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1. Introduction

Throughout this paper, N denotes the set of all positive integers. Let C be
a nonempty subset of a metric space (X, d). Let T : C → C be a mapping.
F (T ) = {x ∈ C : Tx = x} denotes the set of fixed points of T .

Definition 1.1. Let C be a nonempty subset of a metric space (X, d) The
mapping T : C → C is said to be

(i) Lipschitzian if for each n ∈ N, there exists a positive number kn > 0
such that

d(Tnx, Tny) ≤ knd(x, y) for all x, y ∈ C, (1.1)

(ii) uniformly k−Lipschitzian if kn = k for all n ∈ N,
(iii) asymptotically nonexpansive [17] with limn→∞ kn = 1.

The existence theorem of fixed point of asymptotically nonexpansive map-
pings was introduced by Goebel and Kirk [17] in 1972. They proved that if
C is a nonempty closed and bounded subset of a uniformly convex Banach
space, then every asymptotically nonexpansive self-mapping of C has a fixed
point. There are many papers dealing with the approximation of fixed points
of nonexpansive and asymptotically nonexpansive mappings in uniformly con-
vex Banach spaces through modified Mann and Ishikawa iteration processes
(see [4, 30, 31, 38, 43, 45, 46, 47, 48] and references contained therein).

The class of nearly Lipschitzian mappings as an important generalization
of the class of Lipschitzian mappings was introduced by Kim et al. ([32, 33])
and Sahu [39].

Definition 1.2. Let C be a nonempty subset of a metric space (X, d) and fix
a sequence {an} in [0,∞) with limn→∞ an = 0. A mapping T : C → C is said
to be nearly Lipschitzian with respect to {an} if for each n ∈ N, there exists
a constant kn ≥ 0 such that

d(Tnx, Tny) ≤ kn(d(x, y) + an) for all x, y ∈ C. (1.2)

The infimum of constants kn in (1.2) is called the nearly Lipschitz constant
of Tn and denoted by η(Tn).

Definition 1.3. A nearly Lipschitzian mapping T with the sequence
{(an, η(Tn))} is said to be

(i) nearly nonexpansive if η(Tn) = 1 for all n ∈ N,
(ii) nearly asymptotically nonexpansive if η(Tn) ≥ 1 for all n ∈ N, and

limn→∞ η(Tn) = 1,
(iii) nearly uniformly k-Lipschitzian if η(Tn) ≤ k for all n ∈ N,
(iv) nearly uniformly k-contractive if η(Tn) ≤ k < 1 for all n ∈ N.
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The class of Lipschitzian mappings is larger than the classes of nonexpansive
and asymptotically nonexpansive mappings. However, the theory of compu-
tation of fixed points of non-Lipschitzian mappings is equally important and
interesting. There are few results in this direction appeared in the literature
(see [25, 28, 39, 40, 45]).

In the recent years, CAT(0) spaces have attracted many authors as they
played a very important role in different aspects of geometry (see [15, 21]).
In 1976, Lim [35], introduced the concept of ∆−convergence in a general
metric space. In 2008, Kirk and Panyanak [22] specialized Lim’s concept
to CAT(0) space and proved that it is very similar to the weak conver-
gence in Banach space setting. Since then notions of ∆−convergence and
strong convergence has been widely studied and a number of papers have
appeared in literature to approximate fixed points via Mann [36], Ishikawa
[18], S-iteratiion and SP - iteration schemes [3, 5, 29, 41, 42] for nonexpan-
sive, asymptotically nonexpansive [17], nearly asymptotically nonexpansive
[39], total asymptotically nonexpansive mappings [6, 11] in CAT(0) spaces
(see [1, 2, 10, 14, 20, 23, 27, 37, 49, 50]).

It is well known that one of the fundamental and celebrated results in the
theory for nonexpansive mappings is Browder’s demiclosedness principle [9]
which states that if C is a nonempty closed convex subset of a uniformly convex
Banach space X and T : C → X is a nonexpansive mapping, then I − T is
demiclosed at each y ∈ X, that is, for any sequence {xn} in C, if xn → x weakly
and (I−T )xn → y strongly, then (I−T )x = y, where I is identity mapping of
X. It is well known that the demiclosedness principle plays an important role
in studying the asymptotic behavior for nonexpansive mappings (for details,
see ([4, 34]). Due to importance of demiclosedness principle for the class of
mappings which is essentially wider than that of nonexpansive mappings in
the setting of Banach spaces and CAT(0) spaces has been studied by several
authors (see [1, 2, 4, 10, 11, 24, 37, 38, 39, 40, 48, 49]).

In all above results, the operator T remains a self-mapping of nonempty
closed convex subset in Banach spaces (or CAT(0) spaces). In 2003, Chidume
et al. [11] introduced the concept of asymptotically nonexpansive nonself-
mappings and proved the strong and weak convergence theorems for the mod-
ified Mann iteration scheme [43] in uniformly convex Banach spaces. Since
then the notion of nonself-mapping essentially wider than that of asymptoti-
cally nonexpansive mappings has been widely studied and has been appeared
in a number of papers (see [19, 26] and references therein) in uniformly convex
Banach spaces.
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The purpose of this paper, is to introduce the class of nearly asymptotically
nonexpansive nonself-mappings which contain the class of asymptotically non-
expansive nonself-mappings and is contained in the class of nonself-mappings
of asymptotically nonexpansive type. We prove the demiclosedness principle,
existence of fixed points, structure of fixed point sets and approximation of
fixed point of mappings of these classes in CAT(0) spaces. Our results improve
various celebrated results of fixed point theory established in uniformly convex
Banach spaces as well as CAT(0) spaces (see e.g., Abbas et al. [1], Chang et
al. [10], Dhompongsa and Panyanak [14], Khan [26], Khan and Abbas [23],
Sahu [40]).

