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Abstract. The aim of the present paper is to give general solutions of the following func-
tional equation of Hosszui type:

flx—y+azy)+ fly) = f(z) + f(zy)
and its Pexiderized version
flz—y+zy) + g(y) = h(z) + k(zy),

and prove the Hyers-Ulam stability of the above two functional equations in Banach spaces.

1. INTRODUCTION AND PRELIMINARIES

The stability problem of functional equations originated from a question of
Ulam [12] concerning the stability of group homomorphisms. The functional
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equation
fla+y)=f=)+ fy)
is called the Cauchy equation. In particular, every solution of the Cauchy
equation is said to be an additive mapping. Hyers [7] gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ theorem
was generalized by Aoki [1] for additive mappings and by Rassias [9] for linear
mappings by considering an unbounded Cauchy difference. A generalization of
the Rassias theorem was obtained by Gavruta [5] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Rassias’ ap-
proach.
The functional equation

fle+y—ay)+ flay) = flz) + f(y) (1.1)
was considered first by Hosszi who has solved it under a differentiability as-
sumption. It has also been treated by many authors ([1, 2, 8, 10, 11]).

In this paper, we solve the following functional equation of Hosszu type

fl@—y+zy)+ fly) = f(@) + f(2y) (1.2)
and its Pexiderized version
(@ —y+zy) +9(y) = h(x) + k(zy), (1.3)

and prove the Hyers-Ulam stability of the functional equations (1.2) and (1.3)
in Banach spaces.

2. GENERAL SOLUTIONS OF (1.2) AND (1.3) ON R

In this section, X denotes a linear space.

Theorem 2.1. A mapping f : R — X satisfies (1.2) for all xz,y € R if and
only if f has the form f(x) = A(x)+0b, where A : R — X is additive and b € R

18 a constant.

Proof. Let f: R — X satisfy (1.2). Setting y = 1 and y = —1, respectively, in
(1.2), we get

f2z—1)+ f(1) =2f(z) (2.1)
and
f(@) + f(=2) = f(1) + f(=1). (2:2)
Letting x = 0 in (2.1) and using (2.2), we get
f(x) + f(=x) =2f(0), (z€R). (2.3)

Letting =2 and z = —1 in (2.1) and using (2.3), we get
FR)+ 1) =2f(2), 3f(1) = f(3)=2f(0), (zeR).
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Hence
f2)+ f(0)=2f(), (z €R). (2.4)
Replacing y by —y in (1.2), we obtain
fla+y—ay)+ f(—y) = f(z) + f(—=zy), (z,y €R). (2.5)
Adding (1.2) to (2.5) and using (2.2), we obtain
flaty—ay) + fla —y+ay) =2f(2), (z,y ER). (2.6)
Letting y = ;%7 in (2.6), we have
f0) + f(2z) =2f(z), (x € R\ {1}). (2.7)

It follows from (2.4) that (2.7) holds for each x € R. By (2.6) and (2.7), we
obtain that
flx+y—ay) + fle —y+ay) = f(22) + [(0), (z,y €R).  (28)
Let u,v € R with u + v # 2. We can find z,y € R such that x +y —zy = u
and z — y + xy = v. Hence (2.8) implies that
fw) + f(v) = flu+v)+ f(0). (2.9)
We prove that (2.9) holds when u+ v = 2. For this, letting # = 2 in (1.2) and
using (2.7), we get
f2+y) = fly) =F2) = £(0), (y € R). (2.10)
Replacing y by —y in (2.10) and using (2.3), we obtain

fR=y)+ fly) = f(2) + f(0), (y € R).
Hence (2.9) holds for all u,v € R and this shows f — f(0) is additive. The
converse is obvious. This completes the proof. O

Theorem 2.2. Mappings f,g,h,k : R — X satisfy (1.3) for all x,y € R if
and only if they have the form f(x) = A(x) + by,9(x) = A(x) + be, h(z) =
A(z) + b3, k(z) = A(x) + by, where A : R — X is additive and by, by, b3, by € R
are constants with by + by = b3 + by.

