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Abstract. In this paper, we provide two basic Fan-Browder type fixed point theorems for

multimaps on geodesic convex sets in Hadamard manifolds. Also, an existence theorem of

Nash equilibrium for an 1-person game in Hadamard manifolds is established.

1. Introduction

As we know, the concept of convexity and its various generalizations are
important to quantitative and qualitative studies of nonlinear analysis and
convex analysis. In 1961, using his generalization of the Knaster-Kuratowski-
Mazurkiewicz (simply, KKM) theorem, Fan [4] established a very basic geo-
metric lemma for multimaps and gave several applications. In 1968, Browder
[1] obtained a fixed point theorem which is more convenient form of Fan’s
lemma, and using this theorem, he established a complete treatment of a wide
applications of coincidence and fixed point theory, minimax theory, variational
inequalities, monotone operators and game theory. Since then, this result is
known as Fan-Browder fixed point theorem, and there have been numerous
generalizations and applications in numerous areas of nonlinear analysis where
the various generalized convexity concepts are equipped. For the literature,
see Browder [1], Park [11] and the references therein.
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On the other hand, in the last two decades, several important concepts
of nonlinear analysis have been extended from Euclid/Hilbert spaces to Rie-
mannian manifold settings in order to go further in the studies of convex
analysis, fixed point theory, variational problems, and related topics. In 2003,
Németh [10] first proved a basic fixed point theorem for continuous maps on
a compact geodesic convex subset of a Hadamard manifold, and he proved
the existence of solutions for variational inequalities in a Hadamard manifold.
Since then, using the Németh fixed point theorem, several authors investigate
various applications of variational inequalities, minimax inequalities, and equi-
librium problems in Hadamard manifolds, e.g., see [2,7-10,12]. Recently, there
have been some researches on the Fan-Browder type fixed point theorem for
multimaps in a geodesic convex subset of a Hadamard manifold as in [13,14];
but there are some typical problems of the concept of geodesic convex hull as
remarked in [8]. Hence we could not find the exact Fan-Browder type fixed
point theorems for multimaps on a geodesic convex subset of a Hadamard
manifold yet.

In this paper, using a geodesic KKM theorem for closed valued multimaps
due to Colao et al. [2], we prove a Fan-Browder type fixed point theorem
for multimaps on a geodesic convex subset of a Hadamard manifold. As an
application, we will give an existence theorem of Nash equilibrium for an 1-
person game in Hadamard manifolds. Also, as an application of KKM theorem
for open valued multimaps due to Kim [5], we will prove an analogous KKM
theorem for geodesic convex valued multimaps in a Hadamard manifold, and
next prove another Fan-Browder type fixed point theorem for multimaps on a
geodesic convex subset in a Hadamard manifold. Those two Fan-Browder type
fixed point theorems for geodesic convex sets in Hadamard manifolds can be
basic tools for solving nonlinear problems in Hadamard manifolds, and there
might have been numerous generalizations and applications in numerous areas
of nonlinear analysis where various generalized geodesic convexity concepts are
equipped.

2. Preliminaries

We begin with some standard notions and terminologies. If A is a subset
of a vector space, we shall denote by 2A the family of all subsets of A, and
by coA the convex hull of A. Denote the unit simplex in Rn by ∆n−1, that
is, ∆n−1 := {(λ1, . . . , λn) =

∑n
i=1 λiei ∈ [0, 1]n |

∑n
i=1 λi = 1} = 〈e1, . . . , en〉;

and simply write the i-th unit vector ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ ∆n−1.

Recall some basic definitions on Riemannian manifolds in [2, 7, 10, 12]. Let
M be a complete finite dimensional Riemannian manifold with the Levi-Civita
connection ∇ on M . Let x ∈ M and let TxM denote the tangent space at
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x to M . For x, y ∈ M , let γ : [0, 1] → M be a piecewise smooth curve
joining x to y. Then, a curve γ is called a geodesic if γ(0) = x, γ(1) = y, and
∇γ̇ γ̇ = 0 for all t ∈ [0, 1]. A geodesic γ : [0, 1]→ M joining x to y is minimal
if its arc-length equals its Riemannian distance between x and y. And, M is
called a Hadamard manifold if M is a simply connected complete Riemannian
manifold of non-positive sectional curvature.