2. Preliminaries

Let (X, d) be a metric space. A geodesic from x to y in X is a mapping
c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y and

d(c(t), c(t
′
)) = |t − t′ | for all t, t

′ ∈ [0, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x
and y. The space (X, d) is said to be a geodesic space if every two points of X
are joined by a geodesic, andX is said to be a unique geodesic if there is exactly
one geodesic joining x and y for each x, y ∈ X, which will be denoted by [x, y],
and called the segment joining from x to y. A geodesic triangle ∆(x1, x2, x3)
in a geodesic metric space (X, d) consists of three points x1, x2, x3 in X (the
vertices of ∆) and a geodesic segment between each pair of vertices (the edges
of ∆). A comparison triangle for the geodesic triangle ∆(x1, x2, x3) in (X, d) is
a triangle ∆(x1, x2, x3) := ∆(x1, x2, x3, ) in R2 such that dR2(xi, xj) = d(xi, xj)
for i, j ∈ {1, 2, 3} such a triangle exists (see [7, 8, 42]).

A geodesic space is said to be a CAT(0) space if all geodesic triangles of
appropriate size satisfy the following comparison axiom (see [7, 8, 42]):

Let ∆ be a geodesic triangle in X and let ∆ ⊂ R2 be a comparison triangle
for ∆. Then ∆ is said to satisfy the CAT(0) inequality if for all x, y ∈ ∆ and
all comparison points x, y ∈ ∆,

d(x, y) ≤ dR2(x, y). (2.1)

If x, y1, y2 are points of a CAT(0) space and if y0 is the midpoint of the segment
[y1, y2], which will be denoted by y1⊕y2

2 , then the CAT(0) inequality implies

d2(x,
y1 ⊕ y2

2
) ≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2). (2.2)

The inequality (2.2) is the (CN) inequality of Bruhat and Tits [8]. In the
sequel we need the following useful lemmas.
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Lemma 2.1. ([8, 42]) Let X be a CAT(0) space. Then, for all x, y ∈ X and
t ∈ [0, 1], there exists a unique point (1− t)x⊕ ty ∈ [x, y] such that

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z), (2.3)

for any z ∈ X.

Lemma 2.2. ([10]) Let {an}, {λn} and {cn} be three sequences of nonnegative
numbers such that

an+1 ≤ λnan + cn, (2.4)

for all n ≥ 1. If
∞∑
n=1

(λn − 1) <∞ and
∞∑
n=1

cn <∞, then lim
n→∞

an exists.

Lemma 2.3. ([10]) Let (X, d) be a complete CAT(0) space and x ∈ X. Let
{tn} be a sequence in [b, c] with b, c ∈ (0, 1) and {xn} and {yn} be any sequences
in X such that

lim sup
n→∞

d(xn, x) ≤ r, lim sup
n→∞

d(yn, x) ≤ r,

and
lim
n→∞

d((1− tn)xn ⊕ tnyn), x) = r,

for some r ≥ 0. Then limn→∞ d(xn, yn) = 0.

First, we give the concept of ∆-convergence and some of its basic properties.

Let C be a nonempty subset of metric space (X, d) and {xn} be any bounded
sequence in X. Let diam(C) denote the diameter of C. Consider a continuous
functional ra(·, {xn}) : X → R+ defined by

ra(x, {xn}) = lim sup
n→∞

d(xn, x), x ∈ X.

Then, the infimum of ra(·, {xn}) over C is said to be the asymptotic radius of
{xn} with respect to C and is denoted by ra(C, {xn}).

A point z ∈ C is said to be an asymptotic center of the sequence {xn} with
respect to C if

ra(z, {xn}) = inf
{
ra(x, {xn}) : x ∈ C

}
,

the set of all asymptotic centers of {xn} with respect to C is denoted by
AC(C, {xn}). This set may be empty, a singleton, or certain infinitely many
points.

If the asymptotic radius and the asymptotic center are taken with re-
spect to X, then these are simply denoted by ra(X, {xn}) = ra({xn}) and
AC(X, {xn}) = AC({xn}), respectively. We know that ra(x, {xn}) = 0 if and
only if limn→∞ xn = x, for x ∈ X.
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A subset C of a CAT (0) space X is convex if for any x, y ∈ C, [x, y] ⊂ C.
It is known that uniformly convex Banach spaces and even CAT(0) spaces

have the property that bounded sequences have unique asymptotic centers
with respect to closed convex subsets (see [12, 13]).

Next, we define ∆−convergence of a sequence in a CAT(0) space.

