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Abstract. The aim of this paper is to prove some unified common fixed point theorems

under contractive conditions of integral type for two pairs of weakly compatible mappings

satisfying the property (E.A) in complex valued symmetric spaces using an implicit relation.

Some illustrative examples are also given which substantiate the usefulness of our utilized

implicit relation. Our results generalize and improve some of the existing results in the

literature and at the same time deduce new contractions of integral type in the context

of complex fixed point theory. We apply one of our results to examine the existence and

uniqueness of common solution for a system of Volterra-Hammerstein integral equations.

1. Introduction and Preliminaries

Banach contraction principle is one of the most powerful results in analysis.
This principle has been extended and generalized in several ways to prove the
existence and uniqueness of fixed points of mappings. One way of proving
such generalized results is to vary spaces such as: metric spaces, metric like
spaces, fuzzy metric spaces, cone metric spaces and several others.
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Recently, Azam et al. [6] initiated the concept of complex valued metric
space and utilized the same to prove common fixed point theorems for two
mappings satisfying rational inequalities. Since then, many authors studied
the existence and uniqueness of the fixed point and common fixed point results
of self mappings satisfying different contraction conditions in complex metric
spaces. Though complex metric spaces form a special class of cone metric
space, yet the definition of a cone metric space banks on the underlying Ba-
nach space which is not a division ring. Hence, rational expressions are not
meaningful in cone metric spaces and henceforth many results involving ratio-
nal contractions can not be generalized to cone metric spaces. So, with a view
to prove results involving rational inequalities, Azam et al. [6] propounded the
idea of complex metric spaces. In cone metric spaces the underlying metric
assumes values in linear spaces where the linear space may be even infinite
dimensional, whereas in the case of complex metric spaces the metric values
belong to the set of complex numbers which is one dimensional vector space
over the complex field. This is an instance which paves the way to consider
complex metric spaces independently. With a view to have further improve-
ment, we consider continuous complex symmetric (not necessarily satisfying
triangle inequality).

Aamri and Moutawakil [1] introduced the notion of (E.A) property and
Liu et al. [10] extend it to common (E.A) property. Verma and Pathak [21]
redefined this property in complex-valued metric spaces. Thereafter, several
authors proved a multitude of fixed point theorems using the concepts of
weakly compatible mappings and (E.A) property.

In this paper, we introduce the concept of complex valued symmetric spaces
which is larger than the class of complex valued metric spaces. Also, we
redefine (E.A) property on such spaces.

Let C be the set of all complex numbers and c1, c2 ∈ C. Define a partial
order relation - on C as follows:

c1 - c2 ⇐⇒ Re(c1) ≤ Re(c2) and Im(c1) ≤ Im(c2).

Consequently, it follows that c1 - c2, if one of the following conditions is
satisfied:

(i) Re(c1) = Re(c2), Im(c1) = Im(c2),
(ii) Re(c1) < Re(c2), Im(c1) = Im(c2),

(iii) Re(c1) = Re(c2), Im(c1) < Im(c2),
(iv) Re(c1) < Re(c2), Im(c1) < Im(c2).

In particular, we write c1 = c2 if (i) holds and we write c1 � c2 if c1 6= c2 and
one of (ii), (iii) and (iv) is satisfied while c1 ≺ c2 if only (iv) is satisfied.
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Throughout this paper, % is the dual relation of - and I stands for the
identity mapping. Also C+ = {c ∈ C : 0 - c}.

Remark 1.1. Note that the following assertions hold for all c1, c2, c3 ∈ C:

(1) α, β ∈ R with α ≤ β and 0 - c1 =⇒ αc1 - βc1,
(2) 0 - c1 � c2 =⇒ |c1| < |c2|,
(3) c1 - c2, c2 ≺ c3 =⇒ c1 ≺ c3.

Definition 1.2. Let X be a nonempty set. Suppose that a mapping d :
X ×X −→ C+ satisfies the following properties for all x, y ∈ X:

(i) 0 - d(x, y) and d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x).

Then d is called a complex valued symmetric and the pair (X, d) is called a
complex valued symmetric space (shortly, complex symmetric space).

Let d be a complex symmetric on a nonempty set X and for 0 ≺ ε ∈ C and
x ∈ X, let N(x, ε) = {y ∈ X : d(x, y) ≺ ε}. A topology τd on X is given by
U ∈ τd if and only if for each x ∈ U , N(x, ε) ⊆ U for some 0 ≺ ε ∈ C.

Example 1.3. Let X = [0,∞) and define a mapping d : X × X −→ C as
follows:

d(x, y) = ie|x−y| − i, ∀ x, y ∈ X.
Then the pair (X, d) is a complex symmetric space.

Definition 1.4. Let (X, d) be a complex symmetric space. A pair (P,Q) of
self mappings on X is said to satisfy the property (E.A) if there is a sequence
{un} in X such that limn→∞ Pun = limn→∞Qun = u, for some u ∈ X.

Example 1.5. Consider the complex symmetric space given in Example 1.3.
Define P,Q : X −→ X by

Px = 4x+ 2 and Qx = x+ 17, for all x ∈ X.
Consider the sequence {un = 2

n + 5}n∈N. Then

lim
n→∞

Pun = lim
n→∞

Qun = 22.

Hence, the pair (P,Q) satisfies the property (E.A).

Definition 1.6. Let (X, d) be a complex symmetric space. Two pairs (P, f)
and (Q, g) of self mappings on X are said to satisfy the common property
(E.A) if there are two sequences {un} and {vn} in X such that

lim
n→∞

Pun = lim
n→∞

fun = lim
n→∞

Qvn = lim
n→∞

gvn = u,
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for some u ∈ X.

