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Abstract. We study half lightlike submanifolds of an indefinite Kaehler manifold M̄ with a

non-metric φ-symmetric connection ∇̄ subject such that the tensor field φ is identical with

the fundamental 2-form associated with the indefinite almost complex structure J of M̄ .

1. Introduction

A codimension 2 submanifold M of a semi-Riemannian manifold is called
(1) half lightlike submanifold if rank{Rad(TM)} = 1,
(2) coisotropic submanifold if rank{Rad(TM)} = 2,

where Rad(TM) is the radical distribution given by Rad(TM) = TM ∩TM⊥,
TM and TM⊥ are the tangent and normal bundle of M , respectively. Half
lightlike submanifold was introduced by Duggal-Bejancu [2] and later, stud-
ied by Duggal-Jin [3]. Its geometry is more general than that of lightlike
hypersurfaces or coisotropic submanifolds. Much of its theory will be imme-
diately generalized in a formal way to general lightlike submanifolds. A linear
connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) is called a non-metric
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φ-symmetric connection if it and its torsion tensor T̄ satisfy

(∇̄X̄ ḡ)(Ȳ , Z̄) = −θ(Ȳ )φ(X̄, Z̄)− θ(Z̄)φ(X̄, Ȳ ), (1.1)

T̄ (X̄, Ȳ ) = θ(Ȳ )JX̄ − θ(X̄)JȲ , (1.2)

where φ and J are tensor fields of types (0, 2) and (1, 1), respectively, and θ
is a 1-form associated with a smooth unit spacelike vector field ζ by θ(X̄) =
ḡ(X̄, ζ). In the followings, denote by X̄, Ȳ and Z̄ the smooth vector fields
on M̄ . The notion of non-metric φ-symmetric connection on indefinite almost
complex or indefinite almost contact manifolds was defined by Jin [6, 7].

The subject of study in this paper is half lightlike submanifolds of an indefi-
nite Kaehler manifold (M̄, ḡ, J) with a non-metric φ-symmetric connection, in
which the tensor field J defined by (1.2) is identical with the indefinite almost
complex structure J of M̄ and the tensor field φ given by (1.1) is identical
with the fundamental 2-form associated with J , that is,

φ(X̄, Ȳ ) = ḡ(JX̄, Ȳ ). (1.3)

Remark 1.1. Denote by ∇̃ the Levi-Civita connection of an indefinite Kaehler
manifold (M̄, ḡ, J). It is known [7] that a linear connection ∇̄ is a non-metric
φ-symmetric connection if and only if ∇̄ satisfies

∇̄X̄ Ȳ = ∇̃X̄ Ȳ + θ(Ȳ )JX̄. (1.4)

2. Preliminaries

Let M̄ = (M̄, ḡ, J) be an indefinite Kaeler manifold, where ḡ is a semi-
Riemannian metric and J is an almost complex structure such that

J2 = −I, ḡ(JX̄, JȲ ) = ḡ(X̄, Ȳ ), (∇̃X̄J)Ȳ = 0. (2.1)

Replacing the Levi-Civita connection ∇̃ by the non-metric φ-symmetric con-
nection ∇̄ given by (1.4), the third equation of (2.1) is reduced to

(∇̄X̄J)Ȳ = θ(Ȳ )X̄ + θ(JȲ )JX̄. (2.2)

Let (M, g) be a half lightlike submanifold of M̄ . As rank(Rad(TM)) = 1,
there exist two complementary non-degenerate vector bundles S(TM) and
S(TM⊥) of Rad(TM) in TM and TM⊥, respectively, which are called screen
distribution and co-screen distribution of M , such that

TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where ⊕orth denotes the orthogonal direct sum. Denote by F (M) the algebra
of smooth functions on M and by Γ(E) the F (M) module of smooth sec-
tions of a vector bundle E over M . Also denote by (2.1)i the i-th equation
of (2.1). We use same notations for any others. Choose L ∈ Γ(S(TM⊥)) as



Half lightlike submanifolds of an indefinite Kaehler manifold 143

a unit spacelike vector field, without loss of generality. Consider the orthog-
onal complementary vector bundle S(TM)⊥ to S(TM) in TM̄ . Certainly,
Rad(TM) and S(TM⊥) are vector subbundles of S(TM)⊥. As the co-screen
distribution S(TM⊥) is non-degenerate, we have

S(TM)⊥ = S(TM⊥)⊕orth S(TM⊥)⊥,

where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥.
For any null section ξ of Rad(TM), there exists a uniquely defined lightlike
vector bundle ltr(TM) and a null vector field N of ltr(TM) satisfying

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = ḡ(N,L) = 0, ∀X ∈ Γ(S(TM)).

