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Abstract. In this paper we prove some sufficient conditions for the normal structure of a

Banach space X in terms of the moduli of convexity δ(ε) and C(ε), the modulus of smoothness

ρX(ε), the modulus of squareness J(X), the moduli of arc length O(X) and Q(X), and the

coefficient of weak orthogonality w(X). Some known results are improved and some of them

are obtained in a different way.

1. Introduction

Let X be a Banach space, and let S(X) = {x ∈ X : ‖x‖ = 1} and B(X) =
{x ∈ X : ‖x‖ ≤ 1} be the unit sphere and unit ball of X respectively.

Definition 1.1. ([1]) A bounded, convex subset K of a Banach space X is said
to have normal structure if every convex subset H of K that contains more
than one point contains a point x0 ∈ H, such that sup{‖x0 − y‖ : y ∈ H} <
diam(H), where diam(H) = sup{‖x − y‖ : x, y ∈ H} denotes the diameter
of H. A Banach space X is said to have normal structure if every bounded,
convex subset of X has normal structure. A Banach space X is said to have
weak normal structure if for each weakly compact convex set K in X that
contains more than one point has normal structure. X is said to have uniform
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normal structure if there exists 0 < c < 1 such that for any subset K as above,
there exists x0 ∈ K such that sup{‖x0 − y‖ : y ∈ K} < c diam(K).

For a reflexive Banach space X, the normal structure and weak normal
structure coincide.

Let δX(ε) = inf{1 − ‖x+y‖
2 : x, y ∈ S(X), ‖x − y‖ ≥ ε} where 0 ≤ ε ≤ 2 be

the modulus of convexity of X[2].
The following result regarding the relationship between normal structure

and the modulus of convexity of X was proved in [6], [14] and [15].

Theorem 1.2. For any Banach space X, δX(1 + ε) > ε
2 for some 0 ≤ ε ≤ 1

implies that X has uniform normal structure.

The following result regarding the relationship between normal structure
and a value of the modulus of convexity of X at a certain point was proved in
[9].

Theorem 1.3. A Banach space X with δX(1+
√

5
2 ) > 3−√5

2 has uniform normal
structure.

In [4] and [11], Gao and Lau introduced parameters J(X) = sup{‖x +
y‖∧ ‖x−y‖ : x, y ∈ S(X)}, and g(X) = inf{‖x+y‖∨ ‖x−y‖ : x, y ∈ S(X)},
and proved that g(X) · J(X) = 2.

In [18], Sims introduced the following parameter

w(X) = sup{λ > 0 : λ lim inf
n→∞ ‖xn + x‖ ≤ lim inf

n→∞ ‖xn − x‖}
where the supremum is taken over all the weakly null sequence xn in X and
all the elements x of X. It was proved that 1

3 ≤ w(X) ≤ 1 for all Banach
space X.

In [12], Jimenez-Melado, Llorens-Fuster, and Saejung proved the following
result regarding the relationship between normal structure and parameters
J(X) and w(X).

Theorem 1.4. For any Banach space X, J(X) < 1 + w(X) implies X has
normal structure.

Let ρX(τ) = sup{‖x+y‖+‖x−y‖−2
2 : x ∈ S(X), y ∈ τS(X)}, where τ ≥ 0 be

the modulus of smoothness of X [2]. Then ρX(τ)
τ is a decreasing function.

In [19], by a dual view of a theorem of Baillon, Turett proved that

Theorem 1.5. If X is a Banach space with limτ→0
ρX(τ)

τ < 1
2 , then X has

weak normal structure.

The following result regarding the relationship between normal structure
and the modulus of smoothness of X was proved in [8]:



Some Geometric Parameters and Normal Structure In Banach Spaces 187

Theorem 1.6. A Banach space X with ρX(τ) < τ
2 for some 0 < τ ≤ 1, or

ρX(τ) < τ − 1
2 for some 1 < τ < ∞ has uniform normal structure.

The following result regarding the relationship between normal structure
and a value of the modulus of smoothness of X at a certain point was proved
in [9].

Theorem 1.7. A Banach space X with ρX(1) <
√

5−1
2 has uniform normal

structure.

In this paper we demonstrate the relationships among parameters δ(ε),
C(X), ρX(τ), J(X), O(X), Q(X), and ω(X) of X, that imply uniform normal
structure. The main results in [6], [8], [9], [10], [13], [14], [15] and [16] are
either improved under a certain condition or obtained in a different way.

Lemma 1.8. ([3]) Let X be a Banach space without weak normal structure,
then for any 0 < ε < 1, there exists a sequence {xn} ⊆ S(X) with xn

w→ 0,
and

1− ε < ‖xn+1 − x‖ < 1 + ε

for sufficiently large n, and any x ∈ co{xk}n
k=1.

Lemma 1.9. Let X be a Banach space without weak normal structure. Then,
for any 0 < ε < 1, there exists a sequence {xn} ⊆ S(X) satisfying

(i) 1− ε ≤ ‖xn − x1‖ ≤ 1 + ε, ∀n > 1;

(ii) ‖xn + x1‖ ≤ 1+ε
w(X)−ε ,∀n > 1.

