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Abstract. We consider general base iα and jβ which perform the roles of i and j do in

quaternions. We give a representation and properties of a Fourier transformation of regular

functions with values in generalized quaternions, referring the Fourier transformation using

quaternions.

1. Introduction

Quaternion algebra is declared by Hamilton [6]. After his discovery of
quaternions, quaternions recently have played a fundamental role in several
areas of science. Adler [1] presented the quaternionic analogues of com-
plex matrices converting a quaternion matrix to a pair of complex matrices.
Agrawal [2] developed the algebra of dual-number-quaternions using proper-
ties of Hamilton operators and expressions for screw motion. Kim and Shon [9]
gave a hyperholomorphic function and a split harmonic function with values
in split quaternions and expressed polar coordinate forms for split quater-
nions. Kim and Shon [10] proposed a split regular function that has a split
Cauchy-Riemann system in split quaternions and investigated properties of
an inverse mapping theory with values in split quaternions. Cockle [4] gave
coquaternions or para-quaternions and studied for manifolds which endowed
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with coquaternion structures in differential geometry.

In the analysis of systems of differential equations, the Fourier transform
is being used a lot. The Fourier transform is a mapping of real-valued func-
tions into complex-valued functions. It is used in the design of signal filters
and control systems to transfer the time-domain of functions to the frequency
domain. The quaternionic extension to the spectral transformations was in-
troduced by Ell [5]. Hitzer [7] gave the quaternionic Fourier transform(QFT)
applied to quaternion fields and investigated QFT properties useful for appli-
cations. Bahri et al. [3] established an uncertainty principle for the right-sided
QFT which prescribed a lower bound on the product of the effective widths
of quaternion-valued signals, by using the properties of the QFT. Pei et al.
[11] introduced digital signal and image processing using reduced biquater-
nions which are an extension of the complex numbers, following the doubling
procedure.

Using the Fourier transform which is composed of generalized quaternions,
we can extend techniques for the properties of quaternionic spectral trans-
formations and we can utilize a direct extension of the convolution product
theorem of the Fourier transform to a two-dimensional convolution general-
ized quaternionic product. We consider that generalized quaternions are rep-
resented by base iα and jβ and give some properties of regular functions with
values in generalized quaternions. Also, we investigate the Fourier transforma-
tion of a generalized quaternionic function. We research representations and
some characteristics of the regularity of functions on generalized quaternions.
We give different forms of the generalized quaternions Fourier transform used
to different Plancherel theorems. We propose non-commutative generaliza-
tions of the quaternionic Fourier transform with matrices and examples.

2. Preliminaries

The algebra of the elements of the form

z = x0 · 1 + x1iα + x2jβ + x3k

is said to be a generalized quaternion specially, α and β are non-zero scalar
numbers and this algebra is a four dimensional non-commutative and associa-
tive real field with three bases iα, jβ and k, where

xr ∈ R (r = 0, 1, 2, 3), i2α = α, j2β = β, k = iαjβ = −jβiα.

We consider the set of generalized quaternions as follows:

GH = {z | z = x0 · 1 + x1iα + x2jβ + x3k},
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where the element 1 is the identity of GH which is isomorphic to C2. Based
on the form of generalized quaternions, the conjugate number z∗ of z in GH is
given by

z∗ = x0 − x1iα − x2jβ − x3k.

Also, the norm |z| of z is defined by

|z|2 = z(z∗) = (z∗)z = x20 − x21α− x22β + x23αβ

and the inverse z−1 of z is

z−1 =
z∗

|z|2
(z 6= 0).

For two generalized quaternions z = x0+x1iα+x2jβ+x3k and w = y0+y1iα+
y2jβ + y3k, where ym ∈ R (m = 0, 1, 2, 3), we give the addition as follows:

z + w = (x0 + y0) + (x1 + y1)iα + (x2 + y2)jβ + (x3 + y3)k

and the multiplication is given by

zw = x0y0 · 1 + x1y1α+ x2y2β − x3y3αβ + (x1y0 + x0y1 + x3y2β − x2y3β)iα

+ (x2y0 − x3y1α+ x0y2 + x1y3α)jβ + (x3y0 − x2y1 + x1y2 + x0y3)k.

