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Abstract. We study half lightlike submanifolds of an indefinite Kaehler manifold M with a
non-metric ¢-symmetric connection V subject such that the tensor field ¢ is identical with
the fundamental 2-form associated with the indefinite almost complex structure J of M.

1. INTRODUCTION

A codimension 2 submanifold M of a semi-Riemannian manifold is called
(1) half lightlike submanifold if rank{Rad(TM)} =1,
(2) coisotropic submanifold if rank{Rad(TM)} = 2,

where Rad(TM) is the radical distribution given by Rad(TM) = TMNTM*,
TM and TM™* are the tangent and normal bundle of M, respectively. Half
lightlike submanifold was introduced by Duggal-Bejancu [2] and later, stud-
ied by Duggal-Jin [3]. Its geometry is more general than that of lightlike
hypersurfaces or coisotropic submanifolds. Much of its theory will be imme-
diately generalized in a formal way to general lightlike submanifolds. A linear
connection V on a semi-Riemannian manifold (M, g) is called a non-metric
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¢-symmetric connection if it and its torsion tensor T satisfy
(Vxa)(Y,Z) = -0(Y)o(X, Z) — 0(Z)p(X,Y), (1.1)
T(X,Y)=0(Y)JX —0(X)JY, (1.2)
where ¢ and J are tensor fields of types (0,2) and (1, 1), respectively, and 6
is a 1-form associated with a smooth unit spacelike vector field ¢ by 8(X) =
g(X,¢). In the followings, denote by X, Y and Z the smooth vector fields
on M. The notion of non-metric ¢-symmetric connection on indefinite almost
complex or indefinite almost contact manifolds was defined by Jin [6, 7].

The subject of study in this paper is half lightlike submanifolds of an indefi-
nite Kaehler manifold (M, g, J) with a non-metric ¢-symmetric connection, in
which the tensor field J defined by (1.2) is identical with the indefinite almost
complex structure .J of M and the tensor field ¢ given by (1.1) is identical
with the fundamental 2-form associated with J, that is,

H(X,Y)=g(JX,Y). (1.3)

Remark 1.1. Denote by V the Levi-Civita connection of an indefinite Kaehler
manifold (M, g, J). It is known [7] that a linear connection V is a non-metric
¢-symmetric connection if and only if V satisfies

VgV =ViV +6(Y)JX. (1.4)

2. PRELIMINARIES

Let M = (M,g,J) be an indefinite Kaeler manifold, where g is a semi-
Riemannian metric and J is an almost complex structure such that

JP=—I,  G(JX,JY)=g(X,Y), (VgJ)Y =0. (2.1)

Replacing the Levi-Civita connection v by the non-metric ¢-symmetric con-
nection V given by (1.4), the third equation of (2.1) is reduced to

(V)Y =0(Y)X +0(JY)JX. (2.2)

Let (M, g) be a half lightlike submanifold of M. As rank(Rad(TM)) = 1,
there exist two complementary non-degenerate vector bundles S(T'M) and
S(TM~) of Rad(TM) in TM and TM+, respectively, which are called screen
distribution and co-screen distribution of M, such that

TM = Rad(TM) ®orp S(TM), TM* = Rad(T M) ores, S(TM™),

where @+, denotes the orthogonal direct sum. Denote by F'(M) the algebra
of smooth functions on M and by I'(E) the F(M) module of smooth sec-
tions of a vector bundle E over M. Also denote by (2.1); the i-th equation
of (2.1). We use same notations for any others. Choose L € T'(S(TM™)) as
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a unit spacelike vector field, without loss of generality. Consider the orthog-
onal complementary vector bundle S(TM)* to S(TM) in TM. Certainly,
Rad(TM) and S(TM+) are vector subbundles of S(TM)+. As the co-screen

distribution S(TM+) is non-degenerate, we have
S(TM)*" = S(TM™) @open S(TMS)™,

where S(TM+)+ is the orthogonal complementary to S(TM*) in S(TM)*.
For any null section & of Rad(T'M), there exists a uniquely defined lightlike
vector bundle ltr(T'M) and a null vector field N of ltr(T M) satisfying

9§, N) =1, g(N,N) = g(N,X) = g(N, L) = 0, VX € T(S(TM)).
We call N, itr(TM) and tr(TM) = S(T M) @oppltr(T M) the null transversal

vector field, lightlike transversal vector bundle and transversal vector bundle

with respect to S(T'M) respectively [3]. TM is decomposed as
TM =TM @ tr(TM) = {Rad(TM) @ tr(TM)} @open, S(TM)
= {Rad(TM) & ltr(TM)} @opin S(TM) @opin, S(TM*).