Proof. Let f,g,h,k : R — X satisfy (1.3). Setting z = 0,y = 0 and z = 1,
respectively, in (1.3), we get

F(=y) + 9(y) = h(0) + K(0), (2.11)
f(@) + g(0) = h(x) + k(0), (2.12)
F) +9(y) = h(1) + k(y)- (2.13)
Using (2.11), (2.12), (2.13) and (1.3), we have
f@ —y+wzy) — f(—y) + h(0) + k(0) (2.14)
— F(@) + glzy) + F(1) +(0) — h(1) — K(0), (. € R)
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Using (2.11) and (2.14), we get
fx =y +zxy) = f(=y) + h(1) + k(0)

= f(x) = f(=zy) + f(1) + 9(0)

)

g
for all z,y € R. It follows from (2.13) that f(1)+g¢(0
(2.15) implies that

(2.15)

= h(1)+k(0). Therefore,

fl@—y+azy) — f(-y) = f(2) - f(-2y), (z,y €R). (2.16)
Replacing y by —y in (2.16), we have
fl@+y—=zy)+ flzy) = f(2) + f(y), (z,y €R), (2.17)

which is the Hosszi’s functional equation. Hence f — f(0) is additive (see
2, 3]). Now using (2.11), (2.12) and (2.13), we also get the assertion for g, h
and k. The converse is obvious. This completes the proof. 0

Theorem 2.3. A mapping [ : R — X satisfies (1.2) if and only if f satisfies
(1.1).

Proof. Let f satisfy (1.2). By Theorem 2.1 f has the form f(z) = A(x) + b
where A : R — X is additive and b € R is a constant. Therefore f satisfies
(1.1). If f satisfy (1.1), f— f(0) is additive (see [2, 3]). So f satisfies (1.2). O

Remark 2.4. Using the proofs of Theorems 2.1 and 2.2, the results of The-
orems 2.1 and 2.2 can be extended to mappings f,g,h,k : K = G, where K
is a commutative field of characteristic different from 2, and G is an abelian
group.

3. GENERALIZED HYERS-ULAM STABILITY

In this section, we examine generalized Hyers-Ulam stability of functional
equations (1.2) and (1.3). Let X be a Banach space.

Theorem 3.1. Let ¢ : R x R — [0,400) be a function such that

n

1 ALY 2™y 2™y
5 (20 g g) (2w gty ) e (G Y
> 2n[¢( Ty 1) TP\E T oy 1) TP\ 1

neDy

4"zy
,—1)} : 1
+¢(2"w—1 < 0 (3.1)

where Dy := {n € NU{0} : 2"z # 1}. If a mapping f : R — X satisfies the
mequality

[f(x —y+zy)+ f(y) — f(@) = flzy)] < (2, y) (3.2)
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for all z,y € R, then there exists a unique additive mapping A : R — X such
that

S g (et o)

If(@)-A@)-fOl <] »
> LG N R Y

2t+1 9k+17

where
2

v =e(n2g) voln—2g) re(G o) reGor 1)
5i= 5[0, 1)+ 6(0,1) + (1, 1) + (3, ~1) + ¢(1,-1)].

Proof. Setting y = 1 and y = —1, respectively, in (3.2), we get

1f 2z — 1)+ f(1) = 2f(2)|| < ¢(,1) (3.4)
and
1f(z) + f(=2x) = f(1) = F(=D)|| < o(z, -1). (3.5)
Letting x = 0 in (3.4) and using (3.5), we get
1f (@) + f(=2) = 2f(0)| < ¢(0,1) + ¢(x, -1), (z € R). (3.6)

Replacing y by —y in (3.2), we obtain

If(@+y —ay) + f(=y) = f(z) = fl=zy)ll < (2, —y), (z,y €R).  (3.7)
Adding (3.2) to (3.7) and using (3.5), we obtain

If(@+y—=zy) + f(z —y+ay) —2f(@)]| < (z,y), (z,y €R), (3.8)

where ®(x,y) := p(z,y) + o(z, —y) + o(y, —1) + (xy, —1). Letting y = %5
n (3.8), we have

1f(22) = 2f(x) + FO)] < ¥(2), (x € R\ {1}). (3.9)
Letting x = 2 and z = —1 in (3.4) and using (3.5) with (3.6), we get
1£(2) = 2f(1) + F(O)]

N % [‘p@’ 1) +¢(0,1) + o(=1,1) + (3, =1) + ¢(1, -1) .