From the properties of z and z∗, we give differential operators as follows:

D :=
1

2

( ∂

∂x0
+

∂

∂x1
α−1iα +

∂

∂x2
β−1jβ −

∂

∂x3
α−1β−1k

)
and

D∗ =
1

2

( ∂

∂x0
− ∂

∂x1
α−1iα −

∂

∂x2
β−1jβ +

∂

∂x3
α−1β−1k

)
,

where α−1 satisfies αα−1 = 1 and β−1 satisfies ββ−1 = 1. If α, β = 0, that
is, z is a dual quaternion, then the differential operators are defined by the
settings that can be applied in dual quaternions (see [8]).

Let Ω be an open subset of R4. Let f : Ω → GH be a function with values
in GH such that

f(z) = f(x0, x1, x2, x3) = u0 · 1 + u1iα + u2jβ + u3k

for z = x0 · 1 + x1iα + x2jβ + x3k in Ω, is called a generalized quaternionic
function, where

ur = ur(x0, x1, x2, x3) : Ω ⊂ R4 → R

are real-valued functions.



66 J. E. Kim

Remark 2.1. By the properties of the differential operators D and D∗, we
have the following results:

Df =
∂u0
∂x0

+
∂u1
∂x1

+
∂u2
∂x2
− ∂u3
∂x3

+
(∂u0
∂x1

α−1 +
∂u1
∂x0
− ∂u2
∂x3

α−1 − ∂u3
∂x2

)
iα

+
(∂u0
∂x2

β−1 +
∂u1
∂x3

β−1 +
∂u2
∂x0

+
∂u3
∂x1

)
jβ

+
(
−∂u0
∂x3

α−1β−1 − ∂u1
∂x2

β−1 +
∂u2
∂x1

α−1 +
∂u3
∂x0

)
k

and

D∗f =
∂u0
∂x0
− ∂u1
∂x1
− ∂u2
∂x2

+
∂u3
∂x3

+
(∂u1
∂x0
− ∂u0
∂x1

α−1 +
∂u2
∂x3

α−1 +
∂u3
∂x2

)
iα

+
(∂u2
∂x0
− ∂u0
∂x2

β−1 − ∂u1
∂x3

β−1 − ∂u3
∂x1

)
jβ

+
(∂u3
∂x0
− ∂u2
∂x1

α−1 +
∂u0
∂x3

α−1β−1 +
∂u1
∂x2

β−1
)
k.

3. Generalized quaternionic Fourier transform (GQFT)

We extend the Fourier transform to the algebra of generalized quaternions.
Since generalized quaternions are non-commutative, there are three different
types of GQFT of two dimensional generalized quaternion-valued signals as
follows:

Definition 3.1. Let ∫
R2

|f(χ)| d2χ

exist. Then a generalized quaternionic Fourier transform of a function f ,
denoted by F{f}, is given by:
for F{f} : R2 → GH,
Type 1.

F1{f}(ω) =

∫
R2

exp(−jβ ω2χ2) exp(−iα ω1χ1)f(χ) d2χ,

Type 2.

F2{f}(ω) =

∫
R2

exp(−iα ω1χ1)f(χ) exp(−jβ ω2χ2) d
2χ,

Type 3.

F3{f}(ω) =

∫
R2

f(χ) exp(−jβ ω2χ2) exp(−iα ω1χ1) d
2χ,
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where χ = (χ1, χ2), ω = (ω1, ω2), d
2χ = dχ1dχ2 and the exponential product

exp(−iα ω1χ1) exp(−jβ ω2χ2)

is called the generalized quaternion Fourier kernel.

We will use ‘GQFT’ instead of ‘generalized quaternionic Fourier trans-
form’ to make the expression of the word simply. We always consider that∫
R2

|f(χ)| d2χ exists. So, after that, we don’t mention this condition again.

Also, since the calculating processes and styles of types in Definition 3.1 are
similar to each other, we deal with only Type 1 in the rest of paper when we
prove theorems.