Definition 2.4. ([13, 35]) Let {xn} be a bounded sequence in a complete
CAT(0) space X. Then {xn} is said to be ∆−convergent to x in X if x is the
unique asymptotic center of {xm} for every subsequence {xm} of {xn}. In this
case we write ∆− limn→∞ xn = x and call x the ∆−limit of {xn}.

Lemma 2.5. ([14]) Let X be a complete CAT(0) space. Then we have the
followings:

(i) Every bounded sequence in a complete CAT(0) space X has a ∆−
convergent subsequence.

(ii) If C is a closed convex subset of a complete CAT(0) space X and if
{xn} is a bounded sequence in C, then the asymptotic center of {xn}
is in C.

Recall that a bounded sequence {xn} in a complete CAT(0) space X is
said to be regular if ra(X, {xn}) = ra(X, {un}) for every subsequence of {un}
of {xn}. It is known that every bounded sequence in a Banach space has
regular subsequence. Since every regular sequence is ∆−convergent, we see
immediately that every bounded sequence in a complete CAT(0) space has a
∆−convergent subsequence. Notice that (see e.g., [12], Proposition 7) for
a given bounded sequence {xn} in a complete CAT(0) space X which is
∆−convergent to x and given y ∈ X with y 6= x, we have

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

Clearly, X satisfies a condition which is well known in Banach space theory
as the Opial property. We denote

ww(xn) =
⋃
AC({un}),

where the union is taken over all subsequences {un} of {xn}.
Next, we define the properties (D1) and (D2) which play important role in

the approximation of fixed points of nonexpansive and asymptotically nonex-
pansive mappings in Banach spaces (see e.g., [4] and references therein).

Definition 2.6. Let C be a subset of CAT(0) space X and let T : C → C be
a mapping. A sequence {xn} in C has:
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(D1) the limit existence property of T, if limn→∞ d(xn, p) exists for all p ∈
F (T ).

(D2) the approximating fixed point property of T, if limn→∞ d(xn, Txn) = 0.

Let (X, d) be a metric space and C be a nonempty subset of X. Recall that
C is called a retract of X if there exists a continuous mapping P from X onto
C such that Px = x, for all x ∈ C. A map P : X → C is said to be retraction
if P 2 = P . It follows that if a map P is retraction, then Py = y for all y in
the range of P .

Definition 2.7. Let C be nonempty subset of a metric space (X, d). Let
P : X → C be a nonexpansive retraction of X onto C.

(i) A nonself-mapping T : C → X is said to be asymptotically nonexpan-
sive [11] if there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1
such that

d(T (PT )n−1x, T (PT )n−1y) ≤ knd(x, y), (2.5)

for all x, y ∈ C and n ∈ N.
(ii) A nonself-mapping T : C → X is said to be uniformly k−Lipschitz-ian

if there exists a constant k > 0 such that

d(T (PT )n−1x, T (PT )n−1y) ≤ k d(x, y) (2.6)

for all x, y ∈ C and n ∈ N.
(iii) A nonself-mapping T : C → X is said to be nearly Lipschitzian [26]

with respect to {an} for a sequence {an} ⊂ [0,∞) with limn→∞ an = 0,
if each n ∈ N, there exist a constants kn ≥ 0, such that

d(T (PT )n−1x, T (PT )n−1y) ≤ kn(d(x, y) + an), (2.7)

for all x, y ∈ C. The infimum of the constant kn for which the above
inequality holds, is denoted by η(T (PT )n−1) and is called nearly Lip-
schitz constant.

(iv) For n = 1, above inequality (2.7) can be written as

d(T (PT )1−1x, T (PT )1−1y) ≤ k1(d(x, y) + a1),

where we have to take a1 as zero sequence. Thus in this case we have

d(T (PT )1−1x, T (PT )1−1y) ≤ k1d(x, y).

(v) A nearly Lipschitzian mapping T with sequence {an, η(T (PT )n−1)} is
said to be nearly asymptotically nonexpasive [26], if

η(T (PT )n−1) ≥ 1,

for all n ∈ N and limn→∞ η(T (PT )n−1) = 1.
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Now, we define an S-iteration scheme for nonself-mappings in a CAT(0)
space.

Suppose that {xn} is a sequence generated by x1 ∈ C such that{
xn+1 = P

[
(1− αn)T (PT )n−1xn ⊕ αnT (PT )n−1yn

]
,

yn = P
[
(1− βn)xn ⊕ βnT (PT )n−1xn

]
, n ∈ N,

(2.8)

where {αn}, {βn} are real sequences in (0, 1).

Remark 2.8. If T is a self-map, then P becomes the identity map so that (2.5)
and (2.7) coincide with (1.1) and (1.2). Moreover, (2.8) reduces to S−iteration
scheme (see [3, 42]).

3. Existence theorem of fixed points

Now we are able to prove the existence of fixed point for a nearly asymp-
totically nonexpansive nonself-mapping in a complete CAT(0) space.

Theorem 3.1. Let C be a nonempty bounded closed convex subset of a com-
plete CAT(0) space X and let T : C → X be a uniformly continuous, nearly
asymptotically nonexpansive nonself-mapping with sequence {an, η(T (PT )n−1)}.
Then T has a fixed point in C. Moreover, the set F (T ) of fixed point of T is
closed and convex.