Definition 1.7. Let P,Q, f and g be four self mappings on a complex sym-
metric space (X, d) and u, v, t ∈ X . If

(i) Pu = u, then u is said to be a fixed point of P ,
(ii) Pu = Qu = u, then u is said to be a common fixed point of P and Q,

(iii) Pu = fu, then u is said to be a coincidence point of P and f ,
(iv) Pu = fu = t, then t is called a point of coincidence of P and f ,
(v) Pu = fu = t and Qv = gv = t, then t is called a common point of

coincidence of the pairs (P, f) and (Q, g).

Definition 1.8. A pair of self mappings (P,Q) on a complex symmetric space
(X, d) is said to be compatible if limn→∞ d(PQun, QPun) = 0, whenever {un}
is a sequence in X such that limn→∞ Pun = limn→∞Qun = u, for some u ∈ X.

Evidently, in view of Definition 1.8, two self mappings P and Q on a com-
plex symmetric space (X, d) are non-compatible if there exists a sequence
{un} in X such that limn→∞ Pun = limn→∞Qun = u, for some u ∈ X,
but limn→∞ d(PQun, QPun) is either non-zero or non-existent. Hence, two
non-compatible self mappings on a complex symmetric space (X, d) enjoy the
property (E.A).

Definition 1.9. A pair of self mappings (P,Q) on a complex symmetric space
(X, d) is said to be weakly compatible if PQx = QPx whenever Px = Qx, x ∈
X.

Definition 1.10. The required control functions are defined as follows:

(i) ψ : C+ −→ C+ is a continuous nondecreasing function with ψ(z) = 0
if and only if z = 0,

(ii) φ : C+ −→ C+ is a lower semicontinuous function with φ(z) = 0 if and
only if z = 0,

(iii) θ : C+ −→ C+ is an upper semicontinuous function with θ(z) = 0 if
and only if z = 0.

By Ψ,Φ and Θ, we respectively denote the set of all ψ′s, the set of all φ′s
and the set of all θ′s. Here, it can be pointed out that (i) and (ii) are available
in [2].

Before proving our results, let us point out a fallacy in [20], The max func-
tion for complex numbers with partial order relation - was defined in [20] as
follows:

(i) max{z1, z2} = z2 ⇐⇒ z1 - z2,
(ii) z1 - max{z2, z3} =⇒ z1 - z2 or z1 - z3.
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In fact, this function is not well defined since two complex numbers may or
may not be comparable. For example max{1 + 5i, 5 + i} does not exist. Here
we correct this definition as follows:

Definition 1.11. The max function for complex numbers with partial order
relation - is defined as follows (for all z1, z2 ∈ C):

max{z1, z2} = z2 ⇔ |z1| ≤ |z2|.

The purpose of this paper is to present unified common fixed point theorems
under contractive conditions of integral type for two pairs of weakly compatible
mappings satisfying the property (E.A) in complex symmetric spaces using
an implicit relation. The proved results generalize and improve some of the
existing results in the literature and at the same time deduce new contractions
in the context of complex symmetric spaces. As an application of our main
result, we apply our result to prove the existence and uniqueness of common
solution for a system of Volterra-Hammerstein integral equations.

2. An implicit relation

In this section, we extend the idea of the implicit relations (due to Popa
[12]) to complex symmetric spaces in order to prove unified common fixed
point theorems of integral type in complex symmetric spaces.

Definition 2.1. Let = be the set of all complex valued lower semi-continuous
functions Ξ : C6

+ −→ C satisfying the following conditions (for all 0 ≺ c ∈ C):

(Ξ1) Ξ(c, 0, 0, c, c, 0) � 0,
(Ξ2) Ξ(c, 0, c, 0, 0, c) � 0,
(Ξ3) Ξ(c, c, 0, 0, c, c) % 0.

Example 2.2. Define Ξ : C6
+ −→ C as follows:

(i) Ξ(c1, c2, ..., c6) = c1 −Σ6
i=2λici, where λi ∈ R+, i = 2, 3, ..., 6 such that

Σ6
i=2λi < 1,

(ii) Ξ(c1, c2, ..., c6) = c1 − λmax{c2, c4, c5}, λ ∈ [0, 1),
(iii) Ξ(c1, c2, ..., c6) = c1 − λ∆,∆ ∈ {c2, c3, c4,

1
2(c3 + c4)} and λ ∈ [0, 1),

(iv) Ξ(c1, c2, ..., c6) = c1 − λmax{c2, c3, c4,
1
2(c5 + c6)}, λ ∈ [0, 1),

(v) Ξ(c1, c2, ..., c6) = c1 − λ1
c4(c3+c6)
1+c2+c6

− λ2
c6c5(c3+c4)

1+c2+c6
− λ3(c5 + c6)

− λ4(c3 + c4)− λ5c2,
where λi ∈ R+, i = 1, 2, ..., 5 such that λ3 + λ4 < 1 and 2λ3 + λ5 < 1,

(vi) Ξ(c1, c2, ..., c6) = c1 − λ c3c5+c4c6
1+c5+c6

, λ ∈ [0, 2),
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(vii) Ξ(c1, c2, ..., c6) = c1−α1(c2)c2−α2(c2) c2c41+c2
−α3(c2) c3c41+c2

−α4(c2) c4c61+c2
,

where αi : C+ −→ [0, 1), i = 1, 2, 3, 4 are given upper semi-continuous
mappings,