Recall the following concept which generalize the convex condition in linear
spaces to Riemannian manifolds:

Definition 2.1. A nonempty subset X of a Riemannian manifold M is said
to be geodesic convex if for any x, y ∈ X, the geodesic joining x to y is
contained in X. For an arbitrary subset C of M , the minimal geodesic convex
subset which contains C is called the geodesic convex hull of C, and denoted
by Gco(C).

Then the simple definition of geodesic convex hull Gco(C) in a Riemannian
manifold M overcomes the delicate problems of geodesic convexity remarked
in [8]. It is clear that if S is geodesic convex, then Gco (S) = S. Note that as
shown in [2], Gco (C) =

⋃∞
n=1Cn, where C0 = C, and Cn = {z ∈ γx,y | x, y ∈

Cn−1} for each n ∈ N. Here, γx,y : [0, 1] → M denotes a geodesic joining x
to y.

Remark 2.2. (1) For each x ∈ M , it is clear that Gco {x} = {x} so that
each singleton is geodesic convex. Note that when C is a geodesic convex
subset of M , and for any finite subset {x1, . . . , xn} ⊆ C, we know that
Gco({x1, . . . , xn}) ⊆ C; however we do not know whether Gco({x1, . . . , xn}
is closed or compact in general.
(2) Recently, various geodesic convexity assumptions, involving the exponen-
tial map along with affine maps, geodesics, and geodesic convex hulls, have
been established on Hadamard manifolds by several authors, e.g., see [2, 7-10,
12-14]. In a recent paper [8], Kristály et al. pointed out that those conditions in
[9, 13, 14] are mutually equivalent, and they hold if and only if the Hadamard
manifold is isometric to the Euclidean space; and hence the corresponding re-
sults obtained in Hadamard manifolds are actually their well-known Euclidean
counterparts. Therefore, it should be noted that we are very careful to apply
the geodesic convex hull concept in Hadamard manifolds. In a finite dimen-
sional Euclidean space, for the equivalent concepts for the minimal geodesic,
see Theorem 2.1 in [8].

Next, we recall some notions and terminologies on the generalized Nash
equilibrium for pure strategic games as in [3, 11]. Let I = {1, 2, . . . , n} be a
finite (or possibly countably infinite) set of players. A noncooperative gener-
alized game of normal form is an ordered 3n-triple G = (Xi;Ti, fi)i∈I where
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for each player i ∈ I, Xi is a pure strategy space for the player i, and the set
X := Πn

i=1Xi = X−i×Xi, joint strategy space, is the Cartesian product of the
individual strategy spaces, and the element of Xi is called a strategy. Here,
we denote X−i := Πj∈I−{i}Xj . For an action profile x = (x1, · · · , xn) ∈ X =
Πi∈IXi, we shall write x−i = (x1, · · · , xi−1, xi+1, · · · , xn) ∈ X−i, and we may
simply write x = (x−i, xi) ∈ X−i × Xi = X. Let fi : X−i × Xi → R be a
payoff function (or utility function), and Ti : X → 2Xi be a constraint cor-
respondence for the player i. Then, a strategy n-tuple x̄ = (x̄1, . . . , x̄n) ∈ X
is called a Nash equilibrium for the generalized game G if for each i ∈ I,

x̄i ∈ Ti(x̄) and fi(x̄−i, x̄i) ≤ fi(x̄−i, y) for all y ∈ Ti(x̄).

When I is singleton, then G is called an 1-person game.

Using the exact geodesic convex hull concept, Colao et al. [2] introduced the
generalized concept of KKM maps in a Hadamard manifold as follows:

Definition 2.3. Let X be a nonempty geodesic convex subset of a Hadamard
manifold M . A multimap T : X → 2M is called a geodesic KKM map on X if
for any finite subset {x1, . . . , xn} ⊆ X,

Gco
(
{x1, . . . , xn}

)
⊆

n⋃
i=1

T (xi).

It is clear that if T is a geodesic KKM map on X, then x ∈ T (x) and hence
T (x) is nonempty for each x ∈ X.

In order to obtain existence results for various equilibrium problems in
Hadamard manifolds, Colao et al. [2] provided an analogous KKM theorem
in the setting of Hadamard manifolds which is essential in proving the main
result of this paper as follows:

Lemma 2.4. ([2]) Let X be a nonempty geodesic convex subset of a Hadamard
manifold M , and T : X → 2M be a geodesic KKM-map on X such that
for each x ∈ X, T (x) is closed, and T (xo) is compact for some xo ∈ X.
Then ⋂

x∈X
T (x) 6= ∅.