Proof. For a given x0 ∈ C, we define

Ψ(u) = lim sup
n→∞

d(T (PT )n−1x0, u), (3.1)

for all u ∈ C, where P is a nonexpansive retraction of X onto C. Since T is a
nearly asymptotically nonexpansive nonself-mapping, we have

d(T (PT )n+m−1x0, T (PT )m−1u) ≤ η(T (PT )m−1)
[
d(T (PT )n−1x0, u) + am

]
,

for any n,m ∈ N. Taking lim supm→∞ in above inequality and using (3.1), we
have that

Ψ(T (PT )m−1u) ≤ η(T (PT )m−1)(Ψ(u) + am). (3.2)

It is easy to know that the function u → Ψ(u) is a lower semi continuous.
Since C is bounded closed and convex, there exists a point w ∈ C such that
Ψ(w) = infu∈C Ψ(u).

Letting u = w in (3.2), for each n ∈ N, we have

Ψ(T (PT )m−1w) ≤ η(T (PT )m−1)(Ψ(w) + am), m ∈ N,
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By using inequality (2.2) for any positive integers n,m ∈ N, we obtain

d2
(
T (PT )n−1x0,

T (PT )m−1w ⊕ T (PT )k−1w

2

)
≤ 1

2
d2
(
T (PT )n−1x0, T (PT )m−1w

)
+

1

2

(
T (PT )n−1x0, T (PT )k−1w

)
−1

4
d2
(
T (PT )m−1w, T (PT )k−1w

)
.

Taking lim supn→∞ of the both sides, we have

Ψ2(w) ≤ Ψ2

[
T (PT )m−1w ⊕ T (PT )k−1w

2

]
≤ 1

2
Ψ2(T (PT )m−1w) +

1

2
Ψ2(T (PT )k−1w)

−1

4
d2(T (PT )m−1w, T (PT )k−1w)

≤ 1

2
(η(T (PT )m−1))2(Ψ(w) + am)2

+
1

2
(η(T (PT )k−1))2(Ψ(w) + ak)

2

−1

4
d2(T (PT )m−1w, T (PT )k−1w).

This implies that

d2(T (PT )m−1w, T (PT )k−1w) ≤ 2
(
η(T (PT )m−1)

)2(
Ψ(w) + am

)2
+2
(
η(T (PT )k−1)

)2(
Ψ(w) + ak

)2
−4Ψ2(w).

Since T is a nearly asymptotically nonexpansive nonself-mapping, taking
lim supm,k→∞ on the both sides, we get

lim sup
m,k→∞

d(T (PT )m−1w, T (PT )k−1w) ≤ 0,

which implies that {T (PT )m−1w} is a Cauchy sequence in C. Since C is
complete, it converges to some w ∈ C. Let limm→∞ T (PT )m−1w = w. In the
view, of the continuity of TP, we have

w = lim
m→∞

TP (T (PT )m−1w) = TPw = Tw.

This means that T has a fixed point w. Next, we have to prove that F (T )
is closed and convex. Since T is continuous, F (T ) is closed. In order to
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prove that F (T ) is convex, it is enough to show that x⊕y
2 ∈ F (T ), whenever

x, y ∈ F (T ). Let w = x⊕y
2 . By using inequality (2.2), we have

d2(T (PT )n−1w,w) = d2
(
T (PT )n−1w,

x⊕ y
2

)
≤ 1

2
d2(x, T (PT )n−1w) +

1

2
d2(y, T (PT )n−1w)

− 1

4
d2(x, y) (3.3)

and

d2(x, T (PT )n−1w) = d2(T (PT )n−1x, T (PT )n−1w)

≤ (η(T (PT )n−1))2
(
d(x,w) + an

)2
≤ (η(T (PT )n−1))2

(
d

(
x,
x⊕ y

2

)
+ an

)2

≤ (η(T (PT )n−1))2
(

1

2
d(x, x) +

1

2
d(x, y) + an

)2

= (η(T (PT )n−1))2
(

1

2
d(x, y) + an

)2

. (3.4)

Similarly, we can get

d2(y, T (PT )n−1w) ≤ (η(T (PT )n−1))2
(

1

2
d(x, y) + an

)2

. (3.5)

Substituting (3.4) and (3.5) into (3.3) and simplifying, we have

d2(w, T (PT )n−1w) ≤ 1

2
(η(T (PT )n−1))2

(
1

2
d(x, y) + an

)2

+
1

2
(η(T (PT )n−1))2

(
1

2
d(x, y) + an

)2

−1

4
d2(x, y).

Hence, letting n→∞, we have

lim
n→∞

T (PT )n−1w = w.

In view of the continuity of TP, we have

w = lim
n→∞

TP (T (PT )n−1w) = TPw = Tw.

It implies that w = x⊕y
2 ∈ F (T ). Since C is convex, w = x⊕y

2 ∈ C. Therefore,
Pw = w which implies that w = Tw, w ∈ F (T ). �
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4. Demiclosedness principle for ∆-convergence

It is known that the demiclosedness principle plays a key role in study-
ing the convergence theorems for various mappings. Now we introduce the
demiclosedness principle for the ∆-convergence in a CAT(0) space.

First, we need the following proposition.