We callN, ltr(TM) and tr(TM) = S(TM⊥)⊕orthltr(TM) the null transversal
vector field, lightlike transversal vector bundle and transversal vector bundle
with respect to S(TM) respectively [3]. TM̄ is decomposed as

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).

Let P be the projection morphism of TM on S(TM). Denote by X, Y and
Z the smooth vector fields on M , unless otherwise specified. Then the local
Gauss-Weingarten formular of M and S(TM) are given by

∇̄XY = ∇XY +B(X,Y )N +D(X,Y )L, (2.3)

∇̄XN = −ANX + τ(X)N + ρ(X)L, (2.4)

∇̄XL = −ALX + λ(X)N + µ(X)L; (2.5)

∇XPY = ∇∗XPY + C(X,PY )ξ, (2.6)

∇Xξ = −A∗ξX − σ(X)ξ, (2.7)

respectively, where the symbols ∇ and ∇∗ are linear connections on M and
S(TM), respectively, B and D are the local second fundamental forms of M ,
C is the local second fundamental form on S(TM). AN , AL and A∗ξ are the
shape operators and τ, ρ, λ, µ and σ are 1-forms on M .

For a half lightlike submanifold M of M̄ , it is known [4] that J(Rad(TM)),
J(ltr(TM)) and J(S(TM⊥)) are subbundles of S(TM) with mutually trivial
intersections, of rank 1. Thus there exist two non-degenerate almost complex
distributions Ho and H on M with respect to J such that

S(TM) = J(Rad(TM))⊕ J(ltr(TM))⊕orth J(S(TM⊥)⊕orth Ho,

H = {Rad(TM)⊕orth J(Rad(TM))} ⊕orth Ho.

In this case, the tangent bundle TM of M is decomposed as follow:

TM = H ⊕ J(ltr(TM))⊕orth J(S(TM⊥)). (2.8)
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Let a, b and e be the smooth functions defined by

a = θ(N), b = θ(ξ), e = θ(L).

Consider two null vector fields {U, V } and one spacelike vector field W on the
screen distribution S(TM) and their 1-forms u, v and w such that

U = −JN, V = −Jξ, W = −JL, (2.9)

u(X) = g(X, V ), v(X) = g(X, U), w(X) = g(X,W ). (2.10)

Denote by S the projection morphism of TM on H and F the tensor field of
type (1, 1) globally defined on M by F = J ◦ S. Then

JX = FX + u(X)N + w(X)L. (2.11)

Applying J to (2.11) and using (2.1) and (2.9), we have

F 2X = −X + u(X)U + w(X)W. (2.12)

Substituting (2.11) into (1.2)2 and using (2.11) and (2.10), we have

g(FX,FY ) = g(X,Y )− u(X)v(Y )− u(Y )v(X)− w(X)w(Y ). (2.13)

In the sequel, we say that F is the structure tensor field of M .

3. Non-metric φ-symmetric connections

Let T be the torsion tensor on M with respect to ∇ and η the 1-form given
by η(X) = ḡ(X,N). Using (1.1), (1.2), (1.3), (2.3) and (2.11), we get

(∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ) (3.1)

− θ(Y )φ(X,Z)− θ(Z)φ(X,Y ),

T (X,Y ) = θ(Y )FX − θ(X)FY, (3.2)

B(X,Y )−B(Y,X) = θ(Y )u(X)− θ(X)u(Y ), (3.3)

D(X,Y )−D(Y,X) = θ(Y )w(X)− θ(X)w(Y ), (3.4)

φ(X,Y ) = g(FX, Y ) + u(X)η(Y ), (3.5)

φ(X, ξ) = u(X), φ(X,N) = v(X), φ(X,L) = w(X), (3.6)

φ(X,V ) = 0, φ(X,U) = −η(X), φ(X,W ) = 0.