Let P be the projection morphism of TM on S(TM). Denote by X, Y and

Z the smooth vector fields on M, unless otherwise specified. Then the local
Gauss-Weingarten formular of M and S(TM) are given by

VxY = VxY +B(X,Y)N + D(X,Y)L, (

VxN = —A, X +7(X)N + p(X)L, (

VxL = —A, X + MX)N + u(X)L; (

VxPY = VXPY +C(X,PY)¢, (

Vx¢§ = _AZX - O'(X)f, (

N NN NN
N S Ot W
D —

)

respectively, where the symbols V and V* are linear connections on M and
S(TM), respectively, B and D are the local second fundamental forms of M,
C' is the local second fundamental form on S(T'M). A, A, and Af are the

shape operators and 7, p, A, u and o are 1-forms on M.

For a half lightlike submanifold M of M, it is known [4] that J(Rad(TM)),
J(ltr(TM)) and J(S(TM+1)) are subbundles of S(T'M) with mutually trivial
intersections, of rank 1. Thus there exist two non-degenerate almost complex
distributions H, and H on M with respect to J such that

S(TM) = J(Rad(TM)) & J(Utr(TM)) ©oren J(S(TM*) Goren Ho,
H = {Rad(TM) ®ortr J(Rad(TM))} Soren, Ho-

In this case, the tangent bundle T'M of M is decomposed as follow:
TM = H @ J(Itr(TM)) ®open, J(S(TM™)). (2.8)
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Let a,b and e be the smooth functions defined by

a=6(N),  b=0©),  e=0(L).
Consider two null vector fields {U, V'} and one spacelike vector field W on the
screen distribution S(T'M) and their 1-forms u, v and w such that

U=-JN, V =-JE¢, W =—JL, (2.9)
u(X)=g9(X,V), vX)=g9(X,U), wX)=g(X,W). (2.10)

Denote by S the projection morphism of TM on H and F the tensor field of
type (1,1) globally defined on M by F' = J o S. Then

JX =FX +u(X)N +w(X)L. (2.11)
Applying J to (2.11) and using (2.1) and (2.9), we have
F?2X = X +u(X)U + w(X)W. (2.12)

Substituting (2.11) into (1.2)2 and using (2.11) and (2.10), we have
g(FX,FY)=g(X,Y) —u(X)v(Y) —uY)v(X) —w(X)w(). (2.13)
In the sequel, we say that F' is the structure tensor field of M.

3. NON-METRIC ¢-SYMMETRIC CONNECTIONS

Let T be the torsion tensor on M with respect to V and n the 1-form given
by n(X) = g(X, N). Using (1.1), (1.2), (1.3), (2.3) and (2.11), we get
(Vxg)(Y,2) = ( Y)n ) + B(X, Z)n(Y) (3.1)
)9(X, Z) = 0(2)p(X,Y),

(3.2)
BX.)Y)-B(Y,X) = 9( Ju(X ) — 0(X)u(Y), (3.3)
D(X,Y) — D(Y, X) = 0(Y)w(X) — 0(X)w(Y), (3.4)
H(X,Y) = g(FX,Y) + u(X)n(Y), (3.5)
B = u(X), B(X,N)=u(X), 6(X,[)=w(X), (3.0

BXV) =0, GX,U) = —n(X), S(X, W)=
Applying v to .9_7({7 ) = 0, g(ng) =0, g(N7N) = 0, g(N7L) = 0,

g(L,L) =1 and g(¢,N) = 1 by turns and using (1.1) and (3.6), we obtain

B(X,¢&) = bu(X), D(X,&) = —MX)+eu(X)+bw(X), (3.7)
g(AyX,N) =—av(X), g(A,X,N)=pX)—ev(X)—aw(X), (3.8)
w(X) =ew(X), o(X)=7(X)—au(X) — bv(X), (3.9)

respectively. From (3.3), (3.4) and (3.7), we see that
B(£,X) =0, D(€,X) = —A\(X) + eu(X). (3.10)
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The local second fundamental forms are related to their shape operators by
B(X,Y) = g(A:X,Y)+bg(FX,Y) +u(X)0(Y), (3.11)
D(X)Y) = g(4,X,)Y)+eg(FX,Y)+w(X)0(Y) (3.12)

