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Abstract. We examine the generalized quasilinear Kirchhoff’s string equation:

utt = −||A1/2u||2HAu + f(u), x ∈ RN , t ≥ 0,

with the initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x), in the case where N ≥ 3.

The purpose of our work is to study the stability of the solution for this equation.

1. Introduction

Our aim in this work is to study the following nonlocal quasilinear hyper-
bolic initial value problem:

utt = −||A1/2u||2HAu + f(u), x ∈ RN , t ≥ 0, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN , (1.2)

0Received June 1, 2017. Revised September 26, 2017.
02010 Mathematics Subject Classification: 35A07, 35B30.
0Keywords: Quasilinear hyperbolic equations, Kirchhoff strings.
0Corresponding author: P. Papadopoulos(ppapadop@puas.gr).



130 Perikles Papadopoulos, Niki Lina Matiadou and Stavros Fatouros

with initial conditions u0, u1 in appropriate function spaces, N ≥ 3. The
case of N = 1, Equation (1.1) describes the non-linear vibrations of an elastic
string. We must remark here that Equation (1.1), also includes resembling
phenomena of slowly varying wave speed (see [5]).

Kirchhoff in 1883 proposed the so called Kirchhoff string model in the study
of oscillations of stretched strings and plates

ph
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ϑ2u
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+ f, (1.3)

where we have 0 < x < L, t ≥ 0, and we have to mention that u = u(x, t) is
the lateral displacement at the space coordinate x and the time t, E the
Young modules, p the mass density, h the cross-section area, L the length,
p0 the initial axial tension, δ the resistance modules and f the external
force (see [10]). When p0 = 0 the equation is considered to be of degenerate
type and the equation models an unstretched string or its higher dimensional
generalization. Otherwise it is of nondegenerate type and the equation models
a stretched string or its higher dimensional generalization.

The global existence and the uniqueness have been established in the energy
class (see [22]). Once global existence is known, it is not difficult to show that
solutions decay as t→∞. Furthermore, in the non-degenerate case a simple
calculation of the energy shows that solutions decay at least exponentially.

In the degenerate case, however, estimates of the rate of decay requires far
more delicate analysis. Much of the efforts have been focused on estimates
from above (see [11], [14]). But it is difficult to obtain the estimates from
below. In fact, except for some special cases (see [15], [16]), little has been
known about the lower estimates. Also Ono in [17], proved global existence,
asymptotic stability and blowing up results of solutions for some degenerate
non-linear wave equation with a strong dissipation (see also [13], [18], [19]).
Mizumachi (see [12]) studied the asymptotic behavior of solutions to the Kirch-
hoff equation with a viscous damping term with no external force.

In our previous work (see [20]), we prove global existence and blow-up results
of an equation of Kirchhoff type in all of RN . Karachalios and Stavrakakis
(see [7]-[9]) studied global existence, blow-up results and asymptotic behavior
of solutions for semilinear wave equations with weak dissipation in all of RN .

The presentation of this paper has as follows: In section 2 we discuss the
space setting of the problem and the necessary embeddings for constructing
the evolution triple. In section 3 we prove the existence and uniqueness of the
solution for our problem. In section 4 we study the stability of the solution
u = 0. In order to study the stability, we study the spectrum of the operator
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Â. In our problem we have an external force f(u) and the stability of the
solution depends on the sigh of f ′(0).

2. Formulation of the problem

The space D(A) is going to be introduced and studied later in this sec-
tion. We shall frequently use the following generalized version of Poincaré’s
inequality ∫

RN

|∇u|2dx ≥ α
∫
RN

gu2dx, (2.1)

for all u ∈ C∞0 (RN ) and g ∈ LN/2(RN ), where α =: k−2||g||−1N/2 (see [1,

Lemma 2.1]).
We also need to make the following remarks: Let V, H be two Hilbert

spaces, where

V ⊂ H, and V is dense in H. (2.2)

We also have that

V ⊂⊂ H (this means that the embedding is compact). (2.3)

The scalar product and the norm in H are denoted by (., .) , ||.||H , respec-
tively. We identify H with its dual H ′ and H ′ with a dense subspace of the
dual V ′ of V , thus

V ⊂ H ⊂ V ′, (2.4)

where the injections are continuous and each space is dense in the following
one.