Applying ∇̄X to ḡ(ξ, ξ) = 0, ḡ(ξ, L) = 0, ḡ(N,N) = 0, ḡ(N,L) = 0,
ḡ(L,L) = 1 and ḡ(ξ,N) = 1 by turns and using (1.1) and (3.6), we obtain

B(X, ξ) = bu(X), D(X, ξ) = −λ(X) + eu(X) + bw(X), (3.7)

ḡ(ANX,N) = −av(X), ḡ(ALX,N) = ρ(X)− ev(X)− aw(X), (3.8)

µ(X) = ew(X), σ(X) = τ(X)− au(X)− bv(X), (3.9)

respectively. From (3.3), (3.4) and (3.7), we see that

B(ξ,X) = 0, D(ξ,X) = −λ(X) + eu(X). (3.10)
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The local second fundamental forms are related to their shape operators by

B(X,Y ) = g(A∗ξX,Y ) + bg(FX, Y ) + u(X)θ(Y ), (3.11)

D(X,Y ) = g(ALX,Y ) + eg(FX, Y ) + w(X)θ(Y ) (3.12)

− {λ(X)− eu(X)}η(Y ),

C(X,PY ) = g(ANX,PY ) + ag(FX,PY ) + v(X)θ(PY ). (3.13)

Replacing X by ξ to (3.11) and using (2.10) and (3.10)1, we obtain

A∗ξξ = bV. (3.14)

Applying ∇̄X to (2.9) and (2.11) and using (2.3)∼(2.5), (2.9), (2.11), (2.2)
and (3.11)∼(3.13), we have

B(X,U) = u(ANX) + θ(U)u(X)

= C(X,V ) + θ(U)u(X)− θ(V )v(X),

D(X,U) = w(ANX) + θ(U)w(X) (3.15)

= C(X,W )− θ(W )v(X) + θ(U)w(X),

D(X,V ) = B(X,W )− θ(W )u(X) + θ(V )w(X),

∇XU = F (ANX) + τ(X)U + ρ(X)W − aX + θ(U)FX, (3.16)

∇XV = F (A∗ξX)− σ(X)V + bu(X)U +D(X, ξ)W (3.17)

− bX + θ(V )FX,

∇XW = F (ALX) + λ(X)U + µ(X)W − eX + θ(W )FX, (3.18)

(∇XF )Y = u(Y )ANX + w(Y )ALX −B(X,Y )U (3.19)

− D(X,Y )W + θ(Y )X + θ(JY )FX.

Definition 3.1. ([9]) A half lightlike submanifold M of a semi-Riemannian
manifold is called irrotational if ∇̄Xξ ∈ Γ(TM), i.e., B(X, ξ) = D(X, ξ) = 0.

Note that, from (3.7), we see that M is irrotational if and only if

b = 0, λ(X) = eu(X). (3.20)

4. Recurrent and Lie recurrent submanifolds

Definition 4.1. ([5]) The structure tensor field F of M is said to be recurrent
if there exists a smooth 1-form $ on M such that

(∇XF )Y = $(X)FY.
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Theorem 4.2. Let M be a half lightlike submanifold of an indefinite Kaehler
manifold M̄ with a non-metric φ-symmetric connection. If F is recurrent,
then the following six statements are satisfied:

(1) F is parallel with respect to the induced connection ∇ on M .
(2) M is irrotational.
(3) The 1-form θ vanishes, i.e., θ = 0, on M .
(4) W is parallel vector field with respect to the connection ∇.
(5) H, J(ltr(TM)) and J(S(TM⊥)) are parallel distributions on M .
(6) M is locally a product manifold M = CU × CW ×M ], where CU is a

null curve tangent to J(ltr(TM)), CW is a spacelike curve tangent to
J(S(TM⊥)), and M ] is a leaf of the distribution H.

Proof. (1) From the above definition and (3.19), we get

$(X)FY = u(Y )ANX + w(Y )ALX −B(X,Y )U (4.1)

− D(X,Y )W + θ(Y )X + θ(JY )FX.