(viii) Ξ(c1, c2, ..., c6) = ψ(c1)− ψ
(
c3c4
1+c2

)
+ φ

(
c3c4
1+c2

)
, ψ ∈ Ψ and φ ∈ Φ,

(ix) Ξ(c1, c2, ..., c6) = ψ(c1)− ψ
(
c4c6
1+c2

)
− θ
(
c4c6
1+c2

)
, ψ ∈ Ψ and θ ∈ Θ,

(x) Ξ(c1, c2, ..., c6) = ψ(c1)−ψ
(

max{c2, c3, c4}
)

+ψ
(

max{c5, c6}
)
, ψ ∈ Ψ,

(xi) Ξ(c1, c2, ..., c6) = c1 − θ
(

max{c2, c3, c4, c5, c6}
)
, θ ∈ Θ with θ(c) ≺

c, ∀c ∈ C+,
(xii) Ξ(c1, c2, ..., c6) = c1 − λ1

c3c4
1+c2

− λ2
c3c5
1+c2

− λ3
c4c6
1+c2

, λ1, λ2, λ3 ∈ C,
(xiii) Ξ(c1, c2, ..., c6) = c1−Σ6

i=2λici−γ
c2c4+c3c5
1+c2+c6

, λi ∈ R such that Σ6
i=2λi < 1

and γ ∈ C.

3. Main results

On the lines of [22], consider Ω = {ω : Rn → C} wherein ω is a complex
valued Lebesgue integrable mapping which is summable and non-vanishing on
each measurable subset of Rn, such that for each 0 ≺ ε ∈ C,

∫ ε
0 ω(s)ds � 0.

Throughout this presentation, we assume that the complex symmetric d is
continuous.

Lemma 3.1. Let (X, d) be a complex symmetric space and P , Q, f and g be
self mappings on X. Suppose that

(a) the pair (P, f) (or (Q, g)) satisfies the property (E.A),
(b) PX ⊆ gX (or QX ⊆ fX),
(c) Qyn converges for every sequence {yn} in X whenever gyn converges (or

Pyn converges for every sequence {yn} in X whenever fyn converges),
(d) for all x, y ∈ X,ω ∈ Ω and Ξ ∈ =

Ξ

(∫ d(Px,Qy)

0
ω(s)ds,

∫ d(fx,gy)

0
ω(s)ds,

∫ d(Px,fx)

0
ω(s)ds,∫ d(Qy,gy)

0
ω(s)ds,

∫ d(Qy,fx)

0
ω(s)ds,

∫ d(Px,gy)

0
ω(s)ds

)
≺ 0. (3.1)

Then the pairs (P, f) and (Q, g) satisfy the common property (E.A).

Proof. If the pair (P, f) satisfies the property (E.A), then there exists a se-
quence {un} in X such that limn→∞ Pun = limn→∞ fun = u, for some u ∈ X.
As PX ⊆ gX, for each un there is vn ∈ X such that Pun = gvn. Hence,
limn→∞ gvn = limn→∞ Pun = u. Thus, we have

lim
n→∞

Pun = lim
n→∞

fun = lim
n→∞

gvn = u.
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Now, we claim that Qvn → u as n → ∞. On contrary, let us assume that

Qvn 9 u. Then
∫ d(u,limn→∞Qvn)

0 ω(s)ds � 0. On setting x = un and y = vn in
(3.1), we have

Ξ

(∫ d(Pun,Qvn)

0
ω(s)ds,

∫ d(fun,gvn)

0
ω(s)ds,

∫ d(Pun,fun)

0
ω(s)ds,∫ d(Qvn,gvn)

0
ω(s)ds,

∫ d(Qvn,fun)

0
ω(s)ds,

∫ d(Pun,gvn)

0
ω(s)ds

)
≺ 0,

which on taking n→∞ gives rise

Ξ

(∫ d(u,limn→∞Qvn)

0
ω(s)ds, 0, 0,

∫ d(limn→∞Qvn,u)

0
ω(s)ds,∫ d(limn→∞Qvn,u)

0
ω(s)ds, 0

)
- 0,

which is a contradiction to (Ξ1). Hence Qvn → u. Therefore,

lim
n→∞

Pun = lim
n→∞

fun = lim
n→∞

Qvn = lim
n→∞

gvn = u.

Thus, (P, f) and (Q, g) satisfy the common property (E.A). �

Now, we present our main result which is new even in the context of sym-
metric spaces. In our main result we present a new situation in which the
union of ranges of two functions is closed whereas the range of each one of
them need not to be closed. For example if f, g : [−2, 2] −→ [−2, 2] defined
dy fx = x, x ∈ [−2, 2), f(2) = 1 and gx = −x, x ∈ [−2, 2), g(2) = −1,
then f([−2, 2]) = [−2, 2) and g([−2, 2]) = (−2, 2] which are not closed. But
f([−2, 2]) ∪ g([−2, 2]) = [−2, 2] is closed.

Now we are equipped to prove our main result as follows:

Theorem 3.2. Let (X, d) be a complex symmetric space and P , Q, f and g
be self mappings on X which satisfy inequality (3.1). Suppose that

(a) one of the pairs (P, f) and (Q, g) satisfies (E.A) property,
(b) PX ⊆ gX, QX ⊆ fX and fX ∪ gX is closed subset of X,
(c) Qyn converges for every sequence {yn} in X whenever gyn converges (or

Pyn converges for every sequence {yn} in X whenever fyn converges).

Then the pairs (P, f) and (Q, g) have a unique common point of coincidence.
Moreover, P , Q, f and g have a unique common fixed point in X provided
(P, f) and (Q, g) are weakly compatible.