— {AMX) — eu(X)In(Y),
C(X,PY) = g(A,X,PY)+ag(FX,PY)+v(X)0(PY). (3.13)

Replacing X by ¢ to (3.11) and using (2.10) and (3.10);, we obtain
A& =bV. (3.14)

Applying Vx to (2.9) and (2.11) and using (2.3)~(2.5), (2.9), (2.11), (2.2)
and (3.11)~(3.13), we have

B(X,U) =u(A,X)+ 0(U)u(X)
= C(X,V)+0(U)u(X) —0(V)v(X),
D(X,U) =w(A,X)+0(U)w(X) (3.15)

= C(X, W) = 0(W)o(X) + 0(U)w(X),
D(X,V) = B(X, W) = 0(W)u(X) + 6(V)w(X),
T (

VxU =F(A,X)+1(X)U + p(X)W —aX +0(U)FX, (3.16)

VxV =F(A{X) = o(X)V + bu(X)U + D(X, &)W (3.17)
- bX +6(V)FX,

VxW =F(A, X) + MX)U + p(X)W —eX +0(W)FX, (3.18)

(VxF)Y =u(Y)A X +w(Y)A, X — B(X,Y)U (3.19)

— D(X,Y)W +0(Y)X +0(JY)FX.

Definition 3.1. ([9]) A half lightlike submanifold M of a semi-Riemannian
manifold is called irrotational if Vx& € I'(T'M), i.e., B(X,§) = D(X,§) =0.

Note that, from (3.7), we see that M is irrotational if and only if
b=0, AMX) = eu(X). (3.20)

4. RECURRENT AND LIE RECURRENT SUBMANIFOLDS

Definition 4.1. ([5]) The structure tensor field F' of M is said to be recurrent
if there exists a smooth 1-form @ on M such that

(VxF)Y = w(X)FY.
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Theorem 4.2. Let M be a half lightlike submanifold of an indefinite Kaehler
manifold M with a mon-metric ¢-symmetric connection. If F is recurrent,
then the following six statements are satisfied:

(1) F is parallel with respect to the induced connection V on M.

(2) M is irrotational.

(3) The 1-form 0 vanishes, i.e., 8 =0, on M.

(4) W is parallel vector field with respect to the connection V.

(5) H, J(Itr(TM)) and J(S(TM™)) are parallel distributions on M.

(6) M s locally a product manifold M = C,, x C,, x M*, where C, is a
null curve tangent to J(ltr(T'M)), C,, is a spacelike curve tangent to
J(S(TM™Y)), and M* is a leaf of the distribution H.

Proof. (1) From the above definition and (3.19), we get

@(X)FY = u(Y)A, X +w(Y)A, X — B(X,Y)U (4.1)
— D(X,Y)W +0(Y)X + 6(JY)FX.

Replacing Y by £ and using (2.9), (2.10) and the fact: F§¢ = —V, we get
@(X)V = B(X, U + D(X, &)W — bX + 0(V)FX. (4.2)

Taking the scalar product with IV to (4.2), we obtain bn(X) — 0(V)v(X) = 0.
Taking X = ¢ and X = V to this result by turns, we have

b=0, O(V)=0. (4.3)

Taking the scalar product with U to (4.2), we get w = 0. It follows that
VxF = 0. Therefore, F' is parallel with respect to the connection V.

(2) Taking the scalar product with V' and W to (4.2) by turns, we get
B(X,6)=0, D(X,€)=0. (4.4)
It is equivalent to Vx¢& € I'(T'M). Therefore, M is irrotational.
(3) Replacing Y by V to (4.1) and using (4.3), we have
B(X,V) =0, D(X,V)=0. (4.5)
Taking Y =V to (3.3) and (3.4) by turns and using (4.3)2 and (4.5), we get
B(V,X) =0, D(V,X)=0. (4.6)
Taking Y = U and Y = W to (4.1) such that w = 0 by turns, we have