Proof. It follows directly from the definition of w(X) and Lemma 1.8. ¤

2. Main results

Theorem 2.1. For a Banach space X, if δ(1 + w(X)) > 1−w(X)
2 , then X has

normal structure.

Proof. δ(1+w(X)) > 1−w(X)
2 implies δ(2−) > 0, so X is uniformly nonsquare,

hence X is reflexive, therefore weak normal structure and normal structure
coincide [5].

Let ε > 0 be such that 1− w(X) + ε < 1 + w(X)− ε. We let x1 and {xn}
be as in Lemma 1.9, and let un = xn − x1 and vn = (w(X) − ε)(xn + x1).
Then ‖un‖ ≤ 1 + ε and ‖vn‖ ≤ 1 + ε for all n > 1. Since 0 ∈ cow{xn}∞n=1 =
co{xn}∞n=1, we can also assume by Lemma 1.8 that ‖xn − 1−w(X)+ε

1+w(X)−ε · x1‖=
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‖xn − (1−w(X)+ε
1+w(X)−ε · x1 + 2w(X)−2ε

1+w(X)−ε · 0)‖ ≥ 1− ε, for larger n. Then

‖un + vn‖ = ‖(1 + w(X)− ε)xn − (1− w(X) + ε)x1‖

≥ (1 + w(X)− ε)
∥∥∥∥xn − 1− w(X) + ε

1 + w(X)− ε
· x1

∥∥∥∥
≥ (1 + w(X)− ε)(1− ε),

and

‖un − vn‖ = ‖(1− w(X) + ε)xn − (1 + w(X)− ε)x1‖.
Since (1− w(X) + ε)xn − (1 + w(X)− ε)x1

w→ −(1 + w(X)− ε)x1, we can
take n big enough such that

‖un − vn‖ ≥ ‖ − (1 + w(X)− ε)x1‖ − ε = 1 + w(X)− 2ε.

It then follows from the definition of δX(·) that

δX(‖un − vn‖) ≤ 1− ‖un + vn‖
2

≤ 1− 1
2
((1 + w(X)− ε)(1− ε)).

Letting ε → 0 gives δ(1 + w(X)) ≤ 1−w(X)
2 , which is a contradiction. So, if

δ(1 + w(X)) > 1−w(X)
2 , X has normal structure. ¤

Remark 2.2. (1) If w(X) > 1
2 , then w(X)

2 > 1−w(X)
2 . Therefore, Theorem 2.1

improves Theorem 1.2 for the case w(X) > 1
2 .

(2) Similarly, Theorem 2.1 improves Theorem 1.3 for the case w(X) >
√

5−1
2 .

Let CX(ε) = sup{1− ‖x+y‖
2 : x, y ∈ S(X), ‖x− y‖ ≤ ε} where 0 ≤ ε ≤ 2 be

the another modulus of convexity of X. It is not hard to see that C(ε) is an
non-decreasing and continuous function of ε on [0, 2) (see [7]).

By using the similar argument as in the proof of theorem 2.1, we can prove
the following theorem.

Theorem 2.3. For a Banach space X, if CX

(
2

1+w(X)

)
< w(X)

1+w(X) , then X

has normal structure.

Lemma 2.4. ([11]) For a Banach space X, J(X) = sup{ε : δX(ε) ≤ 1− ε
2}.

Lemma 2.5. For a Banach space X, g(X) = sup{ε : CX(ε) ≤ 1− ε
2}.

Proof. The proof is similar to the proof of Lemma 2.4 in [11] so it is omitted.
¤
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Remark 2.6. By Lemma 2.4 and Lemma 2.5, it is easy to see that

J(X) < 1 + w(X)

⇔ δ(1 + w(X)) >
1− w(X)

2

⇔ C

(
2

1 + w(X)

)
<

w(X)
1 + w(X)

.

So Theorem 2.1 and Theorem 2.3 are equivalent to Theorem 1.4, but proved
in a different way.

Theorem 2.7. For a Banach space X, if ρX(τ) < τ · w(X) for τ ≤ 1; or
ρX(τ) < τ + w(X)− 1 for τ > 1 then X has normal structure.

Proof. We first prove that ρX(τ) < τ · w(X) for τ ≤ 1 implies that X has
normal structure. Let τ ≤ 1 and ε > 0 be such that 1 − τ(w(X) − ε) <
1 + τ(w(X)− ε). Let x1 and {xn} be as in Lemma 1.9, and let un = xn − x1

and vn = (w(X)− ε)(xn + x1) again. We now estimate ‖un ± τvn‖.
We can assume by Lemma 1.8 that xn and x1 also satisfy

∥∥∥∥xn − 1− τ(w(X)− ε)
1 + τ(w(X)− ε)

x1

∥∥∥∥

=
∥∥∥∥xn −

(
1− τ(w(X)− ε)
1 + τ(w(X)− ε)

· x1 +
2τ(w(X)− ε)

1 + τ(w(X)− ε)
· 0

)∥∥∥∥
≥ 1− ε

for sufficiently large n. Then, for such n,

‖un + τvn‖ = ‖(1 + τ(w(X)− ε))xn − (1− τ(w(X)− ε))x1‖

≥ (1 + τ(w(X)− ε))
∥∥∥∥xn − 1− τ(w(X)− ε)

