"’),?/ = (y17y27"') S K}a

1 1 1 1 1
L (L Y e,
2/ 7 KoK yumy
W) = ===
be the subspaces of X. For z,y € K, let I[y,z| be a path joining y and z
contained in K and the map v, : [0,1] — I[y,z] be continuous. The set
K has the invariant harmonic convex (IHC) combination property in a given
direction v € X if the following are satisfied:

(P1) for allt €[0,1],ve X and y € K,

y+tv=(y1 +tvr,ys +tuy,---) € K,

cr,ye K, wekK, tE[O,l]}
w

(P2) for all z,y € K and v = v(z,y), we have

zy _ < T1Y1 xT2Y2
Y+ tv y1 + tvr’ yo + tug’

if and only if

t t t 11 1
y+ v:<y1+ v1 Y2 + 112’_")6[[ } c

ry r1Y1 ’ Z2Y2 9073/ K

) €Ily,a] =11*(K; K(v)) C K
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For our need, we make the concept of harmonically 7-Lipschitz continuous
functions.

Definition 2.1. Let F': K — R\ {0} be any mapping. For each y € K, the
set of harmonically 7-Lipschitz continuous functions LCr(y) and LCr(1/y)

are defined by
LCp(y) = {ze K\{0}:[F(z) - F(y)|
Tl

SI&HMX{WKLyNL

and

x

LCp(1/y) = {xGK\{O}:‘F@)_F(l)’

ol

Let n: K x K — X be any map. Let F': K\ {0} — R\ {0} be harmonically
n-Lipschitz continuous near each y € K\ {0}. For any nonlinear map 7" : K —
X*, the pairing (T'(y), z) is defined by

SIQHMX{Wﬂame

respectively where L,; and Lo are the Lipschitz constants.

forall ze X,y e K.
The generalized harmonic variational inequalities are defined as follows:

(a) The generalized harmonic variational inequality problem (GHVIP) is
to find: y € K such that

<T(y), Y > >0 forall z € K. (GHVIP)
n(@,y)

(b) The generalized dual harmonic variational inequality problem
(GDHVIP) is to find: y € K such that

<T(:r), i > <0 foralze K. (GDHVIP)
n(y, )

(c) The generalized harmonic complementarity problem (GHCP) is to
find: y € K such that

vy = or all & .
<T(m),n(y’x)>—0 for all 2 € K (GHCP)



52 S. N. Mishra, P. K. Das and G. C. Nayak

In this section, we have studied the existence theorems of the above prob-
lems under certain conditions. For our need, we make the definition of invari-
ant harmonically convex function in the invariant harmonic convex set K.

Definition 2.2. Let K C R\ {0} be any set and f : K — R be any map.

(1) K is said to be an IHC set given in the direction v € R\ {0} if K has
the IHC combination properties P, and Ps.
(2) f is said to be an invariant harmonically convexr (IHC) function on

the IHC set K if

zy
r(;2) <tw+ - 05w (2.1)

for all x,y € K, t € [0,1].

Definition 2.3. Let n: K x K — X be any map.
(1) The set K is said to be n-invex if y + tn(z,y) € K for all z,y € K
and t € [0,1], i.e.,
K(n) ={y+tn(z,y) € K:z,y € K;t€[0,1]}
n-invex set,
(2) The kernel of K is defined by
Ker(K(n)) ={y € K :y+tn(z,y) € K(n),z € K,t € [0,1]}.

For our need, we define the concept of harmonic n-invex set and orthonormal
n-invex set as follows:

Definition 2.4. Let n: K x K — X be any map. The set K is said to be
(1) a harmonic n-invex set if for all x,y € K and t € [0, 1],

-1
xy y+tn(z,y)
tn(z,y) e K & — = £ =

Y+ tn(z,y) < oy

y +tn(z,y)

1 —1

_ <+tn(x,y)> c K.
X Ty

(2) an orthonormal harmonic n-invex set if K is harmonic n-invex set and
there exists an orthonormal basis B C K such that each z € K can be

written as z = 3 < z,b > b with norm ||z|* = 3 |< 2,b >|* and for
beB beB
each y € K and t € [0,1],