Let a(u, v) be a bilinear continuous form on V which is symmetric and
coercive

∃ a0 > 0, a(u, u) ≥ a0||u||2, ∀u ∈ V. (2.5)

With this form we associate the linear operator A from V into V ′ defined by

(Au, v) = a(u, v), ∀u, v ∈ V.

Operator A is an isomorphism from V onto V ′ and it can also be considered
as a selfadjoint unbounded operator in H with domain D(A) ⊂ V ,

D(A) = {v ∈ V, Av ∈ H}.

Due to (2.2) there exists an orthonormal basis of H, {wj}j∈N which consists
of eigenvectors of A,{

Awj = λjwj , j = 1, 2, ..., wj ∈ H,
0 < λ1 ≤ λ2 ≤ ..., λj →∞, as j →∞. (2.6)

A weak solution of our problem must satisfy the following definition.
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Definition 2.1. A weak solution of the problem (1.1)-(1.2) is a function u
such that

(i) u ∈ L2[0, T ;D(A)], ut ∈ L2[0, T ;V ], utt ∈ L2[0, T ;H],

(ii) for all v ∈ C∞0 ([0, T ]× (RN )), satisfies the generalized formula∫ T

0
(utt(τ), v(τ))H dτ +

∫ T

0

(
||A1/2u(t)||2H

∫
RN

A1/2u(τ)A1/2v(τ)dxdτ

)
−

∫ T

0
(f(u(τ)), v(τ))H dτ = 0,

where f(s) = |s|as,

(iii) satisfies the initial conditions

u(x, 0) = u0(x), u0 ∈ D(A), ut(x, 0) = u1(x), u1 ∈ V.

3. Global existence

In this section we prove the existence of solution for problem (1.1)-(1.2),
under small initial data.

Theorem 3.1. (Local Existence) Let f(u) be a C1-function such that
|f(u)| ≤ k1|u|a+1, |f ′(u)| ≤ k2|u|a, 0 ≤ a ≤ (N + 2)/(N − 2) and N ≥ 3.
Consider that (u0, u1) ∈ D(A)× V and satisfy the nondegenerate condition

||A1/2u0||2 > 0. (3.1)

Then there exists T∗ = T (||Au0||, ||A1/2u1||) > 0 such that problem (1.1)-(1.2)
admits a unique local weak solution u satisfying

u ∈ C(0, T∗;D(A)) and ut ∈ C(0, T∗;V ).

Proof. For given constants T∗ > 0, R > 0, we introduce the two parameter
space of solutions

XT∗,R =:
{
v ∈ C (0, T∗;D(A)) : vt ∈ C0

w (0, T∗;V ) , v(0) = u0, vt(0) = u1,

e(v) ≤ R2, t ∈ [0, T∗]
}
,

where e(v(t)) =: ||Av(t)||2H + ||A1/2v′(t)||2H , the norm in the space X0 =:
D(A) × V . Also u0 satisfies the nondegenerate condition (3.1). It is easy
to see that the set XT∗,R is a complete metric space under the distance
d(u, v) =: sup0≤t≤T∗ e1(u(t)− v(t)), where

e1(v) = ||v′(t)||2H + ||A1/2v||2H ,
the norm in the space X1 =: V ×H. We have that X0 ⊂ X1 compactly, that
is, e1(u(t)) ≤ e(u(t)).



The stability of the solution for an hyperbolic problem on RN 133

Next, we introduce the nonlinear mapping S in the following way. Given
v ∈ XT∗,R, we define u = Sv to be the unique solution of the linear wave
equation

u′′(t) + ||A1/2v(t)||2HAu(t) = f(v), (3.2)

u(0) = u0, u′(0) = u1.

In the sequel we shall show that there exist T∗ > 0 and R > 0 such that
the following two conditions are valid

(i) S maps XT∗,R into itself, (3.3)

(ii) S is a contraction with respect to the metric d(., .). (3.4)

Set 2M0 =: ||A1/2u0||2H > 0 and

T0 =: sup
{
t ∈ [0 ,+∞); ||A1/2v(s)||2H > M0, for 0 ≤ s ≤ t

}
.