Remark 3.2. Using the Euler formula for the generalized quaternion Fourier
kernel, we have

exp(−iα ω1χ1) = cosh(
√
α ω1χ1)− sinh(

√
α ω1χ1)

and

exp(−jβ ω2χ2) = cosh(
√
β ω2χ2)− sinh(

√
β ω2χ2).

Hence, we can write the following form

F1{f}(ω) =

∫
R2

{cosh(
√
α ω1χ1) cosh(

√
β ω2χ2)}f(χ) d2χ

+

∫
R2

{sinh(
√
α ω1χ1) sinh(

√
β ω2χ2)}f(χ) d2χ

+

∫
R2

{cosh(
√
α ω1χ1) sinh(

√
β ω2χ2)}f(χ) d2χ

+

∫
R2

{sinh(
√
α ω1χ1) cosh(

√
β ω2χ2)}f(χ) d2χ.

That is, we can represent

F1{f}(ω) =

∫
R2

{cosh(
√
α ω1χ1 +

√
β ω2χ2)}f(χ) d2χ

−
∫
R2

{sinh(
√
α ω1χ1 +

√
β ω2χ2)}f(χ) d2χ.

Remark 3.3. For the generalized quaternion Fourier kernel, when α and β
are negative, we have

exp(−iα ω1χ1) exp(−jβ ω2χ2) 6= exp(−jβ ω2χ2) exp(−iα ω1χ1).
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For example, when α = β = −1, since

exp(−iα ω1χ1) exp(−jβ ω2χ2)

= (cos(ω1χ1)− iα sin(ω1χ1))(cos(ω2χ2)− jβ sin(ω2χ2))

and

exp(−jβ ω2χ2) exp(−iα ω1χ1)

= (cos(ω2χ2)− jβ sin(ω2χ2))(cos(ω1χ1)− iα sin(ω1χ1)),

we obtain

exp(−iα ω1χ1) exp(−jβ ω2χ2) 6= exp(−jβ ω2χ2) exp(−iα ω1χ1).

Otherwise, we have

exp(−iα ω1χ1) exp(−jβ ω2χ2) = exp(−jβ ω2χ2) exp(−iα ω1χ1).

Hence, we can write the following form

F1{f}(ω) =

∫
R2

{cosh(
√
α ω1χ1) cosh(

√
β ω2χ2)}f(χ) d2χ

+

∫
R2

{sinh(
√
α ω1χ1) sinh(

√
β ω2χ2)}f(χ) d2χ

+

∫
R2

{cosh(
√
α ω1χ1) sinh(

√
β ω2χ2)}f(χ) d2χ

+

∫
R2

{sinh(
√
α ω1χ1) cosh(

√
β ω2χ2)}f(χ) d2χ.

That is, we represent

F1{f}(ω) =

∫
R2

{cosh(
√
α ω1χ1 +

√
β ω2χ2)}f(χ) d2χ

−
∫
R2

{sinh(
√
α ω1χ1 +

√
β ω2χ2)}f(χ) d2χ.

Example 3.4. Consider the quaternionic distribution signal (see [3])

f(χ) = exp(iαλχ1) exp(jβµχ2).

If ω 6= ω0, then the GQFT of f is

F1{f}(ω) =

∫
R2

exp(−jβ ω2χ2) exp(−iα ω1χ1) exp(iαλχ1) exp(jβµχ2) dχ1dχ2

= 2π

∫
R

exp(−jβ ω2χ2) exp(jβµχ2) dχ2

= (2π)2,
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where ω0 = (λ, µ). Also, if ω = ω0, then F1{f}(ω) = 0. Therefore, we obtain
the result as follows:

F1{f}(ω) = (2π)2δ(ω − ω0).

Definition 3.5. Suppose that f ∈ L1(R2;GH) and Fr{f}(ω) ∈ L2(R2;GH)
(r = 1, 2, 3). Then Fr{f}(ω) is an invertible transform and each inverse
transformation of Fr{f}(ω) is as follows:
Type 1.

F−1
1 [F1{f}(ω)] =

1

(2π)2

∫
R2

exp(jβ ω2χ2) exp(iα ω1χ1)F1{f}(ω) d2χ;

Type 2.