Replacing Y by ξ and using (2.9), (2.10) and the fact: Fξ = −V , we get

$(X)V = B(X, ξ)U +D(X, ξ)W − bX + θ(V )FX. (4.2)

Taking the scalar product with N to (4.2), we obtain bη(X)− θ(V )v(X) = 0.
Taking X = ξ and X = V to this result by turns, we have

b = 0, θ(V ) = 0. (4.3)

Taking the scalar product with U to (4.2), we get $ = 0. It follows that
∇XF = 0. Therefore, F is parallel with respect to the connection ∇.

(2) Taking the scalar product with V and W to (4.2) by turns, we get

B(X, ξ) = 0, D(X, ξ) = 0. (4.4)

It is equivalent to ∇̄Xξ ∈ Γ(TM). Therefore, M is irrotational.

(3) Replacing Y by V to (4.1) and using (4.3), we have

B(X,V ) = 0, D(X,V ) = 0. (4.5)

Taking Y = V to (3.3) and (3.4) by turns and using (4.3)2 and (4.5), we get

B(V,X) = 0, D(V,X) = 0. (4.6)

Taking Y = U and Y = W to (4.1) such that $ = 0 by turns, we have

ANX = B(X,U)U +D(X,U)W − θ(U)X − aFX, (4.7)

ALX = B(X,W )U +D(X,W )W − θ(W )X − eFX. (4.8)
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Taking the scalar product with N and then, with U to (4.7) and (4.8) by turns
and using (3.8), (3.12) and (3.13), we obtain

θ(U) = 0, C(X,U) = 0, (4.9)

ρ(X)− aw(X) = −θ(W )η(X), D(X,U) = −θ(W )v(X). (4.10)

Replacing X by V to (4.10)2 and using (4.6)2, we get θ(W ) = 0. Thus

θ(W ) = 0, ρ(X) = aw(X), D(X,U) = 0. (4.11)

Taking the product with N to (4.1) and using (3.8) and (4.11)2, we have

θ(Y )η(X) + {θ(JY )− au(Y )− ew(Y )}v(X) = 0.

Replacing X by ξ and V to this equation by turns, we obtain

θ(X) = 0, θ(JX) = au(X) + ew(X), ∀X ∈ Γ(TM). (4.12)

(4) Applying F to (4.7) and (4.8) and using (2.12), we obtain

F (ANX)− aX = −au(X)U − aw(X)W,

F (ALX)− eX = −eu(X)U − ew(X)W.

Using these, (3.9), (3.20)2 and (4.11)2, Eqs: (3.16) and (3.18) reduce

∇XU = σ(X)U, ∇XW = 0. (4.13)

From (4.13)2, we see that W is parallel vector field with respect to ∇.

(5) It follows from (4.13) that J(ltr(TM)) and J(S(TM⊥)) are parallel dis-
tributions on M with respect to ∇, that is,

∇XU ∈ Γ(J(ltr(TM))), ∇XW ∈ Γ(J(S(TM⊥))).

On the other hand, using (4.3)2, (4.5)2 and (4.11)1, from (3.15)3 we get

B(X,W ) = 0. (4.14)

Taking Y = FZ to (4.1) and using (4.12) and u(FZ) = w(FZ) = 0, we get

B(X,FZ) = 0, D(X,FZ) = 0. (4.15)

For any X ∈ Γ(TM) and Z ∈ Γ(Ho), by using (2.2), (2.7), (2.13), (3.6)1, 4,
(3.11), (3.12), (3.17), (4.3)∼(4.5), (4.12), (4.14) and (4.15), we derive

g(∇Xξ, V ) = −B(X,V ) + θ(V )u(X) = 0,

g(∇Xξ,W ) = −B(X,W ) + θ(W )u(X) = 0,

g(∇XV, V ) = 0,

g(∇XV,W ) = D(X, ξ)− bw(X) = 0,

g(∇XZ, V ) = B(X,FZ)− θ(FZ)u(X) = 0,

g(∇XZ,W ) = D(X,FZ)− θ(FZ)w(X) = 0.
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It follows that H is also a parallel distribution on M , that is,

∇XY ∈ Γ(H), ∀X ∈ Γ(TM), ∀Y ∈ Γ(H).