Then

T0 > 0 and ||A1/2v(t)||2H ≥M0, on [0 , T0]. (3.5)

(i) To check (3.3), we multiply (3.2) by 2Aut and integrate over RN to get

2

∫
RN

Aututtdx+ 2

∫
RN

||A1/2v(t)||2HAutAudx

= 2

∫
RN

f(v)Autdx. (3.6)

So, we have t

d

dt
||A1/2ut(t)||2H + ||A1/2v(t)||2H

d

dt
(||Au(t)||2H)

= (
d

dt
||A1/2v(t)||2H)||Au(t)||2H + 2(f(v), Aut(t))

Finally, we obtain

d

dt
e∗2(u(t)) = (

d

dt
||A1/2v(t)||2H)||Au(t)||2H + 2 (f(v) , Aut(t)) , (3.7)

where we set

e∗2(u(t)) =: ||A1/2ut(t)||2H + ||A1/2v(t)||2H ||Au(t)||2H .

Note that

e∗2(u) ≥ ||A1/2ut||2H +M0||Au(t)||2H ≥ c−21 e(u(t)) ≥ c−21 e1(u(t)) (3.8)
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with c1 =
(
max

{
1 ,M−10

})1/2
. To proceed further, we observe that

(
d

dt
||A1/2v||2H)||Au(t)||2H = 2

∫
RN

Avvtdx ||Au(t)||2H

≤ 2
(
||Av||2H

)1/2 (||vt||2H)1/2 ||Au(t)||2H
≤ 2Rk(||vt||2H)1/2e(u(t))

≤ 2RkRc21e
∗
2(u(t)) ≤ c2R2e∗2(u(t)), (3.9)

with c2 = 2kc21, where k is the constant of the embedding V ⊂ H. We also
have that

2(f(v), Aut) = 2

∫
RN

f ′(v)A1/2vA1/2utdx

≤ 2k2||v||aNa||A1/2v||2N/N−2||A1/2ut||H ,

where we used Holder inequality with p−1 = 1/N, q−1 = N − 2/2N, r−1 =
1/2. From the embeddings D(A) ⊂ V ⊂ H and using Sobolev-Poincare
inequality, we get

||v||aNa ≤ ca∗||Av||aH ≤ ca∗Ra, ||A1/2v||2N/N−2 ≤ c∗||Av||H ≤ c∗R.
Thus, we obtain that

2 (f(v) , Aut(t)) ≤ 2k2c
a
∗R

ac∗Re(u(t))1/2

≤ 2k2c
a+1
∗ Ra+1c1e

∗
2(u(t))1/2. (3.10)

Using estimates (3.9)-(3.10), we get from (3.7) that

d

dt
e∗2(u(t)) ≤ c2R2e∗2(u(t)) + c3R

a+1e∗2(u(t))1/2,

where c3 = 2k2c
a+1
∗ c1. Hence, from Gronwall’s inequality we get

e∗2(u(t)) ≤
{
e∗2(u(0))1/2 + c3R

a+1T∗

}2
ec2R

2T∗ .

Thus from estimation (3.8) we obtain

e1(u) ≤ e(u(t))

≤ c21

{
(||A1/2u1||2H + ||A1/2u0||2H ||Au0||2H)1/2 + c3R

a+1T∗

}2
ec2R

2T∗

=: C1(T∗, R), (3.11)

for any t ∈ [0, T∗], with T∗ ≤ T0. Since we have that function u ∈
L∞(0, T∗;D(A)) ∩W 1,∞(0, T∗;V ) and u(t) satisfies Eq.(3.2), it follows that
u′′ ∈ L∞(0, T∗;H) and hence, u ∈ C0

w([0, T∗];D(A)) ∩ C1
w([0, T∗];V ). Thus,

for the map S to verify condition (3.3) it will be enough the parameters T∗, R
satisfy

C1(T∗, R) < R2, (3.12)
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which is true for T∗ and the norms small enough.
(ii) We take v1 , v2 ∈ XT∗,R and denote by u1 = Sv1 , u2 = Sv2. Hereafter
we suppose that (3.12) is valid, i.e., u1 , u2 ∈ XT∗,R. We set w = u1−u2. The
function w satisfies the following relation

wtt + ||A1/2v1||2HAw = −
{
||A1/2v1||2H − ||A1/2v2||2H

}
Au2

+f(v1)− f(v2),

w(0) = 0, wt(0) = 0. (3.13)

Multiplying equation (3.13) by 2wt and integrating over RN we have the
following equation

