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Abstract. In this paper, we have defined various type of generalized harmonic variational

inequality problems in harmonic invex set and studied their existence theorems under certain

conditions.

1. Introduction

In 2014, Insan [5] has introduced the concept of harmonically convex set
and harmonically convex functions and has studied the Hermite-Hadamard
type inequalities for harmonically convex functions as an extension work of
Hermite-Hadamard inequalities. We recall the concepts of harmonic sets and
harmonic convex function introduced by Insan [5].

Definition 1.1. ( [5]) Let K ⊂ R \ {0} be any set and f : K → R be any
map.
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(1) K is said to be harmonically convex set if

xy

tx+ (1− t)y
∈ K

for all x, y ∈ K and t ∈ [0, 1],
(2) f is said to be harmonically convex function on the harmonically con-

vex set K if

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)

for all x, y ∈ K and t ∈ [0, 1].

2. Generalized harmonic variational inequality problems

Let X be a topological vector space in a separable Banach space. Let
K ⊂ X \ {0} be any set. For y = (y1, y2, · · · ) ∈ K and v = (v1, v2, · · · ) ∈ X,
let

K(v) = {y + tv : x, y ∈ K, t ∈ [0, 1]}
be a nonempty set in X. Let

Π2(K) = K ◦K
= {xy = (x1y1, x2y2, · · · ) : x = (x1, x2, · · · ), y = (y1, y2, · · · ) ∈ K} ,

1

K
=

{
1

x
:

1

x
=

(
1

x1
,

1

x2
, · · ·

)
, x = (x1, x2, · · · ) ∈ K

}
,

Π2(K;W ) =
K ◦K
W

=
{xy
w

: x, y ∈ K, w ∈ K, t ∈ [0, 1]
}

be the subspaces of X. For x, y ∈ K, let I[y, x] be a path joining y and x
contained in K and the map γxy : [0, 1] → I[y, x] be continuous. The set
K has the invariant harmonic convex (IHC) combination property in a given
direction v ∈ X if the following are satisfied:

(P1) for all t ∈ [0, 1], v ∈ X and y ∈ K,

y + tv = (y1 + tv1, y2 + tv2, · · · ) ∈ K,

(P2) for all x, y ∈ K and v = v(x, y), we have

xy

y + tv
=

(
x1y1

y1 + tv1
,
x2y2

y2 + tv2
, · · ·

)
∈ I[y, x] = Π2(K;K(v)) ⊂ K

if and only if

y + tv

xy
=

(
y1 + tv1
x1y1

,
y2 + tv2
x2y2

, · · ·
)
∈ I

[
1

x
,

1

y

]
⊂ 1

K
.
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For our need, we make the concept of harmonically η-Lipschitz continuous
functions.

Definition 2.1. Let F : K → R \ {0} be any mapping. For each y ∈ K, the
set of harmonically η-Lipschitz continuous functions LCF (y) and LCF (1/y)
are defined by

LCF (y) = {x ∈ K \ {0} : |F (x)− F (y)|

≤ L1 max

{
‖η(x, y)‖ ,

∥∥∥∥ xy

η(x, y)

∥∥∥∥}}
and

LCF (1/y) =

{
x ∈ K \ {0} :

∣∣∣∣F (1

y

)
− F

(
1

x

)∣∣∣∣
≤ L2 max

{
‖η(x, y)‖ ,

∥∥∥∥ xy

η(x, y)

∥∥∥∥}}
respectively where L1 and L2 are the Lipschitz constants.

Let η : K×K → X be any map. Let F : K \{0} → R\{0} be harmonically
η-Lipschitz continuous near each y ∈ K \{0}. For any nonlinear map T : K →
X∗, the pairing 〈T (y), z〉 is defined by

〈T (y), z〉 =
∑
i

〈T (yi), zi〉

for all z ∈ X, y ∈ K.
The generalized harmonic variational inequalities are defined as follows:

(a) The generalized harmonic variational inequality problem (GHVIP) is
to find: y ∈ K such that〈

T (y),
xy

η(x, y)

〉
≥ 0 for all x ∈ K. (GHVIP)

(b) The generalized dual harmonic variational inequality problem
(GDHVIP) is to find: y ∈ K such that〈

T (x),
xy

η(y, x)

〉
≤ 0 for all x ∈ K. (GDHVIP)

(c) The generalized harmonic complementarity problem (GHCP) is to
find: y ∈ K such that〈

T (x),
yy

η(y, x)

〉
= 0 for all x ∈ K. (GHCP)
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In this section, we have studied the existence theorems of the above prob-
lems under certain conditions. For our need, we make the definition of invari-
ant harmonically convex function in the invariant harmonic convex set K.