(6) As J(ltr(TM)), J(S(TM⊥)) and H are parallel distributions and satisfied
(2.8), by the decomposition theorem [1], M is locally a product manifold
CU × CW × M ], where CU is a null curve tangent to J(ltr(TM)), CW is a
spacelike curve tangent to J(S(TM⊥)), and M ] is a leaf of H. �

Definition 4.3. ([5]) The structure tensor field F of M is said to be Lie
recurrent if there exists a smooth 1-form ϑ on M such that

(LXF )Y = ϑ(X)FY,

where LX denotes the Lie derivative on M with respect to X. The structure
tensor field F is called Lie parallel if LXF = 0.

Theorem 4.4. Let M be a half lightlike submanifold of an indefinite Kaehler
manifold with a semi-symmetric non-metric connection. If F is Lie recurrent,
then the following three statements are satisfied :

(1) F is Lie paralle.
(2) τ and σ satisfy τ(X) = au(X) and σ(X) = −bv(X).
(3) The shape operator A∗ξ satisfies A∗ξU = A∗ξV = 0.

Proof. (1) Using (3.2) and (3.19), we have

ϑ(X)FY = −∇FYX + F∇YX + u(Y )ANX + w(Y )ALX (4.16)

− {B(X,Y )− θ(Y )u(X)}U − {D(X,Y )− θ(Y )w(X)}W
+ {au(Y ) + ew(Y )}FX.

Taking Y = ξ to (4.16) and using (3.7)1, 2 and the fact: Fξ = −V , we get

−ϑ(X)V = ∇VX + F∇ξX + {λ(X)− eu(X)}W. (4.17)

Taking the scalar product with V and W to (4.17) by turns, we have

u(∇VX) = 0, w(∇VX) = −λ(X) + eu(X). (4.18)

Replacing Y by V to (4.16) and using the fact: FV = ξ, we have

ϑ(X)ξ = −∇ξX + F∇VX (4.19)

− {B(X,V )− θ(V )u(X)}U − {D(X,V )− θ(V )w(X)}W.

Applying F to this equation and using (2.12) and (4.18), we obtain

ϑ(X)V = ∇VX + F∇ξX + {λ(X)− eu(X)}W.

Comparing this equation with (4.17), we get ϑ = 0. Thus F is Lie parallel.
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(2) Taking the scalar product with N to (4.16) and using (3.8), we get

−ḡ(∇FYX,N) + g(∇YX,U) + ρ(X)w(Y )− aw(X)w(Y ) = 0. (4.20)

Replacing X by ξ to (4.20) and using (2.7), (3.9)2 and (3.11), we have

B(Y, U)− ρ(ξ)w(Y )− θ(U)u(Y ) = τ(FY ). (4.21)

Taking Y = U and Y = W by turns and using (3.3) and (3.15)1, 3, we get

C(U, V ) = B(U,U)− θ(U) = 0, (4.22)

D(U, V ) = B(U,W )− θ(W ) = ρ(ξ).

On the other hand, taking the scalar product with V to (4.16) and then,
replacing X by U and using (3.3), (3.12), (3.13) and (3.16), we have

−τ(FY )−B(Y, U) + θ(U)u(Y ) + u(Y )C(U, V ) + w(Y )D(U, V ) = 0. (4.23)

From the last two equations (4.22) and (4.23), we see that

B(Y,U)− ρ(ξ)w(Y )− θ(U)u(Y ) = −τ(FY ).

Comparing this equation with (4.21), we obtain τ(FX) = 0.
Replacing X by W to (4.16) and using (2.12), (3.3), (3.4), (3.9)1, (3.12),

(3.15)3 and (3.18), we obtain

u(Y )ANW + w(Y )ALW −ALY − F (ALFY )− λ(FY )U = 0.

Taking the scalar product with N and using (2.12), (3.8) and (3.12), we get

D(FY,U) = w(Y )ρ(W )− ρ(Y ).

Replacing Y by U and V by turns and using (3.10)2, we have ρ(U) = 0 and

−ρ(V ) = D(ξ, U) = −λ(U) + e.