An open-valued KKM theorem for convex sets due to Kim [5] in linear
spaces is also essential in proving an analogous open-valued KKM theorem in
the setting of Hadamard manifolds as follows:

Lemma 2.5. ([5]) Let X = {e1, . . . , en} be the set of vertices of a simplex
∆n−1 in E = Rn, and T : X → 2E be a multimap such that

(1) for each x ∈ X, T (x) is an open subset of E;
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(2) for any finite subset {e1, . . . , ek} ⊆ X, co({e1, . . . , ek}) ⊆
⋃k
i=1 T (ei).

Then we have
n⋂
i=1

T (ei) 6= ∅.

From now on, let M be a finite dimensional Hadamard manifold and X
be a nonempty geodesic convex subset of a Hadamard manifold M . For the
other standard notations and terminologies, we shall refer to Colao et al. [2],
Németh [10], Udrişte [12], and the references therein.

3. Fan-Browder type fixed point theorems and applications

As remarked in [8], the proofs of Fan-Browder type fixed point theorems,
Theorem 3.1 in [13], and Theorem 3.1 in [14], hold true only in the finite
dimensional Euclidean spaces settings so that in this case, those theorems and
proofs are reduced to the well-known results as in [1, 11]. Therefore, we should
need new proofs for those theorems by using suitable and meaningful geodesic
convex hull definition in Hadamard manifolds.

As an application of Lemma 2.4, we begin with the first Fan-Browder type
fixed point theorem for geodesic convex sets in Hadamard manifolds as follows:

Theorem 3.1. Let X be a nonempty geodesic convex subset of a Hadamard
manifold M , and S, T : X → 2X be two multimaps such that

(1) for each y ∈ X, T−1(y) is (possibly empty) open in X;
(2) for each x ∈ X, T (x) is nonempty and S(x) is geodesic convex, and

T (x) ⊆ S(x);
(3) there exists an xo ∈ X such that X \ T−1(xo) is compact.

Then S has a fixed point x̄ ∈ X, that is, x̄ ∈ S(x̄).

Proof. First, note that if T−1(y) = X for some y ∈ X, then y ∈ T (x) ⊆ S(x)
for all x ∈ X so that we obtain the conclusion. Therefore, we may assume
T−1(y) is a proper subset of X for each y ∈ X.

Now we consider a multimap F : X → 2X defined by

F (x) := X \ T−1(x) for each x ∈ X.

Then, by the assumption (1), each F (x) is nonempty closed subset of X, and
by the assumption (3), there exists an xo ∈ X such that F (xo) is compact.
Here, we should note that X =

⋃
y∈X T

−1(y). Indeed, suppose that there

exists some x ∈ X such that x /∈
⋃
y∈X T

−1(y). Then, x /∈ T−1(y) for all

y ∈ X so that y /∈ T (x) for all y ∈ X. This means that T (x) must be an
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emptyset which contradicts the assumption (2). Therefore, we may assume
that X =

⋃
y∈X T

−1(y); and hence⋂
x∈X

F (x) =
⋂
x∈X

X \ T−1(x) = X \
⋃
x∈X

T−1(x) = ∅.

Therefore, by Lemma 2.4, F can not be a geodesic KKM map on X. That
is, there exists a finite subset {y1, . . . , ym} ⊆ X such that

Gco
(
{y1, . . . , ym}

)
*

m⋃
i=1

F (yi) = X \
m⋂
i=1

T−1(yi).

Then, we have an element w ∈ Gco
(
{y1, . . . , ym}

)
such that w /∈

⋃m
i=1 F (yi)

so that w ∈ Gco
(
{y1, . . . , ym}

)
with w ∈

⋂m
i=1 T

−1(yi). Therefore, w ∈
T−1(yi) so that yi ∈ T (w) for each 1 ≤ i ≤ m. By the assumption
(2), {y1, . . . , ym} ⊆ T (w) ⊆ S(w), and S(w) is geodesic convex so that we
have Gco

(
{y1, . . . , ym}

)
⊆ S(w). Therefore,

w ∈ Gco
(
{y1, . . . , ym}

)
⊆ S(w)

which completes the proof. �

Remark 3.2. (1) In Theorem 3.1, if X is compact, then the assumption
(3) is automatically satisfied. In this case, when S = T , Theorem 3.1 is the
exact form of the Fan-Browder fixed point theorem in a Hadamard manifold.
Following the methods in [13, 14], we can further generalize Theorem 3.1
under weaker assumptions. Indeed, we can relax the assumptions of Theorem
3.1 with transfer open conditions, e.g., see [11, 13].
(2) By using the various forms of equivalencies in [11], we can show that
Theorem 3.1 is actually equivalent to Lemma 2.4. Therefore, we can also
obtain various theorems which are equivalent to Theorem 3.1 as shown in [11].