Definition 2.2. Let K ⊂ R \ {0} be any set and f : K → R be any map.

(1) K is said to be an IHC set given in the direction v ∈ R \ {0} if K has
the IHC combination properties P1 and P2.

(2) f is said to be an invariant harmonically convex (IHC) function on
the IHC set K if

f

(
xy

y + tv

)
≤ tf(y) + (1− t)f(x) (2.1)

for all x, y ∈ K, t ∈ [0, 1].

Definition 2.3. Let η : K ×K → X be any map.

(1) The set K is said to be η-invex if y + tη(x, y) ∈ K for all x, y ∈ K
and t ∈ [0, 1], i.e.,

K(η) = {y + tη(x, y) ∈ K : x, y ∈ K, t ∈ [0, 1]}
η-invex set,

(2) The kernel of K is defined by

Ker(K(η)) = {y ∈ K : y + tη(x, y) ∈ K(η), x ∈ K, t ∈ [0, 1]} .

For our need, we define the concept of harmonic η-invex set and orthonormal
η-invex set as follows:

Definition 2.4. Let η : K ×K → X be any map. The set K is said to be

(1) a harmonic η-invex set if for all x, y ∈ K and t ∈ [0, 1],

y + tη(x, y) ∈ K ⇔ xy

y + tη(x, y)
=

(
y + tη(x, y)

xy

)−1
=

(
1

x
+ t

η(x, y)

xy

)−1
∈ K,

(2) an orthonormal harmonic η-invex set if K is harmonic η-invex set and
there exists an orthonormal basis B ⊂ K such that each z ∈ K can be
written as z =

∑
b∈B

< z, b > b with norm ‖z‖2 =
∑
b∈B
|< z, b >|2 and for

each y ∈ K and t ∈ [0, 1],

y + tη(x, y) ∈ K ⇔ 1

y + tη(x, y)
∈ K

for all x ∈ A(y) = {v ∈ K : vy = 1}.
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As an extension, we introduce the concept of harmonically pre η-invex (in-
cave) function associated with λ(t) on harmonic η-invex set where the mapping
λ : [0, 1]→ R+ satisfies the condition

lim
t→0

λ(t) = 0 and lim
t→0

λ(t)

t
= 1.

Definition 2.5. Let F : K → R \ {0} be any map. The mapping F is said to
be

(1) harmonically pre η-invex (incave) on harmonic η-invex set K associ-
ated with λ(t) (defined above) if

F

(
xy

y + tη(x, y)

)
≥ (≤)λ(t)F (y) + (1− λ(t))F (x)

for all x, y ∈ K, and t ∈ [0, 1],
(2) harmonically pre η-invex (incave) on orthonormal harmonic η-invex

set K if

F

(
1

y + tη(x, y)

)
≥ (≤)tF (y) + (1− t)F (x)

for all x ∈ A(y), y ∈ K and t ∈ [0, 1].

For strict case, the symbol ≥ (≤) is to be replaced by > (<).

Definition 2.6. The mapping T : K → X∗ is said to be

(1) harmonically η-monotone on K(η) if〈
T (x),

xy

η(y, x)

〉
+

〈
T (y),

xy

η(x, y)

〉
≤ 0

for all x, y ∈ K(η). For strictly harmonically η-monotonicity case,
equality holds in the above equation for x = y only,

(2) harmonically η-monotone at y ∈ K(η) if〈
T (x),

xy

η(y, x)

〉
+

〈
T (y),

xy

η(x, y)

〉
≤ 0

for all x ∈ K(η).

Definition 2.7. The mapping T : K → X∗ is said to be

(1) generalized harmonically η-monotone on K(η) if〈
T (x)− T (y),

xy

η(x, y)

〉
≥ 0

for all x, y ∈ K(η). For strictly generalized harmonically η-monotonicity
case, equality holds in the above equation for x = y only,
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(2) generalized harmonically η-monotone at y ∈ K(η) if〈
T (x)− T (y),

xy

η(x, y)

〉
≥ 0

for all x ∈ K(η).

If η(y, x) = −η(x, y), then harmonically η-monotonicity property of T re-
duces to generalized harmonically η-monotonicity property of T .

Definition 2.8. The mapping T : K → X∗ is said to be a harmonic pre-
η-invex function on Kh(η) if for all x, y, and xt = y + tη(x, y) ∈ K(η), we
have〈

T (xt),
xty

η(xt, xt)

〉
≤ (1− λ(t))

〈
T (x),

xy

η(y, x)

〉
+ λ(t)

〈
T (y),

xy

η(x, y)

〉
,

where the mapping λ : [0, 1]→ R+ satisfies the condition

lim
t→0

λ(t) = 0 and lim
t→0

λ(t)

t
= 1.