F−1
2 [F2{f}(ω)] =

1

(2π)2

∫
R2

exp(iα ω1χ1)F2{f}(ω) exp(jβ ω2χ2) d
2χ;

Type 3.

F−1
3 [F3{f}(ω)] =

1

(2π)2

∫
R2

F3{f}(ω) exp(jβ ω2χ2) exp(iα ω1χ1) d
2χ.

Theorem 3.6. For two generalized quaternionic functions, the GQFT of
f, g ∈ L1(R2;GH) is a linear operator, that is,

Fr{p f + q g}(ω) = p Fr{f}(ω) + q Fr{g}(ω) (r = 1, 2, 3),

where p and q in GH are generalized quaternion constants.

Proof. From the Definition of the GQFT, we have the following equations:

F1{p f + q g}(ω) =

∫
R2

exp(−jβ ω2χ2) exp(−iα ω1χ1){p f(χ) + q g(χ)} d2χ

=

∫
R2

exp(−jβ ω2χ2) exp(−iα ω1χ1){p f(χ) + q g(χ)} d2χ

=

∫
R2

exp(−jβ ω2χ2) exp(−iα ω1χ1)p f(χ) d2χ

+

∫
R2

exp(−jβ ω2χ2) exp(−iα ω1χ1)q g(χ) d2χ

= p F1{f}(ω) + q F1{g}(ω).

Therefore, we obtain the result. �

Now, we give the GQFT Plancherel theorem for generalized quaternionic
functions.
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Theorem 3.7. (GQFT Plancherel) Let f, g ∈ L2(R2;GH) be generalized
quaternion module functions. Then the generalized quaternionic inner product
of f, g is given by the inner product of the corresponding GQFTs Fr{f}(ω)
and Fr{g}(ω) (r = 1, 2, 3) as follows:

if α, β < 0,

1

(2π)2
< Fr{f}(ω),F3{g}(ω) >;

otherwise,

1

(2π)2
< Fr{f}(ω),Fr{g}(ω) > .

Proof. For f, g ∈ L2(R2;GH), the inner product is expressed by the following
equation:

< f, g >

=

∫
R2

f(z) g(z)∗ d2z

=
1

(2π)2

∫
R2

(∫
R2

exp(jβ ω2χ2) exp(iα ω1χ1)F1{f}(ω) d2χ
)
g(z)∗ d2z

=
1

(2π)2
F1{f}(ω)

∫
R2

exp(jβ ω2χ2) exp(iα ω1χ1) g(z)∗ d2z d2χ

=



if α, β < 0,

1

(2π)2
F1{f}(ω)

(∫
R2

g(z) exp(−jβ ω2χ2) exp(−iα ω1χ1) d
2χ
)∗

d2z;

otherwise,

1

(2π)2
F1{f}(ω)

(∫
R2

exp(−jβ ω2χ2) exp(−iα ω1χ1)g(z) d2χ
)∗

d2z

=



if α, β < 0,

1

(2π)2
< F1{f}(ω),F3{g}(ω) >;

otherwise,

1

(2π)2
< F1{f}(ω),F1{g}(ω) > .

Similarly, for Type 2 in the Definition 3.5, we have
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< f, g >

=

∫
R2

f(z) g(z)∗ d2z

=
1

(2π)2

∫
R2

(∫
R2

exp(iα ω1χ1)F2{f}(ω) exp(jβ ω2χ2) d
2χ
)
g(z)∗ d2z

=



if α, β < 0,

1

(2π)2
< F2{f}(ω),F3{g}(ω) >;

otherwise,

1

(2π)2
< F2{f}(ω),F2{g}(ω) >,

and for Type 3 in the Definition 3.5, we get

< f, g >

=

∫
R2

f(z) g(z)∗ d2z

=
1

(2π)2

∫
R2

(∫
R2

F3{f}(ω) exp(jβ ω2χ2) exp(iα ω1χ1) d
2χ
)
g(z)∗ d2z

=
1

(2π)2
< F3{f}(ω),F3{g}(ω) > .

Therefore, the result is obtained. �
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