1
—— €
y+tn(z,y)
forallz € A(y) ={ve K:vy=1}

y+in(z,y) e K &
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As an extension, we introduce the concept of harmonically pre n-invex (in-
cave) function associated with A(¢) on harmonic n-invex set where the mapping
A :[0,1] — R4 satisfies the condition

A(t
limA(f) =0 and lim Al =1

t—0 t—0 t

Definition 2.5. Let F': K — R\ {0} be any map. The mapping F is said to
be

(1) harmonically pre n-invex (incave) on harmonic n-invex set K associ-
ated with A(¢) (defined above) if

xry
F(yﬂm%w>>KM®F@+ﬂ—MmF@

for all z,y € K, and ¢ € [0, 1],

(2) harmonically pre n-invexr (incave) on orthonormal harmonic n-invex
set K if

1
F<y+m@wn)z<§uww+wl—wF@>
for all z € A(y), y € K and t € [0,1].

For strict case, the symbol > (<) is to be replaced by > (<).

Definition 2.6. The mapping T : K — X* is said to be
(1) harmonically n-monotone on K(n) if

<T(x)’ n(z?fc)> " <T(y)’ n(ig,/y)> =0

for all z,y € K(n). For strictly harmonically n-monotonicity case,
equality holds in the above equation for x = y only,
(2) harmonically n-monotone at y € K(n) if

(rer st ) + (Tt ) <0

for all z € K(n).

Definition 2.7. The mapping T : K — X* is said to be
(1) generalized harmonically n-monotone on K(n) if
LY
T(x) —T(y), > >0
< e

forall z,y € K(n). For strictly generalized harmonically n-monotonicity
case, equality holds in the above equation for x = y only,
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(2) generalized harmonically n-monotone at y € K(n) if

(1) - 7). -2y 0

n(x,y)

for all z € K(n).

If n(y,z) = —n(z,y), then harmonically n-monotonicity property of T' re-
duces to generalized harmonically n-monotonicity property of T'.

Definition 2.8. The mapping T : K — X* is said to be a harmonic pre-
n-invez function on Kp(n) if for all z,y, and =, = y + tn(x,y) € K(n), we
have

Tty Yy LY
T(xy), ——— ) < (1 —=X¢t)(T(x), +/\t<Ty, >,
< ) n(wt7wt)> ( ()>< ) n(y,w)> O\ )
where the mapping A : [0, 1] — R satisfies the condition

lim A(t) =0 and lim )\Sf) =1

t—0 t—0

Definition 2.9. Let K C R\ {0} be a nonempty set and F': K — R\ {0} be
a map. The point y € K is said to be

(1) minimum point of F' if F(x) > F(y) for all x € K,
(2) maximum point of F' if Fi(z) < F(y) for all z € K.

Theorem 2.10. Let n : K x K — X be any map and K(n) C K C X be
a harmonically n-invexr set. If the mapping T : K — X is harmonically n-
monotone on K(n) andy € K(n) solves the problem (GHVIP), then y € K(n)
solves the problem (GDHVIP).

Proof. Since y € K(n) solves the problem (GHVIP), we have

<T(y)’ n(z,yy)> =Y

for all x € K(n). We have T' is harmonically n-monotone on K (), implying
T is harmonically n-monotone at y € K(n), i.e.,

(re) gty )+ (10555 <0

for all z € K(n), i.e.,

IN
o
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for all x € K(n). This means that y € K(n) solves the problem (GDHVIP).
This completes the proof. O

Theorem 2.11. Let n : K x K — X be a map and K(n) C K C X be a
harmonically n-invex set. Assume that the following conditions hold:

(a) For all x,y € K(n),

<T(x)’ n(i%/w)> -0

(b) The mapping T : K — X* is harmonic pre-n-invex function on K(n).
If y € K(n) solves the problem (GDHVIP), then y € K(n) solves the problem
(GHVIP).