As an application of Theorem 3.1, we will prove an existence of Nash equilib-
rium for an 1-person game of compact geodesic convex settings in a Hadamard
manifold as follows:

Theorem 3.3. Let G = (X;T, f) be an 1-person game such that X is a
nonempty compact geodesic convex subset of a Hadamard manifold M . Sup-
pose f : X ×X → R is a function on X ×X, and T : X → 2X is a multimap
such that

(1) the set {(x, y) ∈ X ×X | f(x, x) > f(x, y)} is open;

(2) T has open graph in X ×X, and T (x) is nonempty for each x ∈ X;
(3) {y ∈ X | f(x, x) > f(x, y)}∩T (x) is a geodesic convex subset of X for

each x ∈ X.
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Then there is an xo ∈ X such that

f(xo, xo) ≤ f(xo, y) for each y ∈ T (xo).

Furthermore, if f(xo, xo) > f(xo, y) for each y /∈ T (xo), then xo ∈ X is a
Nash equilibrium for the game G, that is,

xo ∈ T (xo) and f(xo, xo) ≤ f(xo, y) for each y ∈ T (xo).

Proof. First, we define a multimap S : X → 2X by

S(x) := {y ∈ X | f(x, x) > f(x, y)} ∩ T (x) for each x ∈ X.

By the assumption (3), each S(x) is a geodesic subset of X. For each y ∈ X,
we have

S−1(y) = {x ∈ X | y ∈ S(x)}
= {x ∈ X | f(x, x) > f(x, y)} ∩ T−1(y).

By the assumption (2), T−1 has also open graph in X ×X so that S−1(y) is
open for each y ∈ X. Since X is compact, and each S−1(y) is open in X, the
set X \ S−1(y) is always compact. Therefore, if S(x) is nonempty for each
x ∈ X, then the multimap S satisfies all the assumptions of Theorem 3.1 in
case of S = T so that there exists a fixed point ȳ ∈ X for S, i.e., ȳ ∈ S(ȳ).
This implies that f(ȳ, ȳ) > f(ȳ, ȳ) which is impossible. Therefore, we have
that S(xo) should be empty for some xo ∈ X. Since T (xo) is nonempty, we
can obtain the conclusion

f(xo, xo) ≤ f(xo, y) for each y ∈ T (xo).

Furthermore, by the assumption, if xo /∈ T (xo), then f(xo, xo) > f(xo, xo)
which is a contradiction. Therefore, we obtain that xo ∈ T (xo) which com-
pletes the proof. �

Remark 3.4. (1) In Theorem 3.3, if f is a continuous function on X × X,
then the assumption (1) is clearly satisfied. Whenever X is a non-compact
geodesic convex subset of a Hadamard manifold M , then we shall need the
additional assumption without affecting the conclusion:

(∗) there exists an yo ∈ X such thatX\
(
{x ∈ X | f(x, x) > f(x, yo)}∩T−1(yo)

)
is compact.

(2) It should be noted that by following the generalization method from 1-
person game into generalized games with infinite agents in Ding et al. [3],
Theorem 3.3 can be further generalized into compact generalized games in
Hadamard manifolds.
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In Theorem 3.3, when T (x) := X for each x ∈ X, then a variational in-
equality is obtained as a corollary:

Corollary 3.5. Suppose that X is a nonempty compact geodesic convex subset
of a Hadamard manifold M . Suppose f : X×X → R is a continuous function
on X ×X such that {y ∈ X | f(x, x) > f(x, y)} is a geodesic convex subset of
X for each x ∈ X. Then there is an xo ∈ X such that

f(xo, xo) ≤ f(xo, y) for each y ∈ X.

By modifying an example in [7], we give a simple example of geodesic convex
1-person game which is suitable for Theorem 3.3, but the previous equilibrium
existence theorems due to Ding et al. [3] and Yang-Pu [14] for compact games
can not be applied:

Example 3.6. Let G = (X;T, f) be a compact geodesic convex 1-person
game such that the pure strategic space X is defined by

X :=

{
(cos t, sin t) ∈ R2 | π

4
≤ t ≤ 3π

4

}
.