Proposition 4.1. Let C be a nonempty closed convex subset of complete
CAT(0) space X. Let P : X → C be a nonexpansive retraction of X onto C
and T : C → X be a uniformly continuous, nearly asymptotically nonexpan-
sive nonself-mapping with sequence {an, η(T (PT )n−1)}. If {yn} is a bounded
sequence in C satisfying the property (D2), then T has a fixed point.

Proof. Since C is a nonempty closed convex subset of complete CAT(0) space
X and {yn} be a bounded sequence in C, AC(C, {yn}) is in C and consists
of exactly one point ν (say). We now show that ν is a fixed point of T .
Suppose that T : C → X is a uniformly continuous, nearly asymptotically
nonexpansive nonself-mappings with sequences {an, η(T (PT )n−1)} such that
∞∑
n=1

an < ∞, where P is a nonexpansive retraction of X onto C. By uniform

continuity of TP , we have

lim
n→∞

d(T (PT )iyn, T (PT )i−1yn) = 0, (4.1)

for i = 0, 1, · · · . We define a sequence {zm} in C by zm = T (PT )m−1ν, m ∈ N.
For integers m,n ∈ N, we have

d(zm, yn) = d(T (PT )m−1ν, T (PT )m−1yn)

+d(T (PT )m−1yn, T (PT )m−2yn)

+ · · ·
+d(Tyn, yn) (4.2)

≤ d(T (PT )m−1ν, T (PT )m−1yn)

+

m−1∑
i=1

d(T (PT )iyn, T (PT )i−1yn)

≤ η(T (PT )m−1)(d(ν, yn) + am)

+

m−1∑
i=1

d(T (PT )iyn, T (PT )i−1yn).
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Then, by (4.1) and (4.2), we have

ra(zm, {yn}) = lim sup
m→∞

d(zm, yn)

≤ lim sup
m→∞

[
η(T (PT )m−1)(d(ν, yn) + am)

]
≤ ra(ν, {yn}).

Hence, we have

lim sup
m→∞

ra(zm, {yn}) ≤ ra(ν, {yn}). (4.3)

By inequality (2.2), we have

d

(
yn,

ν ⊕ zm
2

)2

≤ 1

2
d(yn, ν)2 +

1

2
d(yn, zm)2 − 1

4
d(ν, zm)2, (4.4)

for all m,n ∈ N, and from (4.3) and (4.4), we obtained that

ra

(
ν ⊕ zm

2
, {yn}

)2

≤ 1

2
ra(ν, {yn})2 +

1

2
ra(zm, {yn})2 −

1

4
d(ν, zm)2.

Since AC(C, {yn}) = {ν}, we have

ra(ν, {yn})2 ≤ ra

(
ν ⊕ zm

2
, {yn}

)2

≤ 1

2
ra(ν, {yn})2 +

1

2
ra(zm, {yn})2 −

1

4
d(ν, zm)2,

which implies that

lim sup
m→∞

d(ν, zm)2 ≤ 2 lim sup
m→∞

[
ra(zm, {yn})2 − ra(ν, {yn})2

]
= 0.

Thus, T (PT )m−1ν → ν.
In the view of the continuity of TP, we have

ν = lim
m→∞

T (PT )mν = lim
m→∞

TP (T (PT )m−1ν) = TP ν

= Tν.

This completes the proof. �

Now, we are in a position to introduce and prove the demiclosedness prin-
ciple (cf. [34]).

Theorem 4.2. Let C be a nonempty closed convex subset of complete CAT(0)
space X, P : X → C be a nonexpansive retraction of X onto C, and T : C →
X be a uniformly continuous, nearly asymptotically nonexpansive nonself-
mapping with a sequence {an, η(T (PT )n−1)}. If {xn} is a bounded sequence
in C which is ∆-convergent to x and lim

n→∞
d(xn, Txn) = 0, then x ∈ C and
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(I − T )x = 0. That is, I − T is demiclosed at zero with respect to the ∆-
convergence.

Proof. Let {xn} be a bounded sequence in C and lim
n→∞

d(xn, Txn) = 0. Then

it is an approximating fixed point property of T and ∆−convergent to x. One
can see by Lemma 2.5 that x ∈ C. Note that AC({xn}) = {x}, so we have
ra(x, {xn}) = ra({xn}). By Proposition 4.1, we conclude that (I − T )x = 0.
This completes the proof. �

5. Convergence theorems of the iterative schemes

In this section, we discuss, our iterative scheme (2.8) holds the properties
(D1) and (D2) and prove the strong and ∆-convergence theorems for a nearly
asymptotically nonexpansive nonself-mapping in CAT (0) spaces.

Lemma 5.1. Let C be a nonempty bounded closed convex subset of a complete
CAT(0) space X, P : X → C be a nonexpansive retraction of X onto C, and
T : C → X be a uniformly continuous, nearly asymptotically nonexpansive
nonself-mapping with a sequence {an, η(T (PT )n−1)} such that

∞∑
n=1

an <∞ and
∞∑
n=1

(η(T (PT )n−1)− 1) <∞.

Then the sequence {xn} in C defined by (2.8) has the properties (D1) and
(D2), where {αn} and {βn} are sequences of real numbers in (0, 1) such that
0 < a ≤ αn, βn ≤ b < 1.