Proof. Since PX ⊆ gX, QX ⊆ fX and either (P, f) or (Q, g) satisfies (E.A)
property, due to Lemma 3.1 we have (P, f) and (Q, g) share the common
property (E.A). Hence, there are two sequences {un} and {vn} in X such
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that limn→∞ Pun = limn→∞ fun = limn→∞Qvn = limn→∞ gvn = u, for some
u ∈ X. Now, since fX∪gX is closed, limn→∞ fun = u ∈ fX∪gX. If u ∈ fX,
then there is v ∈ X such that fv = u. We assert that Pv = fv. If not, then∫ d(Pv,fv)

0 ω(s)ds � 0. Setting x = v and y = vn in (3.1), we have

Ξ

(∫ d(Pv,Qvn)

0
ω(s)ds,

∫ d(fv,gvn)

0
ω(s)ds,

∫ d(Pv,fv)

0
ω(s)ds,∫ d(Qvn,gvn)

0
ω(s)ds,

∫ d(Qvn,fv)

0
ω(s)ds,

∫ d(Pv,gvn)

0
ω(s)ds

)
≺ 0,

which on taking n −→∞ gives rise

Ξ

(∫ d(Pv,u)

0
ω(s)ds,

∫ d(fv,u)

0
ω(s)ds,

∫ d(Pv,fv)

0
ω(s)ds, 0,∫ d(u,fv)

0
ω(s)ds,

∫ d(Pv,u)

0
ω(s)ds

)
- 0,

which (in view of the fact that fv = u) reduces to

Ξ

(∫ d(Pv,fv)

0
ω(s)ds, 0,

∫ d(Pv,fv)

0
ω(s)ds, 0, 0,

∫ d(Pv,fv)

0
ω(s)ds

)
- 0,

a contradiction to Ξ2. Hence, Pv = fv. Therefore, we have

Pv = fv = u, (3.2)

that is, v is a coincidence point of the pair (P, f) and u is a point of coincidence
of P and f . Since PX ⊆ gX, there exists z ∈ X such that gz = u. We claim
that Qz = gz. Setting x = un and y = z in (3.1), and using similar arguments
as earlier, one can justify the claim. Thus,

Qz = gz = u, (3.3)

that is, z is a coincidence point of the pair (Q, g) and u is a point of coincidence
of Q and g. Therefore, u is a common point of coincidence of the pairs (P, f)
and (Q, g).

Now, we prove that u is unique. For this, let us assume that u′ is an-
other common point of coincidence of the pairs (P, f) and (Q, g). Then∫ d(u,u′)

0 ω(s)ds � 0 and there exist v′, z′ ∈ X such that Pv′ = fv′ = u′ and
Qz′ = gz′ = u′. On setting x = v′ and y = z in (3.1), we have

Ξ

(∫ d(Pv′,Qz)

0
ω(s)ds,

∫ d(fv′,gz)

0
ω(s)ds,

∫ d(Pv′,fv′)

0
ω(s)ds,∫ d(Qz,gz)

0
ω(s)ds,

∫ d(Qz,fv′)

0
ω(s)ds,

∫ d(Pv′,gz)

0
ω(s)ds

)
≺ 0,
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which gives rise

Ξ

(∫ d(u′,u)

0
ω(s)ds,

∫ d(u′,u)

0
ω(s)ds, 0, 0,

∫ d(u,u′)

0
ω(s)ds,

∫ d(u′,u)

0
ω(s)ds

)
≺ 0,

which is a contradiction to Ξ3. Hence, u is unique common point of coincidence
of the pairs (P, f) and (Q, g).

Next, we prove that u is a common fixed point of the mappings P,Q, f and
g. Since the pairs (P, f) and (Q, g) are weakly compatible, on using (3.2) and
(3.3), we have

Pu = Pfv = fPv = fu, (3.4)

Qu = Qgz = gQz = gu. (3.5)

Now, we show that Pu = u. Suppose that Pu 6= u, then
∫ d(Pu,u)

0 ω(s)ds � 0.
Using (3.1) with x = u and y = z, we have

Ξ

(∫ d(Pu,Qz)

0
ω(s)ds,

∫ d(fu,gz)

0
ω(s)ds,

∫ d(Pu,fu)

0
ω(s)ds,∫ d(Qz,gz)

0
ω(s)ds,

∫ d(Qz,fu)

0
ω(s)ds,

∫ d(Pu,gz)

0
ω(s)ds

)
≺ 0,

which, on using (3.3) and (3.4), reduces to

Ξ

(∫ d(Pu,u)

0
ω(s)ds,

∫ d(Pu,u)

0
ω(s)ds, 0, 0,∫ d(u,Pu)

0
ω(s)ds,

∫ d(Pu,u)

0
ω(s)ds

)
≺ 0,

which is a contradiction to (Ξ3). Thus, Pu = u. This shows that u is a
common fixed point of P and f . Similarly, on setting x = v and y = u in (3.1)
and using (3.2) and (3.5) one can prove that u is also a common fixed point
of Q and g. Therefore, u is a common fixed point of the mappings P,Q, f and
g. The uniqueness of the common fixed point of the mappings P,Q, f and g
is a direct consequence of the uniqueness of the common point of coincidence
of the pairs (P, f) and (Q, g). The proof is similar if u ∈ gX, hence omitted.
This completes the proof. �

Since two non-compatible self mappings satisfy the property (E.A), so as a
consequence of Theorem 3.2 we conclude the following corollary.

Corollary 3.3. Let P,Q, f and g be four self mappings defined on a complex
symmetric space (X, d) which satisfy inequality (3.1). Suppose that (P, f) (or
(Q, g)) are non-compatible and the pairs (P, f) and (Q, g) are weakly compat-
ible. If fX ∪ gX is a closed subset of X, PX ⊆ gX, QX ⊆ fX and Qyn
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converges for every sequence {yn} in X whenever gyn converges (or Pyn con-
verges for every sequence {yn} in X whenever fyn converges), then P , Q, f
and g have a unique common fixed point in X.