Then, X is compact but not a convex subset of R2 in the usual sense. However,
as remarked in [7], if we consider the Poincaré upper-plane model (H2, gH),
then the set X is geodesic convex with respect to the metric gH being the
image of a geodesic segment from (H2, gH).

Let the payoff function f : X×X → R, and a continuous constraint corre-
spondence T : X → 2X are defined as follows: for each

(
(x1, x2), (y1, y2)

)
∈

X × X, f
(
(x1, x2), (y1, y2)

)
:= (1 − x1)(y2

1 − y2
2) ; and T (x1, x2) := X for

each (x1, x2) ∈ X. Then it is easy to see that the action set X is compact and
geodesic convex, and payoff function f is continuous. Also, we have

(1) T has open graph in X × X, and T (x1, x2) is nonempty for each
(x1, x2) ∈ X; and

(2) {(y1, y2) ∈ X | 0 = f
(
(x1, x2), (x1, x2)

)
> f

(
(x1, x2), (y1, y2)

)
} ∩

T (x1, x2) = { (y1, y2) ∈ X | 0 > y2
1−y2

2 } = X\{(cos t, sin t) ∈ R2 | t =
π
4 ,

3π
4 } is clearly a geodesic convex subset of X for each (x1, x2) ∈ X.

Therefore, we can apply Theorem 3.3 to the game G = (X;T, f); then we
obtain an equilibrium point (0, 1) ∈ X for G such that (0, 1) ∈ T (0, 1) and

0 = f
(
(0, 1), (0, 1)

)
≤ f

(
(0, 1), (y1, y2)

)
for all (y1, y2) ∈ T (0, 1) = X.

Using geodesics for a geodesic convex subset X of a Hadamard manifold M ,
for any finite subset {x1, . . . , xn} ⊆ X, Colao et al. [2] inductively define the
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subsets D and Di of X by

D({x1, . . . , xn}) :=
n⋃
i=1

Di;

where D1 := {x1} and Dj := {z ∈ γxj ,y | y ∈ Dj−1} for each 2 ≤ j ≤ n
in which γxj ,y is the geodesic joining xj to y. Then it is easy to see that
D({x1, . . . , xn}) is a closed subset of Gco({x1, . . . , xn}). Moreover, any ele-
ment yk ∈ Dk ⊆ D({x1, . . . , xn}) can be written in the form yk ∈ γ(tk) where
tk ∈ [0, 1] and γ is the geodesic joining xk to some yk−1 ∈ Dk−1.

Using the above notions, we will prove an analogous KKM theorem for open-
valued geodesic KKM maps in a Hadamard manifold which is comparable with
Lemma 2.4 as follows:

Theorem 3.7. Let X be a nonempty geodesic convex subset of a Hadamard
manifold M , and T : X → 2M be a geodesic KKM map such that for each
x ∈ X, T (x) is an open subset of M . Then the family of sets {T (x) | x ∈ X}
has the finite intersection property.

Proof. For any finite subset {x1, . . . , xn} ⊆ X, we shall show
⋂n
i=1 T (xi) 6= ∅.

Suppose the contrary, i.e.,
⋂n
i=1 T (xi) = ∅. For each xi, we associate a

corresponding i-th unit vertex ei of the simplex ∆n−1 = 〈e1, . . . , en〉. Let
the mapping S : ∆n−1 → D({x1, . . . , xn}) be defined by the induction as
follows: If λ1 ∈ 〈e1, e2〉, then S(λ1) := γ1(t1), where t1 is the unique ele-
ment in [0, 1] such that λ1 := t1e2 + (1 − t1)e1 and γ1 is the geodesic join-
ing x1 to x2. Given 1 < k ≤ n, if λk ∈ 〈e1, . . . , ek〉 \ 〈e1, . . . , ek−1〉, then
λk := tkek + (1 − tk)λk−1 for some tk ∈ (0, 1] and λk−1 ∈ 〈e1, . . . , ek−1〉; and
we define S(λk) := γk(tk), where γk is the geodesic joining xk to S(λk−1).
Then, by the definition of D({x1, . . . , xn}), we can see that S(∆n−1) coin-
cides with D({x1, . . . , xn}), and as shown in the proof of Lemma 3.1 in [2],
we can see that S is a continuous mapping on ∆n−1. Since T is a geodesic
KKM map on X, {xi} = Gco({xi}) ⊆ T (xi) and xi ∈ Di ⊆ D({x1, . . . , xn}).
By the assumption, T (xi) ∩ D({x1, . . . , xn}) is a nonempty open subset in
D({x1, . . . , xn}) for each 1 ≤ i ≤ n.