A X = B(X,U)U + D(X, U)W — (U)X — aFX, (4.7)
A, X = B(X,W)U + D(X,W)W — (W)X — eFX. (4.8)
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Taking the scalar product with NV and then, with U to (4.7) and (4.8) by turns
and using (3.8), (3.12) and (3.13), we obtain
0(U) =0, C(X,U) =0, (4.9)
p(X) —aw(X)=-0W)n(X), DX, U)=-0W)v(X). (4.10)
Replacing X by V to (4.10)2 and using (4.6)2, we get (W) = 0. Thus
O(W) =0, p(X) = aw(X), D(X,U) =0. (4.11)
Taking the product with N to (4.1) and using (3.8) and (4.11)2, we have
oY )N(X)+{6(JY) —au(Y) — ew(Y)}v(X) =
Replacing X by £ and V' to this equation by turns, we obtain
(X) =0, 0(JX)=au(X)+ew(X), VX el(TM). (4.12)

(4) Applying F to (4.7) and (4.8) and using (2.12), we obtain
FA,X)—aX = —au(X)U — aw(X)W,
F(A, X)—eX = —eu(X)U — ew(X)W.
Using these, (3.9), (3.20)2 and (4.11)2, Eqgs: (3.16) and (3.18) reduce
VxU =o(X)U, VxW =0. (4.13)
From (4.13)2, we see that W is parallel vector field with respect to V.

(5) It follows from (4.13) that J(Itr(TM)) and J(S(TM™)) are parallel dis-
tributions on M with respect to V, that is,

VxU € T(J(ltr(TM))), VxW e D(J(S(TM™))).
On the other hand, using (4.3)2, (4.5)2 and (4.11);, from (3.15)3 we get
B(X,W) = 0. (4.14)
Taking Y = F'Z to (4.1) and using (4.12) and u(FZ) = w(FZ) = 0, we get
B(X,FZ) =0, D(X,FZ) = 0. (4.15)

For any X € I'(T'M) and Z € I'(H,), by using (2.2), (2.7), (2.13), (3.6)1,4,
(3.11), (3.12), (3.17), (4.3)~(4.5), (4.12), (4.14) and (4.15), we derive

9(Vx§& V) = =B(X,V) +0(V)u(X) =0,

g(Vx& W) = —B(X, W) + 0(W)u(X) =0,
g(VxV,V) =0,
9(VxV,W) = D(X,§) — bw(X) =0,

9(VxZ,V)=B(X,FZ)—-0(FZ)u(X) =

(
(
(
(
(
9(VxZ, W)= D(X,FZ) — 0(FZ)w(X) = 0.
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It follows that H is also a parallel distribution on M, that is,
VxYel(H), VXeIl'(TM), VY eI'(H).

(6) As J(Itr(TM)), J(S(TM+~)) and H are parallel distributions and satisfied
(2.8), by the decomposition theorem [1], M is locally a product manifold
C, % C, x M* where C, is a null curve tangent to J(ltr(TM)), C,, is a
spacelike curve tangent to J(S(TM™1)), and M* is a leaf of H. O

Definition 4.3. ([5]) The structure tensor field F' of M is said to be Lie
recurrent if there exists a smooth 1-form ¥ on M such that
(L F)Y = 9(X)FY,

where £, denotes the Lie derivative on M with respect to X. The structure
tensor field F' is called Lie parallel if L, F = 0.

Theorem 4.4. Let M be a half lightlike submanifold of an indefinite Kaehler
manifold with a semi-symmetric non-metric connection. If F' is Lie recurrent,
then the following three statements are satisfied :

(1) F is Lie paralle.
(2) 7 and o satisfy T(X) = au(X) and o(X) = —bv(X).
(3) The shape operator Af satisfies AU = AV = 0.
Proof. (1) Using (3.2) and (3.19), we have
YX)FY = —Vpy X+ FVy X +u(Y)A X +w(Y)A, X (4.16)
—{BX,Y) = 6(Y)u(X)}U = {D(X,Y) = 0(Y)w(X)}W
+{auw(Y) + ew(Y)} FX.
Taking Y = £ to (4.16) and using (3.7);,2 and the fact: F§€ = -V, we get

— X))V =VyX + FVeX + {NX) — eu(X)}W. (4.17)
Taking the scalar product with V- and W to (4.17) by turns, we have
u(VyX) =0, w(VyX) = =A(X) + eu(X). (4.18)
Replacing Y by V to (4.16) and using the fact: FV = ¢, we have
HX)E = —-VeX + FVy X (4.19)

