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Abstract. The aim of the present paper is to give general solutions of the following func-
tional equation of Hosszú type:

f(x− y + xy) + f(y) = f(x) + f(xy)

and its Pexiderized version

f(x− y + xy) + g(y) = h(x) + k(xy),

and prove the Hyers-Ulam stability of the above two functional equations in Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of
Ulam [12] concerning the stability of group homomorphisms. The functional
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equation
f(x+ y) = f(x) + f(y)

is called the Cauchy equation. In particular, every solution of the Cauchy
equation is said to be an additive mapping. Hyers [7] gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ theorem
was generalized by Aoki [1] for additive mappings and by Rassias [9] for linear
mappings by considering an unbounded Cauchy difference. A generalization of
the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Rassias’ ap-
proach.

The functional equation

f(x+ y − xy) + f(xy) = f(x) + f(y) (1.1)

was considered first by Hosszú who has solved it under a differentiability as-
sumption. It has also been treated by many authors ([1, 2, 8, 10, 11]).

In this paper, we solve the following functional equation of Hosszú type

f(x− y + xy) + f(y) = f(x) + f(xy) (1.2)

and its Pexiderized version

f(x− y + xy) + g(y) = h(x) + k(xy), (1.3)

and prove the Hyers-Ulam stability of the functional equations (1.2) and (1.3)
in Banach spaces.

2. General solutions of (1.2) and (1.3) on R

In this section, X denotes a linear space.

Theorem 2.1. A mapping f : R → X satisfies (1.2) for all x, y ∈ R if and
only if f has the form f(x) = A(x)+b, where A : R→ X is additive and b ∈ R
is a constant.

Proof. Let f : R→ X satisfy (1.2). Setting y = 1 and y = −1, respectively, in
(1.2), we get

f(2x− 1) + f(1) = 2f(x) (2.1)

and

f(x) + f(−x) = f(1) + f(−1). (2.2)

Letting x = 0 in (2.1) and using (2.2), we get

f(x) + f(−x) = 2f(0), (x ∈ R). (2.3)

Letting x = 2 and x = −1 in (2.1) and using (2.3), we get

f(3) + f(1) = 2f(2), 3f(1)− f(3) = 2f(0), (x ∈ R).
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Hence
f(2) + f(0) = 2f(1), (x ∈ R). (2.4)

Replacing y by −y in (1.2), we obtain

f(x+ y − xy) + f(−y) = f(x) + f(−xy), (x, y ∈ R). (2.5)

Adding (1.2) to (2.5) and using (2.2), we obtain

f(x+ y − xy) + f(x− y + xy) = 2f(x), (x, y ∈ R). (2.6)

Letting y = x
x−1 in (2.6), we have

f(0) + f(2x) = 2f(x), (x ∈ R \ {1}). (2.7)

It follows from (2.4) that (2.7) holds for each x ∈ R. By (2.6) and (2.7), we
obtain that

f(x+ y − xy) + f(x− y + xy) = f(2x) + f(0), (x, y ∈ R). (2.8)

Let u, v ∈ R with u + v 6= 2. We can find x, y ∈ R such that x + y − xy = u
and x− y + xy = v. Hence (2.8) implies that

f(u) + f(v) = f(u+ v) + f(0). (2.9)

We prove that (2.9) holds when u+ v = 2. For this, letting x = 2 in (1.2) and
using (2.7), we get

f(2 + y)− f(y) = f(2)− f(0), (y ∈ R). (2.10)

Replacing y by −y in (2.10) and using (2.3), we obtain

f(2− y) + f(y) = f(2) + f(0), (y ∈ R).

Hence (2.9) holds for all u, v ∈ R and this shows f − f(0) is additive. The
converse is obvious. This completes the proof. �

Theorem 2.2. Mappings f, g, h, k : R → X satisfy (1.3) for all x, y ∈ R if
and only if they have the form f(x) = A(x) + b1, g(x) = A(x) + b2, h(x) =
A(x) + b3, k(x) = A(x) + b4, where A : R→ X is additive and b1, b2, b3, b4 ∈ R
are constants with b1 + b2 = b3 + b4.