Definition 2.9. Let K ⊂ R \ {0} be a nonempty set and F : K → R \ {0} be
a map. The point y ∈ K is said to be

(1) minimum point of F if F (x) ≥ F (y) for all x ∈ K,
(2) maximum point of F if F (x) ≤ F (y) for all x ∈ K.

Theorem 2.10. Let η : K × K → X be any map and K(η) ⊂ K ⊂ X be
a harmonically η-invex set. If the mapping T : K → X∗ is harmonically η-
monotone on K(η) and y ∈ K(η) solves the problem (GHVIP), then y ∈ K(η)
solves the problem (GDHVIP).

Proof. Since y ∈ K(η) solves the problem (GHVIP), we have〈
T (y),

xy

η(x, y)

〉
≥ 0

for all x ∈ K(η). We have T is harmonically η-monotone on K(η), implying
T is harmonically η-monotone at y ∈ K(η), i.e.,〈

T (x),
xy

η(y, x)

〉
+

〈
T (y),

xy

η(x, y)

〉
≤ 0

for all x ∈ K(η), i.e.,〈
T (x),

xy

η(y, x)

〉
=

〈
T (y),

xy

η(x, y)

〉
≤ 0
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for all x ∈ K(η). This means that y ∈ K(η) solves the problem (GDHVIP).
This completes the proof. �

Theorem 2.11. Let η : K × K → X be a map and K(η) ⊂ K ⊂ X be a
harmonically η-invex set. Assume that the following conditions hold:

(a) For all x, y ∈ K(η), 〈
T (x),

xy

η(x, x)

〉
= 0,

(b) The mapping T : K → X∗ is harmonic pre-η-invex function on K(η).

If y ∈ K(η) solves the problem (GDHVIP), then y ∈ K(η) solves the problem
(GHVIP).

Proof. Since y ∈ K(η) solves the problem (GDHVIP), we have〈
T (x),

xy

η(y, x)

〉
≤ 0

for all x ∈ K(η). Now at y ∈ K(η), we have〈
T (xt),

xty

η(xt, xt)

〉
= 0

for all x, y, and xt = y+ tη(x, y) ∈ K(η). By harmonic pre-η-invexity of T on
Kh(η), we have

0 =

〈
T (xt),

xty

η(xt, xt)

〉
≤ (1− λ(t))

〈
T (x),

xy

η(y, x)

〉
+ λ(t)

〈
T (y),

xy

η(x, y)

〉
for all x ∈ K(η), i.e.,

λ(t)

〈
T (y),

xy

η(x, y)

〉
= −(1− λ(t))

〈
T (x),

xy

η(y, x)

〉
≥ 0

for all x ∈ K(η) and t ∈ (0, 1]. Thus, we have〈
T (y),

xy

η(x, y)

〉
≥ 0

for all x ∈ K(η), that is, y ∈ K(η) solves the problem (GHVIP). This com-
pletes the proof. �

Definition 2.12. Let X be a topological vector space and K be a nonempty
subset of X. A vector function η : K ×K → X is said to satisfy the condition
C0 if the followings hold:
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(1) η(z, x′) + η(x′, z) = 0, where z = x′ + η(x, x′),
(2) η(x′ + tη(x, x′), x′) + tη(x, x′) = 0, ∀x, x′ ∈ K and ∀t ∈ (0, 1).

Theorem 2.13. Let η : K ×K → X be any map satisfying condition C0 and
K(η) ⊂ K ⊂ X be a harmonically η-invex set. Assume that

(a) T : K → X∗ is a harmonically η-monotone mapping on K(η),
(b) the map y 7→ 〈T (y), xy

η(x,y)〉 of K into L(X,Y ) is continuous on the

finite dimensional subspaces (or at least hemicontinuous).

If y ∈ K(η) solves the problem (GHVIP), then y ∈ K(η) solves the problem
(GHCP).