2

∫
RN

wtwttdx+ 2

∫
RN

||A1/2v1||2HAwwtdx

= −2
{
||A1/2v1||2H − ||A1/2v2||2H

}∫
RN

Au2wtdx

+2

∫
RN

(f(v1)− f(v2))wtdx. (3.14)

Therefore, we have

d

dt
e∗v1(w) =

d

dt
||A1/2v1||2H ||A1/2w||2H

−2
{
||A1/2v1||2H − ||A1/2v2||2H

}
(Au2 , wt)

+2(f(v1)− f(v2) , wt)

≡ I1(t) + I2(t) + I3(t), (3.15)

where

I1(t) =
d

dt
||A1/2v1||2H ||A1/2w||2H ,

I2(t) = −2
{
||A1/2v1||2H − ||A1/2v2||2H

}
(Au2 , wt),

I3(t) = 2(f(v1)− f(v2) , wt),

and we also set e∗v1(w(t)) =: ||wt(t)||2+ ||A1/2v1(t)||2H ||A1/2w(t)||2H . Note that
the following estimations are valid

e∗v1(w) ≥ ||wt||2 +M0||A1/2w(t)||2H ≥ c−21 e1(w). (3.16)

As in (3.9), we observe that

I1(t) ≤ c2R2e∗v1(w) (3.17)
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and

I2(t) ≤ 2
(
||A1/2v1||H + ||A1/2v2||H

)
||A1/2(v1 − v2)||H ||Au2|| ||wt(t)||

≤ 2(R+R)e1(v1 − v2)
1
2 R e1(w(t))1/2

≤ 4R2e1(v1 − v2)1/2c1e∗v1(w) = c4R
2e1(v1 − v2)1/2e∗v1(w), (3.18)

where c4 = 4c1. Next, applying the generalized Poincaré’s inequality (2.1) and
the embeddings D(A) ⊂ V ⊂ H, we obtain the following

I3(t) ≤ 2k1α
−1
(
||A1/2v1||aH + ||A1/2v2||aH

)
||A1/2(v1 − v2)||H ||wt||

≤ c6R
ae1(v1 − v2)1/2e∗v1(w(t))1/2, (3.19)

where c6 = 4k1α
−1c1. From estimates (3.17)-(3.19), we obtain the following

estimate for the relation (3.15)

d

dt
e∗v1(w) ≤ c2R2e∗v1(w) +

(
c4R

2 + c6R
a
)
e1(v1 − v2)1/2e∗v1(w)1/2.

Gronwall’s inequality and the fact that e∗v1(w(0)) = 0 imply that

e∗v1(w) ≤
(
c4R

2 + c6R
a
)2
T 2
∗ e

c2R2T∗ sup
0≤t≤T∗

e1 (v1(t)− v2(t)) . (3.20)

Therefore from (3.11) and (3.20) we get

d(u1 , u2) ≤ C2(T∗, R) d(v1 , v2), (3.21)

where the constant C2(T∗, R) depending on T∗ and R is

C2(T∗, R) =: c21
{
c4R

2 + c6R
a
}2
T 2
∗ e

c2R2T∗ .

For small enough T∗ > 0, we have that C2(T∗, R) < 1. From the above
argument, by applying the Banach contraction mapping principle we know
that the problem (1.1)-(1.2) admits a unique solution u(t) in the class

C0
w([0, T∗];D(A)) ∩ C1

w([0, T∗];V ).

Moreover, we see that u ∈ L∞(0, T∗;D(A)) ∩ W 1,∞(0, T∗;V ) and f(u) ∈
L∞(0, T∗;V ). Therefore, it follows from the continuity argument for wave
equations (see [23]) that this solution u belongs to

C0([0, T∗];D(A)) ∩ C1([0, T∗];V ).

This completes the proof. �

Remark 3.2. In the above Theorem 3.1, if we assume that u0 ∈ D(A), u1 ∈ V
and f is a nonlinear C1 function, then it is easy to see following the same steps,
that the solution u belongs to

C0([0, T∗];V ) ∩ C1([0, T∗];H). (3.22)
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In that case, because of the inequalities

e1(u(t)) ≤ e(u(t)) ≤ R2,

we find that u is a solution such that

u ∈ L∞(0, T∗;V ), u′ ∈ L∞(0, T∗;H).

The continuity properties (3.22), are proved with the methods indicated in
([23], Sections II.3 and II.4).