On the other hand, replacing X by U to (4.18)2 and using (3.16), we get

ρ(V ) = −λ(U) + e.

Comparing the last two equations, we get ρ(V ) = 0 and λ(U) = e. Replacing
X by W to (4.18)1 and using (3.18), we obtain λ(V ) = 0. Thus

ρ(U) = 0, ρ(V ) = 0, λ(U) = e, λ(V ) = 0. (4.24)

Replacing X by V to (4.20) and using (2.12), (3.17) and (4.24)2, we have

g(A∗ξFY,U) + σ(Y ) = 0.

Using this equation, (3.9)2 and (3.11), we obtain

B(FY,U) = −τ(Y ) + au(Y ).

Taking Y = U and Y = W by turns and using FU = FW = 0, we obtain

τ(U) = a, τ(W ) = 0. (4.25)
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Replacing X by FY to τ(FX) = 0 and using (2.12) and (4.25), we see that
τ(X) = au(X). From this result and (3.9)2, we obtain σ(X) = −bv(X).

(3) Taking the scalar product with W to (4.19), we have

D(X,V )− θ(V )w(X) = −g(∇ξX,W ).

Replacing X by U to this and using (3.16), we obtain

D(U, V ) = −ρ(ξ).

From this result and (4.22)2, we obtain ρ(ξ) = 0.
Taking the scalar product with V to (4.19), we obtain

B(X,V )− θ(V )u(X) + g(∇ξX,V ) = 0.

Replacing X by W to this equation and using (3.3) and (3.18), we have

B(V,W ) = −λ(ξ).

Replacing X by ξ to (4.18)2 and using (2.7) and (3.11), we get

B(V,W ) = λ(ξ).

Comparing the last two equations, we obtain λ(ξ) = 0. Therefore,

ρ(ξ) = 0, λ(ξ) = 0, D(U, V ) = 0, B(X,U) = θ(U)u(X). (4.26)

Taking Y = U to (3.3) and using (4.26)4, we get B(U,X) = θ(X). Taking
X = U to (3.11), we have g(A∗ξU,X) = 0. As S(TM) is non-degenerate, this

result implies A∗ξU = 0. Replacing X by ξ to (4.17) and using (2.7), (3.14)

and the facts that λ(ξ) = 0 and σ(X) = −bv(X), we obtain A∗ξV = 0. �

5. Indefinite complex space forms

Definition 5.1. An indefinite complex space form M̄(c) is a connected indef-
inite Kaehler manifold of constant holomorphic sectional curvature c ;

R̃(X̄, Ȳ )Z̄ =
c

4
{ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ (5.1)

+ ḡ(JȲ , Z̄)JX̄ − ḡ(JX̄, Z̄)JȲ + 2ḡ(X̄, JȲ )JZ̄},

where R̃ is the curvature tensor of the Levi-Civita connection ∇̃ on M̄ .

Let R̄ be the curvature tensor of the non-metric φ-symmetric connection ∇̄
on M̄ . By directed calculations from (1.2) and (1.4), we see that

R̄(X̄, Ȳ )Z̄ = R̃(X̄, Ȳ )Z̄ + (∇̄Xθ)(Z)JY − (∇̄Y θ)(Z)JX. (5.2)
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Denote by R and R∗ the curvature tensors of the induced connections ∇
and ∇∗ on M and S(TM) respectively. Using the Gauss-Weingarten formular,
we have two Gauss equations for M and S(TM) such that

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)ANY −B(Y,Z)ANX (5.3)

+ D(X,Z)ALY −D(Y,Z)ALX

+ {(∇XB)(Y, Z)− (∇YB)(X,Z)

+ τ(X)B(Y,Z)− τ(Y )B(X,Z)

+ λ(X)D(Y, Z)− λ(Y )D(X,Z)

+ θ(Y )B(FX,Z)− θ(X)B(FY,Z)}N
+ {(∇XD)(Y, Z)− (∇YD)(X,Z)

+ ρ(X)B(Y,Z)− ρ(Y )B(X,Z)

+ µ(X)D(Y,Z)− µ(Y )D(X,Z)

+ θ(Y )D(FX,Z)− θ(X)D(FX,Z)}L,

R(X,Y )PZ = R∗(X,Y )PZ + C(X,PZ)A∗ξY − C(Y, PZ)A∗ξX (5.4)

+ {(∇XC)(Y, PZ)− (∇Y C)(X,PZ)

− σ(X)C(Y, PZ) + σ(Y )C(X,PZ)

+ θ(Y )C(FX,PZ)− θ(X)C(FY, PZ)}ξ.