Proof. Since y ∈ K(η) solves the problem (GHVIP), we have〈
T (y),

xy

η(x, y)

〉
≥ 0

for all x ∈ K(η). Since η satisfies condition C0, we have η(xt, y) = −tη(x, y)
for xt = y+ tη(x, y) ∈ K(η). Substituting x by xt in the above inequality and
using condition C0, we get 〈

T (y),
xty

η(xt, y)

〉
≥ 0,

that is,

−t
〈
T (y),

xty

η(x, y)

〉
≥ 0

implying 〈
T (y),

xty

η(x, y)

〉
≤ 0,

for all x ∈ K(η). Taking limit as t→ 0 and using the condition of hemiconti-
nuity, we have 〈

T (y),
yy

η(x, y)

〉
≤ 0,

for all x ∈ K(η). Again substituting x by xt in the above inequality and using
condition C0, we get 〈

T (y),
yy

η(x, y)

〉
≥ 0,

for all x ∈ K(η). Thus, we have〈
T (y),

yy

η(x, y)

〉
= 0,

for all x ∈ K(η), that is, y ∈ K(η) solves the problem GHCP. This completes
the proof. �
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3. Generalized F -harmonic variational inequalities

Let F : K → R \ {0} be harmonically η-Lipschitz continuous near each
y ∈ K. For any nonlinear map T : K → X∗, the generalized harmonic
variational inequalities are defined as follows:

(a) The generalized harmonic variational inequality problem associated
with F (GHVIPF ) is to find: y ∈ K such that〈
T (y),

xy

η(x, y)

〉
+ F (x)− F (y) ≥ 0 for all x ∈ K. (GHVIPF )

(b) The generalized dual harmonic variational inequality problem associ-
ated with F (GDHVIPF ) is to find: y ∈ K such that〈
T (x),

xy

η(y, x)

〉
+ F (x)− F (y) ≤ 0 for all x ∈ K. (GDHVIPF )

(c) The generalized harmonic variational inequality problem associated
with ξ (GHVIPξ) is to find: y ∈ K \ {0} such that ξ ∈ ∂F (y) and〈

T (y),
xy

η(x, y)

〉
+ 〈ξ, η(x, y)〉 ≥ 0 for all x ∈ K. (GHVIPξ)

(d) The generalized dual harmonic variational inequality problem associ-
ated with ξ (GDHVIPξ) is to find: y ∈ K such that ξ ∈ ∂F (y) and〈
T (x),

xy

η(y, x)

〉
+ 〈ξ, η(y, x)〉 ≥ 0 for all x ∈ K. (GDHVIPξ)

The following theorems proves the equivalence between the problems GHVIPF
and GDHVIPF , GHVIPF and GHVIPξ.

Theorem 3.1. Let η : K × K → X be a map and K(η) ⊂ K ⊂ X be a
harmonically η-invex set. Let F : K → R and T : K → X∗ be two mappings.
Let T be harmonically η-monotone on K(η) and y ∈ K(η) be a maximal point
of F . If y ∈ K(η) solves the problem GHVIPF , then y ∈ K(η) solves the
problem GDHVIPF .

Proof. Since y ∈ K(η) is the maximal point of F , we have

F (x)− F (y) ≤ 0

for all x ∈ K(η). Since T is harmonically η-monotone on K(η), T is harmon-
ically η-monotone at y ∈ K(η), that is,〈

T (x),
xy

η(y, x)

〉
+

〈
T (y),

xy

η(x, y)

〉
≤ 0
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for all x ∈ K(η). Hence we have〈
T (x),

xy

η(y, x)

〉
+

〈
T (y),

xy

η(x, y)

〉
+ 2 [F (x)− F (y)] ≤ 0

for all x ∈ K(η), that is,〈
T (y),

xy

η(x, y)

〉
+ F (x)− F (y) ≤ −

〈
T (x),

xy

η(y, x)

〉
− F (x) + F (y)

for all x ∈ K(η). Since y ∈ K(η) solves the problem GHVIPF , we have〈
T (y),

xy

η(x, y)

〉
+ F (x)− F (y) ≥ 0

for all x ∈ K(η), this implies that

−
〈
T (x),

xy

η(y, x)

〉
− F (x) + F (y) ≥ 0

for all x ∈ K(η). That is,〈
T (x),

xy

η(y, x)

〉
+ F (x)− F (y) ≤ 0

for all x ∈ K(η). This means that y ∈ K(η) solves the problem GDHVIPF .
This completes the proof. �

Theorem 3.2. Let η : K × K → X be a map and K(η) ⊂ K ⊂ X be a
harmonically η-invex set. Assume that the conditions hold:

(a) For all x, y ∈ K(η), 〈
T (x),

xy

η(x, x)

〉
= 0.

(b) The mapping T : K → X∗ is harmonic pre-η-invex on K(η).

If y ∈ K(η) is the minimum point of F which solves the problem GDHVIPF ,
then y ∈ K(η) solves the problem GHVIPF .