Corollary 3.3. (Global Existence) We assume that (u0, u1) ∈ D(A) × V .
Then, there exists a unique solution of problem (1.1)-(1.2) such that

u ∈ C([0, +∞) ; V ), ut ∈ C([0, +∞) ; H).

Proof. Following the same steps as in [20] we obtain the global existence result.
�

4. The linearized system

In this section we study the stability of the solution u = 0. The linearized
equation of the system around solution u is the following

vtt = −||A1/2u||HAv + f ′(u)v. (4.1)

In the case where u = 0, equation (4.1) becomes

vtt − f ′(0)v = 0. (4.2)

We set vt = w and we get from (4.2) that{
wt = f ′(0)v,
vt = w,

or, [
w
v

]
t

+

[
0 −f ′(0)
−1 0

] [
w
v

]
=

[
0
0

]
,

Finally we obtain

ūt + Âū = 0, (4.3)

where ūt = (w, v)T and Â =

[
0 −f ′(0)
−1 0

]
. So, in order to study the

stability of the solution, we study the spectrum of the operator Â.

For later use we give the following definition and theorems. (for the proofs
we refer to ([6], Theorem 5.1.1 and Theorem 5.1.3)).
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Definition 4.1. The continuous spectrum of an operator A is the set σc(A)
of complex numbers λ for which λI −A is one to one and has a dense range
which is not equal to X, where X is a Banach space.

Theorem 4.2. Let A be a sectorial linear operator in a Banach space X,
and let f : U → X where U is a cylindrical neighborhood in RN ×Xa, (for
some a < 1). Also let x0 be an equilibrium point. Suppose

f(t, x0 + z) = f(t, x0) +Bz + g(t, z),

where B is a bounded linear map from Xa to X and ||g(t, z)|| = O(||z||a)
as ||z||a → 0, uniformly in t, and f(t, x) is locally Holder continuous in t,
locally Lipschitzian in x, on U . If the spectrum of A−B lies in {R λ > β},
for some β > 0, or equivalently if the linearization

dz

dt
+Az = Bz,

is uniformly asympotically stable, then the original equation has the solution
x0 unifomly asympotically stable in Xa.

Theorem 4.3. Let A, f be as in Theorem 4.2. Assume also Ax0 = f(t, x0)
for t ≥ t0,

f(t, x0 + z) = f(t, x0) + Bz + g(t, z), g(t, 0) = 0,

||g(t, z1)− g(t, z2)|| ≤ k(ρ) ||z1 − z2||a,
||z1||a ≤ ρ, ||z2||a ≤ ρ, and k(ρ)→ 0, ρ→ 0+.

If we set L = A − B and assume that σ(L) ∩ {R λ < 0} is a nonempty
spectral set, then we obtain that the equilibrium solution x0 is unstable for the
original equation in Xa (where Xa is as in Theorem 4.2)

Next, we will compute the eigenvalues of Â. Let x̄j = [φj , ψj ] ∈ D(A).

Eigenvalues of Â satisfy the following relation

Â x̄j = µj x̄j ,

or, [
0 −f ′(0)
−1 0

] [
φj
ψj

]
= µj

[
φj
ψj

]
. (4.4)

Therefore, in order to find the eigenvalues of Â, we compute the characteristic
polynomial of Â, that is,

det

∣∣∣∣ µj f ′(0)
1 µj

∣∣∣∣ = 0 ⇔ µ2j − f ′(0) = 0.

Then according to the sign of f ′(0), we have the following cases:
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Case I. Let f ′(0) > 0. Then the operator Â admits the following two real
eigenvalues of different sign:

µj± = ±(f ′(0))1/2. (4.5)

Also, since we have that f ′(0) > 0 from the initial hypothesis, we may easily

see that the continuous spectrum of Â, σc(Â) = ∅. So, by Theorem 4.3 we
have that minRen∈σc(Â) n < 0, which implies that 0 is unstable for the initial

Kirchhoff’s system.
Case II. Let f ′(0) < 0. Then we have that the eigenvalues µ1± are complex
and

minReµ1∈σ(Â)µ1± > f ′(0).

Therefore, using Theorem 4.2, we have that the solution u = 0 is asymptoti-
cally stable for the initial Kirchhoff’s system.
Case III. Let f ′(0) = 0. Then we obtain that σc(Â) = {0}, thus we have that
the solution u = 0 is stable for the initial problem, (according to Theorem 4.3).
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