Let x € R. There exists N € N such that 2"x # 1 for all n > N. Replacing z
by 2"z in (3.9) and d1v1d1ng by 2"+, we have

H f@ ) f2m) P(2"x)

2n+1 on 2n+1 H = 9ndl 0 (

(3.10)

n>=N).
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Therefore

Hf (@a) f2") z": f(0) H

on+l  9m 9i+1
i=m

2i+1 2 2i+1

_ H z": [f(2i“fc) [(2w) f(O)} H (3.11)

This implies that the sequence {%} is Cauchy. Let us define A : R — X
by

Afz) = lim / (;:x), (z €R).

If 2 € R\ {5 : n € NU{0}}, then (3.11) holds for all n > m > 0. Letting

m = 0 and allowing n — oo in (3.11), we get (3.3). If 2*z = 1 for some
k € NU {0}, then (3.9) implies

k— 1 k—1 i i
= 3 gal =12 (5= - 152+ 1R
2z+1 21+1 27, 2i+1
=0
k—1
P(2x)
\Z ST (3.12)
=0
) fEMe) G £(0) )(2)
H on+l  9k+1 + 9i+1 H = Z S 9itl
i=k+1 i=k+1
It follows from (3.10) that
k—i—l k
Hf Qk f(2 ) H < Y : (3.13)
9k+1 ok 9k+1 2k+1

where § := %[ (2,1) + (0, 1) + @(—1,1) + (3, —1) + (p(l,fl)]. Hence we
have from (3.12) and (3.13),
H (2n+1 )

)
on+1 B f 21+1 H = Z 21+1 ok+1" (314)
1=0,i7#

Allowing n — oo in (3.14), we get (3.3). We now show that A is additive. Let
u,v € R with u + v # 1. We can find x,y € R such that x + y — xy = 2u and
x —y+ zy = 2v. Hence (3.8) implies that

1F(2u) + f(20) — 2f (u +v)|| < @(u+v,%). (3.15)
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Let x,y € R. There exists N € N such that 2"(x +y) # 1 for all n > N.
Hence (3.15) implies

f@tta)  f@My)  f2(=+y) 1 no o on, 2'T—2"y
H ont1 L ontl ~ on H S 2n+1q)(2 Y —2”x—2”y>’
foralln > N. Allowing n — oo, we see that A(z)+A(y) = A(x+y). Therefore
A is additive. The uniqueness of A follows from (3.3). O

Corollary 3.2. Let § be a fixed positive real number. If a mapping f: R — X
satisfies the inequality

1f(x —y+ay)+ fy) — fz) = flay)] <0 (3.16)

for all x,y € R, then there exists a unique additive mapping A : R — X such
that

[f(x) = A(x) = f(0)]] <46, z € R. (3.17)
Proof. Setting ¢(x,y) = 0, It follows from (3.9) and (3.10) that
1f(22) — 2f(x) + f(O)]| <46, (z € R). (3.18)

Let z € R. Replacing z by 2"z in (3.18) and dividing by 2”1, we have

e S SO 5,

Therefore

f@a)  f@2me) - f0)

H on+l om + Z 9i+1 H

f@*e)  f(2x) | f(0)

B H Z { 2i+1 T 2i+1} H (3.19)

< Z 2i’ m nz )
This implies that the sequence {f is Cauchy. Let us define A : R — X
by

_ o f(2ha)
A(z) = nh_}n;o T (x € R).