Now we consider the multimap O : {e1, . . . , en} → 2∆n−1 defined by

O(ei) ≡ Oi := S−1
(
T (xi) ∩D({x1, . . . , xn})

)
for each 1 ≤ i ≤ n.

Then, each Oi is the open subset of ∆n−1, and we can see that {Oi | 1 ≤ i ≤ n}
satisfies the whole assumptions of Lemma 2.5. Indeed, let λ =

∑k
j=1 tijeij ∈

co({ei1 , . . . , eik}), with
∑k

j=1 tij = 1, ∀ tij ∈ [0, 1]. Since T is a geodesic KKM-
map on X, we have
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S(λ) ∈ D({xi1 , . . . , xik}) ⊆ Gco
(
{xi1 , . . . , xik}

)
⊆

k⋃
j=1

T (xij ).

Then there exists j ∈ {1, . . . , k} where S(λ) ∈ T (xij ) ∩ D({xi1 , . . . , xik}) so

that we have λ ∈ S−1
(
T (xij ) ∩D({xi1 , . . . , xik})

)
= Oij . Therefore, we have

co({ei1 , . . . , eik}) ⊆
⋃k
j=1Oij , and hence {Oi | 1 ≤ i ≤ n} satisfies the whole

assumptions of Lemma 2.5. Therefore, there exists λ̂ ∈ ∆n−1 = 〈e1, . . . , en〉
such that λ̂ ∈

⋂n
i=1Oi and hence S(λ̂) ∈

⋂n
i=1 T (xi) which is a contradiction.

This completes the proof. �

As an application of Theorem 3.7, we can prove the second Fan-Browder
type fixed point theorem for geodesic convex sets in a Hadamard manifold as
follows:

Theorem 3.8. Let X be a nonempty geodesic convex subset of a Hadamard
manifold M and S, T : X → 2X be two multimaps such that

(1) for each x ∈ X, S(x) is geodesic convex, and T (x) ⊆ S(x) ;

(2) for each y ∈ X, T−1(y) is a closed subset of X;

(3) there exists a finite subset {x1, . . . , xn} of X such that X ⊆
⋃n
i=1 T

−1(xi).

Then S has a fixed point x̄ ∈ X, i.e., x̄ ∈ S(x̄).

Proof. If T−1(y) = X for some y ∈ X then y ∈ T (x) ⊆ S(x) for all x ∈ X so
that we obtain the conclusion. Hence we may assume that each T−1(x) is a
proper subset of X. Now we consider a multimap F : X → 2X defined by

F (x) := X \ T−1(x) for each x ∈ X.
By the assumption (2), each F (x) is nonempty open in X. Since T (x) ⊆ S(x)
for each x ∈ X, it is clear that T−1(y) ⊆ S−1(y) for each y ∈ X. By the
assumption (3), X is contained in

⋃n
i=1 T

−1(xi) so that we have

n⋂
i=1

F (xi) = X \
n⋃
i=1

T−1(xi) = ∅.

Therefore, by Theorem 3.7, F can not be a geodesic KKM map on X. That
is, there exists a finite subset {y1, . . . , ym} ⊆ X, and ȳ ∈ Gco

(
{y1, . . . , ym}

)
such that ȳ /∈

⋃m
i=1 F (yi). Since ȳ ∈ X \

⋃m
i=1 F (yi) =

⋂m
i=1 T

−1(yi), we have
ȳ ∈ T−1(yi) for each 1 ≤ i ≤ m so that {y1, . . . , ym} ⊆ T (ȳ) ⊆ S(ȳ). By the
assumption (1), S(ȳ) is a geodesic convex subset of X, and hence

ȳ ∈ Gco
(
{y1, . . . , ym}

)
⊆ Gco

(
S(ȳ)

)
= S(ȳ)

which completes the proof. �
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Remark 3.9. Finally, it should be noted that those two Fan-Browder type
fixed point theorems in this paper can be very basic tools for solving nonlinear
problems of geodesic convex settings in Hadamard manifolds. By following the
methods in [1-3, 9-14], it is possible to prove a number of generalizations of
Theorem 3.1 and Theorem 3.8, respectively. Then we can establish several
applications in numerous areas of nonlinear analysis where various generalized
geodesic convex concepts are equipped.
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