As a consequence of Theorem 3.2 we have the following corollary for four
finite families of self mappings defined on a complex symmetric space.

Corollary 3.4. Let {Pi}l1, {Qj}n1 , {fk}m1 and {gr}s1 be four finite pairwise com-
muting families of self mappings defined on a complex symmetric space (X, d).
Let P = P1P2 · · ·Pl, Q = Q1Q2 · · ·Qn, f = f1f2 · · · fm and g = g1g2 · · · gs sat-
isfying the inequality (3.1). Assume that

(a) one of the pairs (P, f) and (Q, g) satisfies the property (E.A),
(b) PX ⊆ gX, QX ⊆ fX and fX ∪ gX is closed subset of X,
(c) Qyn converges for every sequence {yn} in X whenever gyn converges

(or Pyn converges for every sequence {yn} in X whenever fyn con-
verges).

Then the component maps of the families {Pi}l1, {Qj}n1 , {fk}m1 and {gr}s1 have
a unique common fixed point.

Proof. On the lines of Theorem 2.2 due to Imdad et al. [8] and using Theorem
3.2 one can prove this result. �

On the lines of Theorem 3.2 one can prove the following results which can be
viewed as generalizations of Theorems 3.1, 3.2 and 3.3 due to Ali and Imdad
[3], Theorem 3.1 of Manro [11], Theorems 3.1, 3.4 of Aliouche [5] and Theorem
4.4 of Popa and Patriciu [13].

Theorem 3.5. Let (X, d) be a complex symmetric space and P , Q, f and g
be self mappings on X satisfying inequality (3.1). Suppose that

(a) the pairs (P, f) and (Q, g) enjoy the common property (E.A),
(b) fX and gX are closed subsets of X, (or)
(b′) PX ⊆ gX and QX ⊆ fX, (or)
(b′′) PX and QX are closed provided PX ⊆ gX and QX ⊆ fX.

Then the pairs (P, f) and (Q, g) have a unique common point of coincidence.
Moreover, if the pairs (P, f) and (Q, g) are weakly compatible, then P , Q, f
and g have a unique common fixed point in X.

Theorem 3.6. Let (X, d) be a complex symmetric space and P , Q, f and g
be self mappings on X satisfying inequality (3.1). Suppose that

(a) the pair (P, f) (or (Q, g)) has the property (E.A),
(b) PX ⊆ gX (or QX ⊆ fX) and fX (or gX) is closed subset of X,(or)
(b′) PX ⊆ gX, QX ⊆ fX and one of PX,QX, fX and gX is closed

subset of X,
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(c) Qyn converges for every sequence {yn} in X whenever gyn converges
(or Pyn converges for every sequence {yn} in X whenever fyn con-
verges).

Then the pairs (P, f) and (Q, g) have a unique common point of coincidence.
Moreover, if the pairs (P, f) and (Q, g) are weakly compatible, then P , Q, f
and g have a unique common fixed point in X.

Corollary 3.7. Let (X, d) be a complex symmetric space and P , Q, f and
g be self mappings on X. Suppose that there exists Ξ ∈ = such that for all
x, y ∈ X,

Ξ
(
d(Px,Qy), d(fx, gy), d(Px, fx), d(Qy, gy), d(Qy, fx), d(Px, gy)

)
- 0,

if

(a) the pair (P, f) (or (Q, g)) has the property (E.A),
(b) PX ⊆ gX, QX ⊆ fX and fX ∪ gX is closed subset of X,(or)
(b′) PX ⊆ gX (or QX ⊆ fX) and fX (or gX) is closed subset of X,
(c) Qyn converges for every sequence {yn} in X whenever gyn converges

(or Pyn converges for every sequence {yn} in X whenever fyn con-
verges).

Then the pairs (P, f) and (Q, g) have a unique common point of coincidence.
Moreover, if the pairs (P, f) and (Q, g) are weakly compatible, then P , Q, f
and g have a unique common fixed point in X.

Proof. On setting ω(s) = 1 for all s ∈ Rn in Theorems 3.2 and 3.6 we get this
corollary. �

Corollary 3.8. Let (X, d) be a complex symmetric space and P , Q, f and
g be self mappings on X. Suppose that there exists Ξ ∈ = such that for all
x, y ∈ X,

Ξ
(
d(Px,Qy), d(fx, gy), d(Px, fx), d(Qy, gy), d(Qy, fx), d(Px, gy)

)
- 0,

if

(a) the pairs (P, f) and (Q, g) enjoy the common property (E.A),
(b) fX and gX are closed subsets of X,(or)
(b′) PX ⊆ gX and QX ⊆ fX, (or)
(b′′) PX and QX are closed provided PX ⊆ gX and QX ⊆ fX.

Then the pairs (P, f) and (Q, g) have a unique common point of coincidence.
Moreover, if the pairs (P, f) and (Q, g) are weakly compatible, then P , Q, f
and g have a unique common fixed point in X.

Proof. On setting ω(s) = 1 for all s ∈ Rn in Theorem 3.5 we get this corollary.
�
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In view of Example 2.2, we have the following corollary which covers, gen-
eralizes and improves several known results beside yielding new contraction
conditions in the context of complex fixed point theory (e.g. A7 −A13).