—{B(X,V) = 0(V)u(X)}U — {D(X, V) = 0(V)w(X)}W.
Applying F' to this equation and using (2.12) and (4.18), we obtain
I(X)WV = VX + FVeX + {A(X) — eu(X)}W.
Comparing this equation with (4.17), we get ¢ = 0. Thus F is Lie parallel.
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(2) Taking the scalar product with N to (4.16) and using (3.8), we get
—G(Viy X, N) + g(Ty X, U) + p(X)w(Y) — aw(X)w(Y) =0.  (4.20)
Replacing X by £ to (4.20) and using (2.7), (3.9)2 and (3.11), we have

B(Y,U) - p(&)u(Y) - 0(U)u(Y) = 7(FY). (1.21)
Taking Y = U and Y = W by turns and using (3.3) and (3.15); 3, we get
C(U,V)=B(U,U)—-6(U) =0, (4.22)

D(U,V) = BU,W) - 8(W) = p(¢).

On the other hand, taking the scalar product with V' to (4.16) and then,
replacing X by U and using (3.3), (3.12), (3.13) and (3.16), we have

—7(FY)—-BY,U)+0(U)u(Y)+u(Y)C(U,V)+w(Y)DU,V) =0. (4.23)
From the last two equations (4.22) and (4.23), we see that
BY,U) = p()w(Y) = 0(U)u(Y) = =7(FY).

Comparing this equation with (4.21), we obtain 7(FX) = 0.
Replacing X by W to (4.16) and using (2.12), (3.3), (3.4), (3.9)1, (3.12),
(3.15)3 and (3.18), we obtain

(VAW + w(Y)A, W — A, Y — F(A, FY) — \(FY)U = 0.
Taking the scalar product with N and using (2.12), (3.8) and (3.12), we get
D(FY,U) = w(Y)p(W) = p(¥).
Replacing Y by U and V by turns and using (3.10)2, we have p(U) = 0 and
—p(V) =D(U) = -A(U) +e.
On the other hand, replacing X by U to (4.18)2 and using (3.16), we get
p(V)==A\U) +e.

Comparing the last two equations, we get p(V) = 0 and A(U) = e. Replacing
X by W to (4.18); and using (3.18), we obtain A(V') = 0. Thus

p(U) =0, p(V) =0, AU) =e, A(V) =0. (4.24)
Replacing X by V to (4.20) and using (2.12), (3.17) and (4.24)2, we have
g(ALFY,U) +0o(Y) = 0.
Using this equation, (3.9)2 and (3.11), we obtain
B(FY,U) = —7(Y) + au(Y).
Taking Y = U and Y = W by turns and using FU = FW = (, we obtain
7(U) = a, (W) =0. (4.25)
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Replacing X by FY to 7(FX) = 0 and using (2.12) and (4.25), we see that
7(X) = au(X). From this result and (3.9)2, we obtain ¢(X) = —bv(X).

(3) Taking the scalar product with W to (4.19), we have
DX, V) =0(V)w(X) = —g(Ve X, W).
Replacing X by U to this and using (3.16), we obtain
D(U,V) = —p(&).

From this result and (4.22)2, we obtain p(§) = 0.
Taking the scalar product with V' to (4.19), we obtain

B(X,V)=0(V)u(X) +g(VeX, V) =0.
Replacing X by W to this equation and using (3.3) and (3.18), we have
B(V,W) = —A(€).
Replacing X by & to (4.18)2 and using (2.7) and (3.11), we get
B(V,W) = A(¢).
Comparing the last two equations, we obtain A(§) = 0. Therefore,

Taking Y = U to (3.3) and using (4.26)4, we get B(U, X) = 6(X). Taking
X =U to (3.11), we have g(A;U, X) = 0. As S(I'M) is non-degenerate, this
result implies A7U = 0. Replacing X by £ to (4.17) and using (2.7), (3.14)
and the facts that A(§) = 0 and o(X) = —bv(X), we obtain AV = 0. O

5. INDEFINITE COMPLEX SPACE FORMS

Definition 5.1. An indefinite complex space form M (c) is a connected indef-
inite Kaehler manifold of constant holomorphic sectional curvature c;

R(X.Y)Z = {3V, 2)X —§(X. 2)Y (5.1)
+ GV, 2)IX — g(IX, 2)JY +2g(X, JV)JIZ},
where R is the curvature tensor of the Levi-Civita connection V on M.