Proof. First, we show that limn→∞ d(xn, p) exists, for each p ∈ F (T ). Let
p ∈ F (T ). From (2.8), we have

d(yn, p) = d
(
P
[
(1− βn)xn ⊕ βnT (PT )n−1xn

]
, p
)

≤ d((1− βn)xn ⊕ βnT (PT )n−1xn, p)

≤ (1− βn)d(xn, p) + βnd(T (PT )n−1xn, p) (5.1)

≤ (1− βn)d(xn, p) + βnη(T (PT )n−1)[d(xn, p) + an]

≤ η(T (PT )n−1)d(xn, p) + βnη(T (PT )n−1)an.

From (2.8) and (5.1), we have

d(xn+1, p) = d(P [(1− αn)T (PT )n−1xn ⊕ αnT (PT )n−1yn], p)

≤ (1− αn)d(T (PT )n−1xn, p) + αnd(T (PT )n−1yn, p)

≤ η(T (PT )n−1)
[
(1− αn)(d(xn, p) + an) + αn(d(yn, p) + an)

]



86 J. K. Kim, R. P. Pathak, S. Dashputre, S. D. Diwan and R. L. Gupta

≤ η(T (PT )n−1)
[
(1− αn)d(xn, p) + αnη(T (PT )n−1)d(xn, p)

+(1 + η(T (PT )n−1))an
]

≤ Lnd(xn, p) + ρn, (5.2)

where Ln = (η(T (PT )n−1))2 and ρn = η(T (PT )n−1)
[
η(T (PT )n−1) + 1

]
an.

Moreover,

∞∑
n=1

(Ln − 1) =
∞∑
n=1

(
η(T (PT )n−1)− 1

)(
η(T (PT )n−1) + 1

)

≤ (1 + η)

∞∑
n=1

(
η(T (PT )n−1)− 1

)
< ∞

and

∞∑
n=1

ρn <∞. Applying Lemma 2.2, we have limn→∞ d(xn, p) exists for all

p ∈ F (T ). This is the proof for the property (D1).
Next, we prove that the sequence {xn} has the property (D2). It follows

from the first part that lim
n→∞

d(xn, p) exists. Let lim
n→∞

d(xn, p) = r ≥ 0. Since

d(T (PT )n−1xn, p) ≤ η(T (PT )n−1)
[
d(xn, p) + an

]
,

for all n ∈ N. Taking lim sup
n→∞

on the both sides, we have

lim sup
n→∞

d(T (PT )n−1xn, p) ≤ r. (5.3)

From (5.1), it implies that

lim sup
n→∞

d(yn, p) ≤ r. (5.4)

Hence, from (5.4), we have

lim sup
n→∞

d(T (PT )n−1yn, p) ≤ lim sup
n→∞

η(T (PT )n−1)(d(yn, p) + an)

≤ r. (5.5)

Moreover, r = lim
n→∞

d(xn+1, p) means that

r = lim
n→∞

{
d
(
P [(1− αn)T (PT )n−1xn ⊕ αnT (PT )n−1yn], p

)}
≤ lim

n→∞

{
(1− αn) lim sup

n→∞
d(T (PT )n−1xn, p)

+αn lim sup
n→∞

d(T (PT )n−1yn, p)

}
.
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Using (5.3) and (5.5), we have

r ≤ lim
n→∞

((1− αn)r + αnr) = r.

Thus,

lim
n→∞

{
d(P [(1− αn)T (PT )n−1xn ⊕ αnT (PT )n−1yn], p)

}
= r,

for r > 0. Hence, it follows from Lemma 2.3, we have

lim
n→∞

d(T (PT )n−1xn, T (PT )n−1yn) = 0. (5.6)

Now

d(xn+1, p) = d(P [(1− αn)T (PT )n−1xn ⊕ αnT (PT )n−1yn], p)

≤ (1− αn)d(T (PT )n−1xn, p) + αnd(T (PT )n−1yn, p)

≤ d(T (PT )n−1xn, p) + αnd(T (PT )n−1xn, T (PT )n−1yn).

Taking lim infn→∞ on the both sides of above inequality, we have

r ≤ lim inf
n→∞

d(T (PT )n−1xn, p). (5.7)

Hence, from (5.3) and (5.7), we have

lim
n→∞

d(T (PT )n−1xn, p) = r. (5.8)

Next, we compute

d(T (PT )n−1xn, p) ≤ d(T (PT )n−1xn, T (PT )n−1yn)

+d(T (PT )n−1yn, p)

≤ d(T (PT )n−1xn, T (PT )n−1yn)

+η(T (PT )n−1)(d(yn, p) + an).