Proof. Since y € K (n) solves the problem (GDHVIP), we have

(re) ity <0

for all x € K(n). Now at y € K(n), we have

(76 ) =

for all z,y, and z; = y + tn(x,y) € K(n). By harmonic pre-n-invexity of 7' on
Kp(n), we have

0 = <T($t)a,7(j:tit)>
< (1_)\(t))<T(:1:), L >+A(t)<T(y), - >

for all « € K(), i.e.,
)\(t)<T(y)7 ~ > - —(1—/\(t))<T(gc), zy >

n(x,y)

for all z € K(n) and t € (0,1]. Thus, we have

<T(y)’ n(z,yy)> =0

for all x € K(n), that is, y € K(n) solves the problem (GHVIP). This com-
pletes the proof. O

Definition 2.12. Let X be a topological vector space and K be a nonempty
subset of X. A vector function n : K x K — X is said to satisfy the condition
Cy if the followings hold:
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(1) n(z.a’) + (e, 2) = 0, where = = 2/ + n(z. "),
(2) n(a" +tn(z,2"),2") + tn(x,2’) =0, Vz,2’ € K and Vte (0,1).

Theorem 2.13. Let n: K x K — X be any map satisfying condition Cy and
K(n) C K C X be a harmonically n-invex set. Assume that

(a) T: K — X* is a harmonically n-monotone mapping on K(n),

(b) the map y — (T(y), %) of K into L(X,Y) is continuous on the
finite dimensional subspaces (or at least hemicontinuous).

If y € K(n) solves the problem (GHVIP), then y € K(n) solves the problem
(GHCP).

Proof. Since y € K(n) solves the problem (GHVIP), we have

(T 5it) 20

for all x € K(n). Since n satisfies condition Cp, we have n(z:,y) = —tn(z,y)
for x; = y+tn(z,y) € K(n). Substituting « by x; in the above inequality and

using condition Cj, we get
ey
T(y), >2&
< ( ) n(xtv y)

that is,

implying

<T@% Gl >§0,

n(z,y)
for all x € K(n). Taking limit as t — 0 and using the condition of hemiconti-

nuity, we have
vy
T(y), >§Q
<()m%w

for all z € K(n). Again substituting x by z; in the above inequality and using

condition Cy, we get
<T@% 7 >2Q

for all € K(n). Thus, we have

(r0585) =°

for all x € K(n), that is, y € K(n) solves the problem GHCP. This completes
the proof. O
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3. GENERALIZED F-HARMONIC VARIATIONAL INEQUALITIES

Let F : K — R\ {0} be harmonically n-Lipschitz continuous near each
y € K. For any nonlinear map 7" : K — X*, the generalized harmonic
variational inequalities are defined as follows:
(a) The generalized harmonic variational inequality problem associated
with F' (GHVIPp) is to find: y € K such that

Ty
<T(y), 77(@',y)> + F(x) — F(y) > 0 for all z € K. (GHVIPp)

(b) The generalized dual harmonic variational inequality problem associ-
ated with /' (GDHVIPF) is to find: y € K such that

Ty
<T($), o $)> + F(x) — F(y) <0foral z € K. (GDHVIPF)

(¢) The generalized harmonic variational inequality problem associated
with £ (GHVIP;) is to find: y € K\ {0} such that £ € 0F(y) and

xy
<T(y), n(w,y)> + (¢, n(z,y)) >0 for all z € K. (GHVIP;)

(d) The generalized dual harmonic variational inequality problem associ-
ated with £ (GDHVIP;) is to find: y € K such that £ € 0F(y) and

& X or all x* .
<T($),n(y,x)> + (& n(y,z)) > 0forall v € K (GDHVIP;)

The following theorems proves the equivalence between the problems GHVIP
and GDHVIPp, GHVIPr and GHVIP;.

Theorem 3.1. Letn : K x K — X be a map and K(n) C K C X be a
harmonically n-invex set. Let F': K — R and T : K — X* be two mappings.
Let T' be harmonically n-monotone on K(n) and y € K(n) be a mazximal point
of F. If y € K(n) solves the problem GHVIPp, then y € K(n) solves the
problem GDHVIPp.