Letting m = 0 and allowing n — oo in (3.19), we get (3.17). The proof of
additivity and uniqueness of A is similar to the proof in Theorem 3.1. O

Theorem 3.3. Let § be a fized positive real number. If mappings f,g,h,k :
R — X satisfy

[f(x —y+azy) +g(y) — h(z) — k(zy)|| <6 (3.20)
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for all z,y € R, then there exists a unique additive mapping A : R — X such
that

1f(z) — A(z) + A1) — F(1)] < 249, (3:21)
lg(z) — A(z) — A(1) — g(—1) < 264, (3:22)
|h(z) — A(x) + A(1) — h(1)] < 266, (3.23)
|k(z) — A(x) — A1) — k(—1)|| < 285 (3.24)
for all x € R.
Proof. Setting x = 0,y = 0 and x = 1, respectively, in (3.20), we get
1/ (=y) + g(y) — h(0) = E(0)]| <6, (3.25)
1f(x) = h(z) 4+ g(0) — k(0)]| < 0, (3.26)
lg(y) — k(y) + f(1) — M(1)|| < 0. (3:27)
Using (3.25), (3.26), (3.27) and (3.20), we have
1f(z =y +ay) — f(z) = f(=y) — g(xy) (3.28)
— f(1) — g(0) + 1(0) + h(1) + 2Kk(0)| < 44, (z,y € R).
Using (3.25) and (3.28), we get
1f(z —y+ay) — f(z) - f(=y) + f(-zy)
~ F(1) = g(0) + A(1) + K(0)| <56, (3.29)

h
for all x,y € R. It follows from (3.27) that
[1£(1) +g(0) — h(1) — K(0)|| < 0.
Therefore (3.29) implies that
If(z =y +zy) — f(z) = f(=y) + f(—zy)|| <60, (z,y €R). (3.30)
Replacing y by —y in (3.30), we have
1f(@+y—ay) = f(z) = f(y) + flay)]| <66, (z,y € R).

Hence by a result of [13] (see also [6, 8]), there exists a unique additive mapping
A : R — X such that

|f(z) — A(z) + A1) — f(1)|| < 246, z € R. (3.31)
Now using (3.25) and (3.31), we have
[A(z) = g(z) + A(1) = f(1) + h(0) + k(0)]| < 250, = € R.

Using again (3.25) (by letting y = —1), we conclude (3.22).
Similarly, using (3.21), (3.22), (3.26) and (3.27), we obtain (3.23) and (3.24).
This completes the proof. O

Here we use the Gajda’s example [4] to give the next result.
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Example 3.4. Let ¢ : R — R be defined by

x  for |z] < 1;
o(z) = 1 foraz>1;
—1 for x < —1.

Consider the function f: R — R by the formula

fla)=> 27"¢(2"x).
n=0

Then f is continuous and satisfies

lf(x —y+ay)+ fly) — f(z) = flzy)| < 16(|z| + [y]) (3.32)

for all z,y € R, and the range of |f(z) — A(x)|/|z| for x # 0 is unbounded for
each additive function 4 : R — R.

Proof. 1t is clear that f is continuous and bounded by 2 on R. If |z| + |y| =0
or |z + |y| > 3, then

|f(x —y+zy) + fly) — f(z) — f2y)] <8 < 16(]z| + |yl).

Now suppose that 0 < |z| + |y| < % Then there exists an integer k > 1 such
that
1
oR+T < x|+ y| < ok (3.33)
Therefore,
2w —y +ayl, 2], 2™y, 2wyl <1

for all m =0,1,--- ,k — 1. From the definition of f and (3.33), we have
[f(z—y+ay)+ fly) — fz) - f(zy)]
<Yy 2 [|¢(2”(«%’ —y+zy))| +[0(2"y)| + [6(2"z)| + [¢(2"zy)|
n=~k
8
< o < 16(ja] + o).

Thus f satisfies (3.32).
Let A: R — R be an additive function such that

[f(z) = A(z)] < Blz|

for all x € R, where 8 > 0 is a constant. Since A is additive, there exists a
constant ¢ € R such that A(x) = cz for all rational numbers z. So we have

f(@)] < (B + lcl) || (3.34)
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for all rational numbers . Let m € N with m > 8 + |c|. If z is a rational
number in (0,2'~™), then 2"z € (0,1) for all n =0,1,--- ,m — 1. So

m—1
fl@) =) 27"¢(2") = ma > (B+ |c)z
n=0

which contradicts (3.34). O
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