Proof. Since y ∈ K(η) is the minimum point of F , we have

F (x)− F (y) ≥ 0

for all x ∈ K(η). Again y ∈ K(η) solves the problem GDHVIPF , i.e.,〈
T (x),

xy

η(y, x)

〉
+ F (x)− F (y) ≤ 0

for all x ∈ K(η). Now at y ∈ K(η), we have〈
T (xt),

xty

η(xt, xt)

〉
= 0
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for all x, y, and xt = y+ tη(x, y) ∈ K(η). By harmonic pre-η-invexity of T on
K(η), we have

0 =

〈
T (xt),

xty

η(xt, xt)

〉
≤

〈
T (xt),

xty

η(xt, xt)

〉
+ F (x)− F (y)

≤ (1− λ(t))

〈
T (x),

xy

η(y, x)

〉
+ λ(t)

〈
T (y),

xy

η(x, y)

〉
+ F (x)− F (y)

= (1− λ(t))

[〈
T (x),

xy

η(y, x)

〉
+ F (x)− F (y)

]
+λ(t)

[〈
T (y),

xy

η(x, y)

〉
+ F (x)− F (y)

]
for all x ∈ K(η), that is,

λ(t)

[〈
T (y),

xy

η(x, y)

〉
+ F (x)− F (y)

]
= −(1− λ(t))

[〈
T (x),

xy

η(y, x)

〉
+ F (x)− F (y)

]
≥ 0

for all x ∈ K(η) and t ∈ (0, 1]. Thus, we have〈
T (y),

xy

η(x, y)

〉
+ F (x)− F (y) ≥ 0

for all x ∈ K(η). This means that y ∈ K(η) solves the problem GHVIPF .
This completes the proof. �

Theorem 3.3. Let η : K × K → X be a map and K(η) ⊂ K ⊂ X be a
harmonically η-invex set. Let F : K → R be a mapping and T : K → X∗ be a
mapping with the condition:〈

T (y),
xty

η(xt, y)

〉
≤
〈
T (y),

λ(t)xy

η(x, y)

〉
for all xt ∈ K(η), t ∈ [0, 1]. If y ∈ K(η) solves the problem GHVIPF , then
y ∈ K(η) solves the problem GHVIPξ.

Proof. Since y ∈ K(η) solves the problem GHVIPF , we have〈
T (y),

xy

η(x, y)

〉
+ F (x)− F (y) ≥ 0
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for all x ∈ K(η), i.e.,

F (x)− F (y) ≥ −
〈
T (y),

xy

η(x, y)

〉
for all x ∈ K(η). Replacing x by xt = y + tη(x, y), we have

F (xt)− F (y) ≥ −
〈
T (y),

xty

η(xt, y)

〉
= −

〈
T (y),

λ(t)xy

η(x, y)

〉
,

F (y + tη(x, y))− F (y) ≥ −λ(t)

〈
T (y),

xy

η(x, y)

〉
for all x ∈ K(η) and t ∈ (0, 1). Dividing both sides by λ(t) and taking limit
as t→ 0, we have

〈ξ, η(x, y)〉 ≥ −
〈
T (y),

xy

η(x, y)

〉
for all x ∈ K(η) and ξ ∈ ∂F (y) (the subdifferential of F at y). Thus〈

T (y),
xy

η(x, y)

〉
+ 〈ξ, η(x, y)〉 ≥ 0

for all x ∈ K(η), that is, y ∈ K(η) solves the problem GHVIPξ. This completes
the proof. �

Theorem 3.4. Let η : K × K → X be a map and K(η) ⊂ K ⊂ X be a
harmonically η-invex set. Let F : K → R be a nonsmooth ξ-η mapping on
K(η). Let T : K → X∗ be any mapping. If y ∈ K(η) solves the problem
GHVIPξ, then y ∈ K(η) solves the problem GHVIPF .

Proof. Since y ∈ K(η) solves the problem GHVIPξ, we have〈
T (y),

xy

η(x, y)

〉
+ 〈ξ, η(x, y)〉 ≥ 0

for all x ∈ K(η). Since F : K → R is nonsmooth ξ-η mapping on K(η), for
y ∈ K(η) we have

F (x)− F (y) ≥ 〈ξ, η(x, y)〉
for all x ∈ K(η). Hence we have〈

T (y),
xy

η(x, y)

〉
+ F (x)− F (y)

≥
〈
T (y),

xy

η(x, y)

〉
+ 〈ξ, η(x, y)〉

≥ 0
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for all x ∈ K(η). This means that y ∈ K(η) solves the problem GHVIPF .
This completes the proof. �

Acknowledgments: The authors are thankful to the learned referee for
his/her deep observations.
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