Corollary 3.9. The conclusions of Theorems 3.2, 3.5 and 3.6 remain true if
(for all x, y ∈ X,ω ∈ Ω) implicit relation (3.1) is replaced by any one of the
following:

(A1)

∫ d(Px,Qy)

0
ω(s)ds - λ1

∫ d(fx,gy)

0
ω(s)ds+ λ2

∫ d(Px,fx)

0
ω(s)ds

+ λ3

∫ d(Qy,gy)

0
ω(s)ds+ λ4

∫ d(Qy,fx)

0
ω(s)ds

+ λ5

∫ d(Px,gy)

0
ω(s)ds,

where λi ∈ R+, i = 1, 2, · · · , 5 such that Σ5
i=1λi < 1.

(A2)

∫ d(Px,Qy)

0
ω(s)ds

- λmax

{∫ d(fx,gy)

0
ω(s)ds,

∫ d(Qy,gy)

0
ω(s)ds,

∫ d(Qy,fx)

0
ω(s)ds

}
,

where λ ∈ [0, 1).

(A3)

∫ d(Px,Qy)

0
ω(s)ds - λ∆,

where

∆ ∈
{

1

2

∫ d(Px,fx)

0
ω(s)ds+

1

2

∫ d(Qy,gy)

0
ω(s)ds,

∫ d(fx,gy)

0
ω(s)ds,∫ d(Px,fx)

0
ω(s)ds,

∫ d(Qy,gy)

0
ω(s)ds

}
and λ ∈ [0, 1).

(A4)

∫ d(Px,Qy)

0
ω(s)ds

- λmax

{∫ d(fx,gy)

0
ω(s)ds,

∫ d(Px,fx)

0
ω(s)ds,∫ d(Qy,gy)

0
ω(s)ds,

1

2

∫ d(Qy,fx)

0
ω(s)ds+

1

2

∫ d(Px,gy)

0
ω(s)ds

}
,
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where λ ∈ [0, 1).

(A5)

∫ d(Px,Qy)

0
ω(s)ds

- λ1

∫ d(Qy,gy)
0 ω(s)ds

( ∫ d(Px,fx)
0 ω(s)ds+

∫ d(Px,gy)
0 ω(s)ds

)
1 +

∫ d(fx,gy)
0 ω(s)ds+

∫ d(Px,gy)
0 ω(s)ds

+λ2

∫ d(Px,gy)
0 ω(s)ds

∫ d(Qy,fx)
0 ω(s)ds

∫ d(Px,fx)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds+
∫ d(Px,gy)

0 ω(s)ds

+λ2

∫ d(Px,gy)
0 ω(s)ds

∫ d(Qy,fx)
0 ω(s)ds

∫ d(Qy,gy)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds+
∫ d(Px,gy)

0 ω(s)ds

+λ3

(∫ d(Qy,fx)

0
ω(s)ds+

∫ d(Px,gy)

0
ω(s)ds

)
+λ4

(∫ d(Px,fx)

0
ω(s)ds+

∫ d(Qy,gy)

0
ω(s)ds

)
+λ5

∫ d(fx,gy)

0
ω(s)ds,

where λi ∈ R+, i = 1, 2, ..., 5 such that λ3 + λ4 < 1 and 2λ3 + λ5 < 1.

(A6)

∫ d(Px,Qy)

0
ω(s)ds - λ

∫ d(Px,fx)
0 ω(s)ds

∫ d(Qy,fx)
0 ω(s)ds

1 +
∫ d(Qy,fx)

0 ω(s)ds+
∫ d(Px,gy)

0 ω(s)ds

+λ

∫ d(Qy,gy)
0 ω(s)ds

∫ d(Px,gy)
0 ω(s)ds

1 +
∫ d(Qy,fx)

0 ω(s)ds+
∫ d(Px,gy)

0 ω(s)ds

where λ ∈ [0, 2).

(A7)

∫ d(Px,Qy)

0
ω(s)ds

- α1

(∫ d(fx,gy)

0
ω(s)ds

)∫ d(fx,gy)

0
ω(s)ds

+α2

(∫ d(fx,gy)

0
ω(s)ds

)∫ d(fx,gy)
0 ω(s)ds

∫ d(Qy,gy)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds

+α3

(∫ d(fx,gy)

0
ω(s)ds

)∫ d(Px,fx)
0 ω(s)ds

∫ d(Qy,gy)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds
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+α4

(∫ d(fx,gy)

0
ω(s)ds

)∫ d(Qy,gy)
0 ω(s)ds

∫ d(Px,gy)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds
,

where αi : C+ −→ [0, 1), i = 1, 2, 3, 4 are given upper semi-continuous map-
pings.

(A8) ψ

(∫ d(Px,Qy)

0
ω(s)ds

)
- ψ

(∫ d(Px,fx)
0 ω(s)ds

∫ d(Qy,gy)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds

)

−φ
(∫ d(Px,fx)

0 ω(s)ds
∫ d(Qy,gy)

0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds

)
,

where ψ ∈ Ψ and φ ∈ Φ.

(A9) ψ

(∫ d(Px,Qy)

0
ω(s)ds

)
- ψ

(∫ d(Qy,gy)
0 ω(s)ds

∫ d(Px,gy)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds

)

+θ

(∫ d(Qy,gy)
0 ω(s)ds

∫ d(Px,gy)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds

)
,

where ψ ∈ Ψ and θ ∈ Θ.
(A10)

ψ

(∫ d(Px,Qy)

0
ω(s)ds

)
- ψ

(
max

{∫ d(fx,gy)

0
ω(s)ds,

∫ d(Px,fx)

0
ω(s)ds,

∫ d(Qy,gy)

0
ω(s)ds

})
− ψ

(
max

{∫ d(Qy,fx)

0
ω(s)ds,

∫ d(Px,gy)

0
ω(s)ds

})
,

where ψ ∈ Ψ.