Let R be the curvature tensor of the non-metric ¢-symmetric connection V
on M. By directed calculations from (1.2) and (1.4), we see that

R(X,Y)Z =R(X,Y)Z + (Vx0)(Z)JY — (Vy0)(2)JX. (5.2)
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Denote by R and R* the curvature tensors of the induced connections V
and V* on M and S(T'M) respectively. Using the Gauss-Weingarten formular,
we have two Gauss equations for M and S(TM) such that

R(X,Y)Z = R(X,)Y)Z+B(X,Z2)A, Y —B(Y,2)A, X (5.3)
+D(X,Z2)AY —D(Y,2)A, X
+{(VxB)(Y,Z) - (VyB)(X, Z)
( )B(Y, Z) —7(Y)B(X, Z)
MX)D(Y, Z) = MY )D(X, Z)
(Y)B(FX Z)—0(X)B(FY,Z)}N
+{(VxD)(Y, Z) — (VyD)(X, Z)
(X)B( Z) - p(Y)B(X, Z)
w(X)D(Y, Z) = u(Y)D(X, Z)
(Y)D(FX Z)—0(X)D(FX,Z)}L,

R(X,Y)PZ = R(X,Y)PZ+C(X,PZ)ALY - C(Y,PZ)A:X (5.4)
+{(VxO)(Y,PZ) - (VyCO) (X, PZ)
—o(X)C(Y,PZ)+0o(Y)C(X,PZ)
+0(Y)C(FX,PZ)—0(X)C(FY,PZ)}¢.

Comparing the tangential components of (5.2) and (5.3), we obtain
R(X,Y)Z = B(Y,2)A,X -B(X,2)A,Y (5.5)
+D(Y,2)A, X — D(X,Z)A,Y
+ (Vx0)(Z)FY — (Vy0)(2)FX
+ HolY, 2)X = g(X, 2)Y + g(JY, Z)FX
— §(JX,Z)FY + 24(X,JY)FZ}.
Taking the scalar product with N to (5.4) and then, substituting (5.5) into
the resulting equation and using (3.2) and (3.8), we obtain
(VxCO)(Y, PZ) — (VyC)(X, PZ)
—o(X)C(Y,PZ)+o(Y)C(X,PZ)
—0(X)C(FY,PZ)+6(Y)C(FX,PZ)
+ a{v(X)B(Y,PZ) — v(Y)B(X,PZ)}
— {p(X) = ev(X) — aw(X)}D(Y, PZ)
+{p(Y)—ev(Y) —aw(Y)}D(X,PZ)
—(Vx0)(P2)v(Y) + (Vy8)(PZ)v(X)
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= L{(n(X)g(Y. PZ) = n(Y)g(X, PZ) + v(X)g(FY, PZ)
—v(Y)g(FX,PZ) +20(PZ)§(X,JY)}. (5.6)

Theorem 5.2. Let M be a half lightlike submanifold of an indefinite complex
space form M (c) with a non-metric ¢-symmetric connection. If one of the
following four statements is satisfied;

(1) F is recurrent,

(2) F is Lie recurrent,

(3) U is parallel with respect to the connection V,
(4) V is parallel with respect to the connection V,

then M(c) is flat, i.e., c = 0. In case (1), o satisfies do = 0.

Proof. (1) Applying Vx to (4.9);: 8(U) = 0 and using (2.3), (4.11)3, (4.12);
and the fact that 6(/N) = a, we obtain

(Vx0)(U) = —aB(X,U). (5.7)
Applying Vx to (4.9)2: C(Y,U) = 0 and using (4.13);, we obtain
(VxC)(Y,U) =0.
Taking Z = U to (5.6) and using (4.11)3 and the last two equations, we get
5 0 In(X) —v(X)n(¥)} = 0.
Taking X = ¢ and Y =V to this, we have ¢ = 0. Thus M(c) is flat.
By directed calculation from (4.13)1: VxU = o(X)U, we obtain
R(X,Y)U = 2do(X,Y)U.
On the other hand, by using (4.9); and (4.11)3, Eq.(4.7) reduces
A, X = B(X,U)U — aFX.

Replacing Z by U to (5.5) and using (4.11)3, (5.7) and the last equation, we
get R(X,Y)U = 0. Therefore, we obtain do = 0.