Taking lim infn→∞ and using (5.8) which yields that

r ≤ lim inf
n→∞

d(yn, p). (5.9)

Hence, from (5.4) and (5.9), we have

lim
n→∞

d(yn, p) = r. (5.10)

That is,

r = lim
n→∞

{
d(P [(1− βn)xn ⊕ βnT (PT )n−1xn], p)

}
≤ lim

n→∞

{
d((1− βn)xn ⊕ βnT (PT )n−1xn, p)

}
≤ lim

n→∞

{
(1− βn)r + βnr

}
= r.
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Again, by using Lemma 2.3, we have

lim
n→∞

d(T (PT )n−1xn, xn) = 0. (5.11)

Now, applying (5.11), we have

d(yn, xn) ≤ d(P [(1− βn)xn ⊕ βnT (PT )n−1xn], xn)

≤ βnd(T (PT )n−1xn, xn)

→ 0, as n→∞. (5.12)

Also, we observe that

d(xn+1, xn) ≤ d(P [(1− αn)T (PT )n−1xn ⊕ αnT (PT )n−1yn], xn)

≤ d((1− αn)T (PT )n−1xn ⊕ αnT (PT )n−1yn, xn)

≤ d(T (PT )n−1xn, xn) + αnd(T (PT )n−1yn, T (PT )n−1xn)

→ 0, as n→∞. (5.13)

Therefore, we have

d(xn+1, yn) ≤ d(xn+1, xn) + d(yn, xn)→ 0, as n→∞. (5.14)

Furthermore, since

d(xn+1, T (PT )n−1yn) ≤ d(xn+1, xn) + d(xn, T (PT )n−1xn)

+d(T (PT )n−1xn, T (PT )n−1yn),

by using (5.6), (5.11) and (5.13), we obtain

lim
n→∞

d(xn+1, T (PT )n−1yn) = 0. (5.15)

Finally, we make use of the fact that every nearly asymptotically nonex-
pansive mapping is nearly k-Lipschitzian, then we get

d(xn, Txn) ≤ d(xn, T (PT )n−1xn) + d(T (PT )n−1xn, T (PT )n−1yn−1)

+d(T (PT )n−1yn−1, Txn)

≤ d(xn, T (PT )n−1xn) + d(T (PT )n−1xn, T (PT )n−1yn−1)

+d(T (PT )1−1(PT )n−1yn−1, T (PT )1−1xn)

≤ d(xn, T (PT )n−1xn) + d(T (PT )n−1xn, T (PT )n−1yn−1)

+k1d((PT )n−1yn−1, xn)

≤ d(xn, T (PT )n−1xn) + η(T (PT )n−1)(d(xn, yn−1) + an)

+k1d(PT (PT )n−2yn−1, xn)

≤ d(xn, T (PT )n−1xn) + η(T (PT )n−1)(d(xn, yn−1) + an).

+k1d(T (PT )n−2yn−1, xn)
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Letting n→∞ and using (5.12), (5.14) and (5.15), we get

lim
n→∞

d(xn, Txn) = 0. (5.16)

Hence, the sequence {xn} has an approximating fixed point property for T ,
i.e, {xn} has a property (D2). �

Now we will give a ∆-convergence theorem in a CAT(0) space.

Theorem 5.2. Let C be a nonempty bounded closed convex subset of a com-
plete CAT(0) space X, P : X → C be a nonexpansive retraction of X onto C,
and T : C → X be a uniformly continuous, nearly asymptotically nonexpansive
nonself-mapping with a sequence {an, η(T (PT )n−1)} such that

∞∑
n=1

an <∞ and
∞∑
n=1

(η(T (PT )n−1)− 1) <∞.

Let {xn} be a sequence in C defined by (2.8), where {αn} and {βn} are se-
quences of real numbers in (0, 1) such that 0 < a ≤ αn, βn ≤ b < 1. Then {xn}
is ∆-convergent to an element of F (T ).

Proof. First, we show that ww({xn}) ⊆ F (T ). Let u ∈ ww({xn}). Then there
exists a subsequence {un} of {xn} such that AC(C, {un}) = {u}. By Lemma
2.5, there exists a subsequence {vn} of {un} such that ∆− limn→∞ vn = v for
some v ∈ C. By Theorem 4.2, v ∈ F (T ). By Lemma 5.1, limn→∞ d(xn, v)
exists. We now claim that u = v. Suppose, on the contrary, that u 6= v. Then
by uniqueness of asymptotic center, we have

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, u) ≤ lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, v) = lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v),

a contradiction. Thus, u = v ∈ F (T ) and hence ww({xn}) ⊆ F (T ).

To show that {xn} is ∆-convergent to a fixed point of T , it suffices to show
that ww({xn}) consists of exactly one point. Let {un} be a subsequence of
{xn}. By Lemma 2.5, there exists a subsequence {vn} of {un} such that ∆−
limn→∞ vn = v for some v ∈ C. Let AC(C, {un}) = {u} and AC(C, {xn}) =
{x}. We have already seen that u = v and v ∈ F (T ).

Finally, we claim that x = v. Suppose that if not, then by the existence of
limn→∞ d(xn, v) and uniqueness of asymptotic center, we have

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, x) ≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, v) = lim sup
n→∞

d(vn, v),
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a contradiction and hence x = v ∈ F (T ). Therefore, ww({xn}) = {x}. This
means that {xn} is ∆-convergent to an element of F (T ). �

Next, we will give two strong convergence theorems in CAT(0) spaces.

Theorem 5.3. Let C be a nonempty bounded closed convex subset of a com-
plete CAT(0) space X, P : X → C be a nonexpansive retraction of X onto C,
and T : C → X be a uniformly continuous, nearly asymptotically nonexpansive
nonself-mapping with a sequence {an, η(T (PT )n−1)} such that

∞∑
n=1

an <∞ and

∞∑
n=1

(η(T (PT )n−1)− 1) <∞.