(A11)

∫ d(Px,Qy)

0
ω(s)ds

- θ

(
max

{∫ d(fx,gy)

0
ω(s)ds,

∫ d(Px,fx)

0
ω(s)ds,

∫ d(Qy,gy)

0
ω(s)ds,∫ d(Qy,fx)

0
ω(s)ds,

∫ d(Px,gy)

0
ω(s)ds

})
,
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where θ ∈ Θ with θ(z) ≺ z, ∀z ∈ C+.

(A12)

∫ d(Px,Qy)

0
ω(s)ds - λ1

∫ d(Px,fx)
0 ω(s)ds

∫ d(Qy,gy)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds

+λ2

∫ d(Px,fx)
0 ω(s)ds

∫ d(Qy,fx)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds

+λ3

∫ d(Qy,gy)
0 ω(s)ds

∫ d(Px,gy)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds
,

where λ1, λ2, λ3 ∈ C.
(A13)∫ d(Px,Qy)

0
ω(s)ds

- λ2

∫ d(fx,gy)

0
ω(s)ds+ λ3

∫ d(Px,fx)

0
ω(s)ds

+ λ4

∫ d(Qy,gy)

0
ω(s)ds+ λ5

∫ d(Qy,fx)

0
ω(s)ds+ λ6

∫ d(Px,gy)

0
ω(s)ds

+ γ

∫ d(fx,gy)
0 ω(s)ds

∫ d(Qy,gy)
0 ω(s)ds+

∫ d(Px,fx)
0 ω(s)ds

∫ d(Qy,fx)
0 ω(s)ds

1 +
∫ d(fx,gy)

0 ω(s)ds+
∫ d(Px,gy)

0 ω(s)ds
,

where λi ∈ R such that Σ6
i=2λi < 1 and γ ∈ C.

Proof. The proof of each contraction condition in this corollary follows from
Theorems 3.2, 3.5 and 3.6 in view of Example 2.2. �

Remark 3.10. The majority of results corresponding to contraction con-
ditions given in Corollary 3.9 generalize and improve versions of multitude
existing results. Theorem 3.6 corresponding to contraction condition:

(1) (A1) improves Theorem 3.2 of Sarwar et al. [16].
(2) (A2) generalizes Theorem 1 of Aliouche [4] and also corrects, gener-

alizes and improves Theorem 2.1 of [21]. Especially, taking ω(s) =
1, ∀s ∈ Rn we get the corrected form of Theorem 2.1 of Verma and
Pathak [21].

(3) (A3) generalizes and improves Theorem 3.1 of [17]. Particulary, taking
ω(s) = 1, ∀s ∈ Rn we get Theorem 3.1 of Shukla and Pagey [17] except
when uxy = 1

2d(Qy, fx)d(Px, gy).
(4) (A4) corrects, generalizes and improves Theorem 3.1 of [9]. Especially,

taking ω(s) = 1, ∀s ∈ Rn we get the corrected form of Theorem 3.1 of
J. Kumar and Y. Kumar [9].
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(5) (A5) generalizes and improves Theorem 3.1 of [18]. Particulary, taking
ω(s) = 1, ∀s ∈ Rn we get Theorem 3.1 of Shukla and Pagey [18].

(6) (A6) generalizes and improves Corollary 2 of [15]. Especially, taking
ω(s) = 1, ∀s ∈ Rn we get Corollary 2 of Sarwar and Zada [15].

4. An application to integral equations

Our plan in this section is to apply Theorem 3.2 (corresponding to con-
traction condition (A9)) to prove the existence and uniqueness of a common
solution for the following system of Volterra-Hammerstein integral equations:

x(t) = hi(t) + a

∫ s

0
α(t, z)ki(z, x(z))dz + b

∫ ∞
0

β(t, z)qi(z, x(z))dz, (4.1)

for all t ∈ (0,∞), where a, b ∈ R, x, hi ∈ C(L(0,∞),R), α, β, ki and qi, i =
1, 2, 3, 4 are real valued measurable functions with respect to both variables
on (0,∞).

For simplification, we use the following symbols:

Ωi

(
x(t)

)
=

∫ s

0
α(t, z)ki(z, x(z))dz, fi

(
x(t)

)
=

∫ ∞
0

β(t, z)qi(z, x(z))dz,

Γxy(t) = ‖h1(t) + aΩ1

(
x(t)

)
+ bf1

(
x(t)

)
− h2(t)− aΩ2

(
y(t)

)
− bf2

(
y(t)

)
‖ei,

Λxy(t) = ‖h2(t) + aΩ2

(
y(t)

)
+ bf2

(
y(t)

)
− h4(t)− aΩ4

(
y(t)

)
− bf4

(
y(t)

)
‖ei,

Υxy(t) = ‖h1(t) + aΩ1

(
x(t)

)
+ bf1

(
x(t)

)
− h4(t)− aΩ4

(
y(t)

)
− bf4

(
y(t)

)
‖ei,

>xy(t) = ‖h3(t) + aΩ3

(
x(t)

)
+ bf3

(
x(t)

)
− h4(t)− aΩ4

(
y(t)

)
− bf4

(
y(t)

)
‖ei,

X = C(L(0,∞),R), space of all real valued measurable functions on(0,∞).

Define four mappings gi : X −→ X, i = 1, 2, 3, 4 as follows:

gix(t) = hi(t) + aΩi

(
x(t)

)
+ bfi

(
x(t)

)
, ∀x ∈ X. (4.2)

One can note that the system (4.1) of Volterra-Hammerstein integral equa-
tions have a unique common solution if and only if the four self mappings
g1, g2, g3 and g4 given in (4.2) have a unique common fixed point.