(2) Using the Gauss-Weingarten formulae (2.6) and (2.7) for the screen distri-
bution S(T'M), we have the following Codazzi equation for S(T'M):

R(X,Y)§ = =VX(AgY) + Vi (Ag X) + A¢[X, Y] (5.8)
— o(X)ALY +o(Y)AL X
+{C(Y, A¢ X) — C(X, AgY) — 2do(X,Y)}E.
Applying Vx to 6(&) = b and using (2.7), (3.7) and 0 = —bv, we get
(Vx0)(§) = Xb+ 0(A{X) — b*v(X) — abu(X) (5.9)
+ e{\(X) — eu(X) — bw(X)}.
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Taking the scaler product with N to (5.5) with Z = £ and then, comparing
this result with the radical component of (5.8), we obtain
C(Y, A X) — C(X, AgY') — 2do (X, Y)
c
= lu¥)o(X) —u(X)o(Y)}
+ {AX) = eu(X) = bw(X)Hp(Y) — aw(Y)}
— {AY) = euY) = bw(Y) Hp(X) — aw(X)}
+ (Xb)u(Y) — (YD)v(X) + (A X)v(Y) — (ALY )v(X),
due to (3.7), (3.8) and (5.9). Taking X = U and Y =V to the last equation
and using (4.24) and the item (3) in Theorem 4.2, we obtain

2do(U,V) = 2 — Ub. (5.10)

On the other hand, in general, applying Vx to v(Y) = g(Y,U) and using
(2.11), (3.1), (3.5), (3.6)5, (3.8)1, (3.15)1 and (3.16), we have

(Vxv)Y = o(Y)7(X) 4+ w(Y)p(X) + 0(Y)n(X)
g(A, X, FY) — afg(X,Y) - u(Y)o(X)}.
By directed calculation from o(X) = —bv(X) and by using (3.2), we derive
2do(X,Y) = —(Xb)u(Y)+ (Y0)u(X) + ab{u(X)v(Y) — u(Y)v(X)}

+o{v(X)7(Y) —o(Y)7(X) + w(X)p(Y) — w(Y)p(X)

+9(A X, FY)—g(A,Y,FX)}.
Taking X = U and Y = V to this equation and using (4.25);, we have

2do (U, V) = —Ub.

Comparing this result with (5.10), we obtain ¢ = 0.

(3) Assume that VxU = 0. Taking the scalar product with U to (3.16) and
using (3.8)1, we obtain 8(U)n(X) = 0. It follows that

6(U) = 0.
Applying Vx to §(U) = 0 and using (2.3) and the fact VxU = 0, we get
(Vx0)(U) = —aB(X,U) —eD(X,U). (5.11)
Taking the scalar product with W and N to (3.16) and using (3.13), we have
p(X) =aw(X), C(X,U)=0, (5.12)

respectively. Applying Vy to (5.12)2 and the fact VyU = 0, we obtain
(VxC)(Y,U) =0. (5.13)
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Taking PZ = U to (5.6) and using (5.11), (5.12)1,2 and (5.13), we have

S0V = o(X)n(¥)} = 0.
Taking X = ¢ and Y = V to this equation, we obtain ¢ = 0.
(4) Assume that VxV = 0. Taking the scalar product with W and N to
(3.17) by turns and using (3.4), (3.11) and (3.15)1, we obtain
D(X,¢) =bw(X), D¢ X)=0 CX,V)=0. (5.14)
Taking X = U and Y = W to (3.3), we obtain
B(U,W)—-6(W)=B(W,U).
Replacing X by U to (3.15)3 and using the last equation, (3.15); and (5.14)s,
we see that D(U,V) = B(U, W) —60(W) =B(W,U) =C(W,V)=0. Thus
DU, V) =0. (5.15)
Applying Vx to (5.14)3 and using the fact that VxV = 0, we have
(VxC)(Y,V)=0.
Taking PZ =V to (5.6) and using (5.14)3 and the last equation, we get
a{v(X)B(Y, V) —o(Y)B(X,V)}
— {p(X) — ev(X) — aw(X)} D(Y, V)
+{p(Y)—ev(Y) —aw(Y)}D(X,V)
— (Vx)(V)o(Y) + (Vy8)(V)v(X)
= ZHu(Y)n(X) —u(X)n(Y) + 25(X, JY)}.

Taking X = ¢ and Y = U and using (5.14)3 and (5.15), we get ¢ = 0. O
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