1 + τ(w(X)− ε)
· x1

∥∥∥∥
≥ (1 + τ(w(X)− ε))(1− ε)

and

‖un − τvn‖ = ‖(1− τ(w(X)− ε)) · xn − (1 + τ(w(X)− ε)) · x1‖.
Since

(1− τ(w(X)− ε)) · xn − (1 + τ(w(X)− ε)) · x1
w→ −(1 + τ(w(X)− ε)) · x1,

we can take n big enough such that

‖un − τvn‖ ≥ ‖ − (1 + τ(w(X)− ε)) · x1‖ − ε = 1 + τ(w(X)− ε)− ε.
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From the definition of ρX(·), we have

ρX(τ) ≥ (1 + τ(w(X)− ε))(1− ε) + 1 + τ(w(X)− ε)− ε− 2
2

=
(2τ(w(X)− ε))− ε− ε(1 + τ(w(X)− ε))

2
.

Let ε → 0 gives ρX(τ) ≥ τw(X) which is a contradiction. So, if ρX(τ) <
τ · w(X) ≤ 1 for some 0 ≤ τ ≤ 1, X has normal structure.

Finally, we observe that

ρ(τ) < τw(X) for some 0 < τ < 1

⇔ 1 + ρ(τ) < 1 + τw(X) for some 0 < τ < 1

⇔ τ(1 + ρ(
1
τ
)) < 1 + τw(X) for some 0 < τ < 1

⇔ ρ(
1
τ
) <

1
τ

+ w(X)− 1 for some 0 < τ < 1

⇔ ρX(τ ′) < τ ′ + w(X)− 1 for some τ ′ > 1.

Consequently, if ρX(τ) < τ + w(X) − 1 for some τ > 1, then X has normal
structure. ¤
Remark 2.8. (1) Compare to Theorem 1.5, if w(X) > 1

2 , then Theorem 1.5
is improved.

(2) Compare to theorem 1.6, if 0 < τ ≤ 1 and w(X) > 1
2 , we have τw(X) ≥

τ
2 , then Theorem 1.6 is improved; if 1 < τ ≤ 1

2(1−w(X)) and w(X) > 1
2 , we

have τw(X) ≥ τ − 1
2 , then Theorem 1.6 is improved too.

(3) Compare to theorem 1.6, if w(X) > 1
2 , we have τ+w(X)−1 ≥ τ− 1

2 , then
Theorem 1.6 is improved. Therefore, for a Banach space X with w(X) > 1

2 ,
Theorem 1.5 and Theorem 1.6 are improved.

(4) Compare to theorem 1.7, if w(X) >
√

5−1
2 , Theorem 1.7 is improved.

(5) In the case 0 < ρ ≤ 1, conditions ρ(τ) < τw(X) and ρ′(0) < w(X)
are equivalent and the latter condition for 0 < ρ ≤ 1 implies X has normal
structure is proved in [13] and [16].

We now present some more sufficient condition for normal structure in terms
of the moduli of arc length. We recall some definition. A continuous mapping
x(t) from a closed interval [a, b] to a Banach space X is called a curve in X
and denoted by C = {x(t) : a ≤ t ≤ b}. A curve is called simple if it does not
have multiple points. A curve is called closed if x(a) = x(b). A closed curve
is called symmetric about the origin if x ∈ C, then also −x ∈ C.

The concept of the length of a curve in Banach spaces resembles the same
concept in Euclidean spaces. For a curve C = {x(t) : a ≤ t ≤ b}, let P stand
for a partition a = t0 < t1 < t2 < · · · < ti < · · · < tn = b of the interval [a, b]
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and l(C, P ) =
∑n

i=1 ‖x(ti)−x(ti−1)‖. The points x(ti), where i = 0, 1, 2, . . . , n,
are called partition points on C, then the length l(C) of a curve C, is defined
as the least upper bound of l(C,P ) for all possible partitions P of [a, b], that
is,

l(C) = sup
P
{l(C, P )}.

If l(C) is finite, then the curve C is called rectifiable.
Let lta(C) denote the length of curve C = x(t) from a to t. For a rectifiable

curve C = x(t), a ≤ t ≤ b, the arc length lta(C) is a continuous function of t.
For a normed linear space X, if X2 is a two dimensional subspace of X,

then S(X2) is a simple closed curve which is symmetric about the origin and
unique up to orientation (see [5] or [17]).

Let O(X) = inf{l(S(Y )) : Y ∈ F2(X)}, and Q(X) = sup{l(S(Y )) : Y ∈
F2(X)}, where F2(X) denotes the family of all two dimensional subspaces of
X [7].

The following result shows a relationship between normal structure and the
modulus of arc length.

Corollary 2.9. For a Banach space X, if Q(X) < 4 + 4w(X) then X has
normal structure.

Proof. If X fails to have normal structure, then by theorem 2.7 Q(X) ≥ 4 +
4ρ(1) ≥ 4 + 4w(X), which is a contradiction. ¤
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