Assume that the following assumptions hold (for all t ∈ (0,∞), x ∈ X):

(p1) h4(t)−h1(t)+a
[
Ω4

(
g1x(t)+h4(t)

)
−Ω1

(
x(t)

)]
+b
[
f4

(
g1x(t)+h4(t)

)
−

f1

(
x(t)

)]
= 0,

(p2) h3(t)−h2(t)+a
[
Ω3

(
g2x(t)+h3(t)

)
−Ω2

(
x(t)

)]
+b
[
f3

(
g2x(t)+h3(t)

)
−

f2

(
x(t)

)]
= 0,

(p3) g2
1x(t) = g2

3x(t) and g2
2x(t) = g2

4x(t).
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Theorem 4.1. The system of Volterra-Hammerstein integral equations given
in (4.1) under assumptions (p1)− (p3) have a unique solution if

(i) there is a sequence {un} in X such that limn→∞ g1un = limn→∞ g3un =
u ∈ X,

(ii) Γxy(t) -
Λxy(t)Υxy(t)

1+maxt∈(0,∞)>xy(t) , for each x, y ∈ X, t ∈ (0,∞),

(iii) g3X ∪ g4X is closed subspace of X and
(iv) g2yn converges for every sequence {yn} in X whenever g4yn converges.

Proof. Define a mapping d : X ×X −→ C+ by

d(x, y) = max
t∈(0,∞)

‖x(t)− y(t)‖ei for all x, y ∈ X.

Then (X, d) is a complex symmetric space. Let x, y ∈ X. Then (for each
t ∈ (0,∞)) we have

d(g1x, g2y) = max
t∈(0,∞)

Γxy(t),

d(g2y, g4y) = max
t∈(0,∞)

Λxy(t),

d(g1x, g4y) = max
t∈(0,∞)

Υxy(t),

d(g3x, g4y) = max
t∈(0,∞)

>xy(t).

Now, from assumption (ii) for each x, y ∈ X and t ∈ (0,∞), we have

Γxy(t) -
Λxy(t)Υxy(t)

1 + maxt∈(0,∞)>xy(t)

-
maxt∈(0,∞) Λxy(t) maxt∈(0,∞) Υxy(t)

1 + maxt∈(0,∞)>xy(t)
,

which implies that

max
t∈(0,∞)

Γxy(t) -
maxt∈(0,∞) Λxy(t) maxt∈(0,∞) Υxy(t)

1 + maxt∈(0,∞)>xy(t)
,

implying thereby

ψ
(

max
t∈(0,∞)

Γxy(t)
)
- ψ

(maxt∈(0,∞) Λxy(t) maxt∈(0,∞) Υxy(t)

1 + maxt∈(0,∞)>xy(t)

)
,

- ψ
(maxt∈(0,∞) Λxy(t) maxt∈(0,∞) Υxy(t)

1 + maxt∈(0,∞)>xy(t)

)
+θ
(maxt∈(0,∞) Λxy(t) maxt∈(0,∞) Υxy(t)

1 + maxt∈(0,∞)>xy(t)

)
,
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which yields that

ψ
(
d(g1x, g2y)

)
- ψ

(d(g2y, g4y)d(g1x, g4y)

1 + d(g3x, g4y)

)
+ θ
(d(g2y, g4y)d(g1x, g4y)

1 + d(g3x, g4y)

)
,

where ψ ∈ Ψ and θ ∈ Θ.
Now, we prove that g1X ⊆ g4X. Let x ∈ X. Then for each t ∈ (0,∞) we

have

g4

(
g1x(t) + h4(t)

)
= h4(t) + aΩ4

(
g1x(t) + h4(t)

)
+ bf4

(
g1x(t) + h4(t)

)
= g1x(t)− g1x(t) + h4(t) + aΩ4

(
g1x(t) + h4(t)

)
+bf4

(
g1x(t) + h4(t)

)
= g1x(t)− h1(t)− aΩ1

(
x(t)

)
− bf1

(
x(t)

)
+ h4(t)

+aΩ4

(
g1x(t) + h4(t)

)
+ bf4

(
g1x(t) + h4(t)

)
= g1x(t) + h4(t)− h1(t) + a

[
Ω4

(
g1x(t) + h4(t)

)
−Ω1

(
x(t)

)]
+ b
[
f4

(
g1x(t) + h4(t)

)
− f1

(
x(t)

)]
.

On using (p1), we get that g4

(
g1x(t)+h4(t)

)
= g1x(t) for each t ∈ (0,∞). This

shows that g1X ⊆ g4X. Similarly, using (p2) one can prove that g2X ⊆ g3X.
Next, we show that the pairs (g1, g3) and (g2, g4) are weakly compatible.

Assume that g1x = g3x for some x ∈ X. Then

g1x(t) = g3x(t) for all t ∈ (0,∞). (4.3)

On using (4.3) and (p3), we have

g1g3x(t) = g1g1x(t) = g2
1x(t) = g2

3x(t) = g3g3x(t) = g3g1x(t) ∀t ∈ (0,∞).

Therefore, g1g3x = g3g1x whenever g1x = g3x. Proving that g1 and g3 are
weakly compatible. Similarly, one can prove that g2 and g4 are weakly com-
patible. Thus, all conditions of Theorem 3.2 [corresponding to contraction
condition (A9) with ω(s) = 1 ∀s ∈ Rn] are satisfied. So that, there exists a
unique common fixed point of g1, g2, g3 and g4 in X and, hence, the system
(4.1) of Volterra-Hammerstein integral equations have a unique solution. �
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