Proof. Since y € K(n) is the maximal point of F, we have
F(x) - F(y) <0

for all € K(n). Since T is harmonically n-monotone on K(n), T is harmon-
ically n-monotone at y € K (n), that is,
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for all € K(n). Hence we have
1Y LY
T(x), +<T , >+2Fx—F <0
< ) n(y,x)> W) ) H) = Fw)
for all x € K(n), that is,

Ly Ly
Ty,>—|—F:E—Fy §—<T:L‘,>—F:L’—|—Fy
(T, -2 ) 4 Fla) = P < = (TG - ) = Flo) + £ ()

for all z € K(n). Since y € K(n) solves the problem GHVIPp, we have
zy
T(y), >+F z)—F(y) >0
(T s ) + ¥ -
for all z € K(n), this implies that

for all z € K(n). That is,

zy
<T(x), n(y,$)> +F(z)—F(y) <0

for all x € K(n). This means that y € K () solves the problem GDHVIPp.
This completes the proof. O

Theorem 3.2. Let n : K x K — X be a map and K(n) C K C X be a
harmonically n-invex set. Assume that the conditions hold:

(a) For all x,y € K(n),

<T(x)’ n(zf/w)> -0

(b) The mapping T : K — X* is harmonic pre-n-invex on K(n).
If y € K(n) is the minimum point of F' which solves the problem GDHVIPp,
then y € K(n) solves the problem GHVIPp.

Proof. Since y € K(n) is the minimum point of F', we have
F(z) = F(y) 2 0
for all x € K(n). Again y € K(n) solves the problem GDHVIPp, i.e.,

zy
<nwwm@>+ﬂw—F@so

for all x € K(n). Now at y € K(n), we have
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for all z,y, and z; = y + tn(x,y) € K(n). By harmonic pre-n-invexity of 7' on
K (n), we have

0 = (T i)
i) T

.Tt )
S < fL't )
l’u fL’t

< (1-20) (1), n(y,x)> ) <T<y>, )+ P - Pl
= (=20 (1) )+ Fa) - F)
220 |(T) 2} + o) - F)

for all x € K(n), that is,

3@ [T -2+ P - F)|

n(x,y)

Yy
= —(1- A1) KT x
0

>

W) F@) - )

for all z € K(n) and t € (0,1]. Thus, we have
Ly
T(y), >—|—Fm —F(y) >0
<()n(x,y) =W

for all x € K(n). This means that y € K(n) solves the problem GHVIPp.
This completes the proof. O

Theorem 3.3. Letn : K x K — X be a map and K(n) C K C X be a
harmonically n-invex set. Let F': K — R be a mapping and T : K — X* be a
mapping with the condition:

(70 ) = {70 )

for all xy € K(n), t € [0,1]. If y € K(n) solves the problem GHVIPr, then
y € K(n) solves the problem GHVIPs.

Proof. Since y € K(n) solves the problem GHVIPp, we have

<T(y), 77(xy> + F(z)— F(y) >0

z,y)
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for all z € K(n), t.e.,

Fa) = F) 2 = (T 22 )

n(@,y)
for all € K(n). Replacing « by x; = y + tn(x,y), we have

P - F) =~ (T2

n
- (705

for all x € K(n) and t € (0,1). Dividing both sides by A(t) and taking limit
as t — 0, we have

& n(z,y)) > — <T(y)7 Ty >

n(z,y)
for all z € K(n) and € € OF (y) (the subdifferential of F' at y). Thus

(T =2+ (eonto) 2 0

z,y)

for all z € K(n), that is, y € K(n) solves the problem GHVIP,. This completes
the proof. O

Theorem 3.4. Let n : K x K — X be a map and K(n) C K C X be a
harmonically n-invex set. Let F' : K — R be a nonsmooth £&-n mapping on
K(n). Let T : K — X* be any mapping. If y € K(n) solves the problem
GHVIP¢, then y € K(n) solves the problem GHVIPr.

Proof. Since y € K(n) solves the problem GHVIP¢, we have

zy
(T =2+ (eonto) 2 0

for all x € K(n). Since F : K — R is nonsmooth &-n mapping on K(n), for
y € K(n) we have

for all x € K(n). Hence we have

(T, -2 )+ Fla) = Pl

n(x,y)
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for all x € K(n). This means that y € K(n) solves the problem GHVIPp.
This completes the proof. O
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