Comparing the tangential components of (5.2) and (5.3), we obtain

R(X,Y )Z = B(Y, Z)ANX −B(X,Z)ANY (5.5)

+ D(Y, Z)ALX −D(X,Z)ALY

+ (∇̄Xθ)(Z)FY − (∇̄Y θ)(Z)FX

+
c

4
{g(Y,Z)X − g(X,Z)Y + ḡ(JY, Z)FX

− ḡ(JX,Z)FY + 2ḡ(X, JY )FZ}.

Taking the scalar product with N to (5.4) and then, substituting (5.5) into
the resulting equation and using (3.2) and (3.8), we obtain

(∇XC)(Y, PZ)− (∇Y C)(X,PZ)

− σ(X)C(Y, PZ) + σ(Y )C(X,PZ)

− θ(X)C(FY, PZ) + θ(Y )C(FX,PZ)

+ a{v(X)B(Y, PZ)− v(Y )B(X,PZ)}
− {ρ(X)− ev(X)− aw(X)}D(Y, PZ)

+ {ρ(Y )− ev(Y )− aw(Y )}D(X,PZ)

− (∇̄Xθ)(PZ)v(Y ) + (∇̄Y θ)(PZ)v(X)
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=
c

4
{η(X)g(Y, PZ)− η(Y )g(X,PZ) + v(X)g(FY, PZ)

− v(Y )g(FX,PZ) + 2v(PZ)ḡ(X,JY )}. (5.6)

Theorem 5.2. Let M be a half lightlike submanifold of an indefinite complex
space form M̄(c) with a non-metric φ-symmetric connection. If one of the
following four statements is satisfied ;

(1) F is recurrent,
(2) F is Lie recurrent,
(3) U is parallel with respect to the connection ∇,
(4) V is parallel with respect to the connection ∇,

then M̄(c) is flat, i.e., c = 0. In case (1), σ satisfies dσ = 0.

Proof. (1) Applying ∇̄X to (4.9)1: θ(U) = 0 and using (2.3), (4.11)3, (4.12)1

and the fact that θ(N) = a, we obtain

(∇̄Xθ)(U) = −aB(X,U). (5.7)

Applying ∇X to (4.9)2: C(Y,U) = 0 and using (4.13)1, we obtain

(∇XC)(Y,U) = 0.

Taking Z = U to (5.6) and using (4.11)3 and the last two equations, we get
c

2
{v(Y )η(X)− v(X)η(Y )} = 0.

Taking X = ξ and Y = V to this, we have c = 0. Thus M̄(c) is flat.
By directed calculation from (4.13)1: ∇XU = σ(X)U , we obtain

R(X,Y )U = 2dσ(X,Y )U.

On the other hand, by using (4.9)1 and (4.11)3, Eq.(4.7) reduces

ANX = B(X,U)U − aFX.
Replacing Z by U to (5.5) and using (4.11)3, (5.7) and the last equation, we
get R(X,Y )U = 0. Therefore, we obtain dσ = 0.

(2) Using the Gauss-Weingarten formulae (2.6) and (2.7) for the screen distri-
bution S(TM), we have the following Codazzi equation for S(TM):

R(X,Y )ξ = −∇∗X(A∗ξY ) +∇∗Y (A∗ξX) +A∗ξ [X,Y ] (5.8)

− σ(X)A∗ξY + σ(Y )A∗ξX

+ {C(Y,A∗ξX)− C(X,A∗ξY )− 2dσ(X,Y )}ξ.