Let {xn} be a sequence in C defined by (2.8) and {αn}, {βn} are sequences of
real numbers in (0, 1) such that 0 < a ≤ αn, βn ≤ b < 1. Then {xn} converges
strongly to a fixed point of T if and only if

lim inf
n→∞

D(xn, F (T )) = 0,

where D(xn, F (T )) = infx∈F (T ) d(xn, x).

Proof. Necessity is obvious.
Conversely, suppose that lim infn→∞D(xn, F (T )) = 0. From (5.2), we have

D(xn+1, F (T )) ≤ (1 + (Ln − 1))D(xn, F (T )) + ρn, n ∈ N.

By applying Lemma 2.2, limn→∞D(xn, F (T )) exists. It follows that

lim
n→∞

D(xn, F (T )) = 0.

Next, we show that {xn} is a Cauchy sequence. In order to prove that, we set
un = (Ln − 1), then above inequality become

D(xn+1, F (T )) ≤ (1 + un)D(xn, F (T )) + ρn, n ∈ N.

Using arguments similar to those given in Lemma 5 [16] and Theorem 4.3 [1],
we can easily obtain the following inequality

d(xn+m, p) ≤ L

[
d(xn, p) +

∞∑
j=n

ρj

]
,
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for every p ∈ F (T ) and for all m,n ∈ N, where L = e

M

( n+m−1∑
j=n

uj

)
> 0 and

M > 0. Since,

∞∑
n=1

un <∞, we have

L∗ = e

M

( ∞∑
n=1

un

)
≥ L = e

M

( n+m−1∑
j=n

uj

)
> 0.

Let ε > 0 be arbitrarily chosen. Since limn→∞D(xn, F (T )) = 0 and
∞∑
n=1

ρn <

∞, there exists a positive integer n0 such that, for all n ≥ n0,

D(xn, F (T )) <
ε

4L∗
and

∞∑
j=n0

ρj <
ε

6L∗
.

In particular, inf{d(xn0 , p) : p ∈ F (T )} < ε
4L∗ . Thus, there must exist p∗ ∈

F (T ) such that

d(xn0 , p
∗) <

ε

3L∗
.

Hence for n ≥ n0, we have

d(xn+m, xn) ≤ d(xn+m, p
∗) + d(p∗, xn)

≤ 2L∗
[
d(xn0 , p

∗) +

∞∑
j=n0

bj

]

< 2L∗
(

ε

3L∗
+

ε

6L∗

)
= ε.

Therefore, {xn} is a Cauchy sequence in closed subset C of a complete CAT(0)
space X, and so it must converge strongly to a point q in C.

Now, limn→∞D(xn, F (T )) = 0 gives that D(q, F (T )) = 0. From Theorem
4.2 F (T ) is closed, we have q ∈ F (T ). This completes the proof. �

Recall that a mapping T from a subset of a metric space (X, d) into itself
with F (T ) 6= φ is said to satisfy condition (A) (see [44]) if there exists a
nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(t) > 0 for t ∈
(0,∞) such that

d(x, Tx) ≥ f(D(x, F (T ))),

for all x ∈ C.
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Theorem 5.4. Let C be a bounded closed convex subset of a complete CAT(0)
space X, P : X → C be a nonexpansive retraction, and T : C → X be
a uniformly continuous, nearly asymptotically nonexpansive nonself-mapping
with a sequence {an, η(T (PT )n−1)} such that

∞∑
n=1

an <∞ and

∞∑
n=1

(η(T (PT )n−1)− 1) <∞.

Let {xn} be a sequence in C defined by (2.8) and {αn}, {βn} are sequences
of real numbers in (0, 1) such that 0 < a ≤ αn, βn ≤ b < 1. Suppose that T
satisfies condition (A). Then {xn} converges strongly to a fixed point of T .

Proof. By Lemma 5.1, we observe that sequence {xn} has an approximating
fixed point property for T , i.e., limn→∞ d(xn, Txn) = 0. Further, by condition
(A),

lim
n→∞

d(xn, Txn) ≥ lim
n→∞

f(D(xn, F (T ))).

It follows that limn→∞D(xn, F (T )) = 0. Therefore, the desired result follows
from Theorem 5.3. �

Remark 5.5. (i) Our Theorem 5.2 extends Theorems 4.2, 4.4 of Abbas
et al. [1] from nearly asymptotically nonexpansive mappings to nearly
asymptotically nonexpansive nonself-mappings.

(ii) Theorem 5.2 extends Theorem 1 of Khan [26] from uniformly convex
Banach spaces to CAT(0) spaces.

(iii) Theorems 5.2, 5.4 extend corresponding results of Abbas et al. [2],
Chang et al. [10], Dhompongsa and Panyanak [14], Khan et al. [23],
Karapinar, et al. [24], Kang et al. [19, 20], Kim et al. [27], Nanjaras
and Panyanak [37], to more general class of nonself-mappings.

(iv) In view of Remark 2.8, we conclude that our Theorems 5.2, 5.4 extend
corresponding results of [38, 43, 46, 47, 48], for faster iteration scheme.
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