Applying ∇̄X to θ(ξ) = b and using (2.7), (3.7) and σ = −bv, we get

(∇̄Xθ)(ξ) = Xb+ θ(A∗ξX)− b2v(X)− abu(X) (5.9)

+ e{λ(X)− eu(X)− bw(X)}.
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Taking the scaler product with N to (5.5) with Z = ξ and then, comparing
this result with the radical component of (5.8), we obtain

C(Y,A∗ξX)− C(X,A∗ξY )− 2dσ(X,Y )

=
c

4
{u(Y )v(X)− u(X)v(Y )}

+ {λ(X)− eu(X)− bw(X)}{ρ(Y )− aw(Y )}
− {λ(Y )− eu(Y )− bw(Y )}{ρ(X)− aw(X)}
+ (Xb)v(Y )− (Y b)v(X) + θ(A∗ξX)v(Y )− θ(A∗ξY )v(X),

due to (3.7), (3.8) and (5.9). Taking X = U and Y = V to the last equation
and using (4.24) and the item (3) in Theorem 4.2, we obtain

2dσ(U, V ) =
c

4
− Ub. (5.10)

On the other hand, in general, applying ∇X to v(Y ) = g(Y, U) and using
(2.11), (3.1), (3.5), (3.6)5, (3.8)1, (3.15)1 and (3.16), we have

(∇Xv)Y = v(Y )τ(X) + w(Y )ρ(X) + θ(Y )η(X)

−g(ANX,FY )− a{g(X,Y )− u(Y )v(X)}.

By directed calculation from σ(X) = −bv(X) and by using (3.2), we derive

2dσ(X,Y ) = −(Xb)v(Y ) + (Y b)v(X) + ab{u(X)v(Y )− u(Y )v(X)}
+b{v(X)τ(Y )− v(Y )τ(X) + w(X)ρ(Y )− w(Y )ρ(X)

+g(ANX,FY )− g(ANY, FX)}.

Taking X = U and Y = V to this equation and using (4.25)1, we have

2dσ(U, V ) = −Ub.

Comparing this result with (5.10), we obtain c = 0.

(3) Assume that ∇XU = 0. Taking the scalar product with U to (3.16) and
using (3.8)1, we obtain θ(U)η(X) = 0. It follows that

θ(U) = 0.

Applying ∇̄X to θ(U) = 0 and using (2.3) and the fact ∇XU = 0, we get

(∇̄Xθ)(U) = −aB(X,U)− eD(X,U). (5.11)

Taking the scalar product with W and N to (3.16) and using (3.13), we have

ρ(X) = aw(X), C(X,U) = 0, (5.12)

respectively. Applying ∇Y to (5.12)2 and the fact ∇Y U = 0, we obtain

(∇XC)(Y, U) = 0. (5.13)
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Taking PZ = U to (5.6) and using (5.11), (5.12)1, 2 and (5.13), we have

c

2
{v(Y )η(X)− v(X)η(Y )} = 0.

Taking X = ξ and Y = V to this equation, we obtain c = 0.

(4) Assume that ∇XV = 0. Taking the scalar product with W and N to
(3.17) by turns and using (3.4), (3.11) and (3.15)1, we obtain

D(X, ξ) = bw(X), D(ξ,X) = 0, C(X,V ) = 0. (5.14)

Taking X = U and Y = W to (3.3), we obtain

B(U,W )− θ(W ) = B(W,U).

Replacing X by U to (3.15)3 and using the last equation, (3.15)1 and (5.14)3,
we see that D(U, V ) = B(U,W )− θ(W ) = B(W,U) = C(W,V ) = 0. Thus

D(U, V ) = 0. (5.15)

Applying ∇X to (5.14)3 and using the fact that ∇XV = 0, we have

(∇XC)(Y, V ) = 0.

Taking PZ = V to (5.6) and using (5.14)3 and the last equation, we get

a{v(X)B(Y, V )− v(Y )B(X,V )}
− {ρ(X)− ev(X)− aw(X)}D(Y, V )

+ {ρ(Y )− ev(Y )− aw(Y )}D(X,V )

− (∇̄Xθ)(V )v(Y ) + (∇̄Y θ)(V )v(X)

=
c

4
{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )}.

Taking X = ξ and Y = U and using (5.14)2 and (5.15), we get c = 0. �
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