Proof. Let f, g, h, k : R → X satisfy (1.3). Setting x = 0, y = 0 and x = 1,
respectively, in (1.3), we get

f(−y) + g(y) = h(0) + k(0), (2.11)

f(x) + g(0) = h(x) + k(0), (2.12)

f(1) + g(y) = h(1) + k(y). (2.13)

Using (2.11), (2.12), (2.13) and (1.3), we have

f(x− y + xy)− f(−y) + h(0) + k(0)

= f(x) + g(xy) + f(1) + g(0)− h(1)− k(0), (x, y ∈ R).
(2.14)
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Using (2.11) and (2.14), we get

f(x− y + xy)− f(−y) + h(1) + k(0)

= f(x)− f(−xy) + f(1) + g(0)
(2.15)

for all x, y ∈ R. It follows from (2.13) that f(1)+g(0) = h(1)+k(0). Therefore,
(2.15) implies that

f(x− y + xy)− f(−y) = f(x)− f(−xy), (x, y ∈ R). (2.16)

Replacing y by −y in (2.16), we have

f(x+ y − xy) + f(xy) = f(x) + f(y), (x, y ∈ R), (2.17)

which is the Hosszú’s functional equation. Hence f − f(0) is additive (see
[2, 3]). Now using (2.11), (2.12) and (2.13), we also get the assertion for g, h
and k. The converse is obvious. This completes the proof. �

Theorem 2.3. A mapping f : R→ X satisfies (1.2) if and only if f satisfies
(1.1).

Proof. Let f satisfy (1.2). By Theorem 2.1 f has the form f(x) = A(x) + b
where A : R → X is additive and b ∈ R is a constant. Therefore f satisfies
(1.1). If f satisfy (1.1), f−f(0) is additive (see [2, 3]). So f satisfies (1.2). �

Remark 2.4. Using the proofs of Theorems 2.1 and 2.2, the results of The-
orems 2.1 and 2.2 can be extended to mappings f, g, h, k : K → G, where K
is a commutative field of characteristic different from 2, and G is an abelian
group.

3. Generalized Hyers-Ulam stability

In this section, we examine generalized Hyers-Ulam stability of functional
equations (1.2) and (1.3). Let X be a Banach space.

Theorem 3.1. Let ϕ : R× R→ [0,+∞) be a function such that∑
n∈Dx

1

2n

[
ϕ
(

2nx,
2ny

2nx− 1

)
+ ϕ

(
2nx,− 2ny

2nx− 1

)
+ ϕ

( 2ny

2nx− 1
,−1

)
+ ϕ

( 4nxy

2nx− 1
,−1

)]
<∞, (3.1)

where Dx := {n ∈ N ∪ {0} : 2nx 6= 1}. If a mapping f : R → X satisfies the
inequality

‖f(x− y + xy) + f(y)− f(x)− f(xy)‖ 6 ϕ(x, y) (3.2)
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for all x, y ∈ R, then there exists a unique additive mapping A : R → X such
that

‖f(x)−A(x)−f(0)‖ 6



∞∑
i=0

ψ(2ix)

2i+1
, if x ∈ R \ { 1

2n : n ∈ N ∪ {0}};

∞∑
i=0,

i 6=k

ψ(2ix)

2i+1
+

δ

2k+1
, if 2kx = 1,

(3.3)
where

ψ(x) := ϕ
(
x,

x

x− 1

)
+ ϕ

(
x,− x

x− 1

)
+ ϕ

( x

x− 1
,−1

)
+ ϕ

( x2

x− 1
,−1

)
,

δ :=
1

2

[
ϕ(2, 1) + ϕ(0, 1) + ϕ(−1, 1) + ϕ(3,−1) + ϕ(1,−1)

]
.

Proof. Setting y = 1 and y = −1, respectively, in (3.2), we get

‖f(2x− 1) + f(1)− 2f(x)‖ 6 ϕ(x, 1) (3.4)

and

‖f(x) + f(−x)− f(1)− f(−1)‖ 6 ϕ(x,−1). (3.5)

Letting x = 0 in (3.4) and using (3.5), we get

‖f(x) + f(−x)− 2f(0)‖ 6 ϕ(0, 1) + ϕ(x,−1), (x ∈ R). (3.6)

Replacing y by −y in (3.2), we obtain

‖f(x+ y − xy) + f(−y)− f(x)− f(−xy)‖ 6 ϕ(x,−y), (x, y ∈ R). (3.7)

Adding (3.2) to (3.7) and using (3.5), we obtain

‖f(x+ y − xy) + f(x− y + xy)− 2f(x)‖ 6 Φ(x, y), (x, y ∈ R), (3.8)

where Φ(x, y) := ϕ(x, y) + ϕ(x,−y) + ϕ(y,−1) + ϕ(xy,−1). Letting y = x
x−1

in (3.8), we have

‖f(2x)− 2f(x) + f(0)‖ 6 ψ(x), (x ∈ R \ {1}). (3.9)

Letting x = 2 and x = −1 in (3.4) and using (3.5) with (3.6), we get

‖f(2)− 2f(1) + f(0)‖

6
1

2

[
ϕ(2, 1) + ϕ(0, 1) + ϕ(−1, 1) + ϕ(3,−1) + ϕ(1,−1)

]
.

(3.10)

Let x ∈ R. There exists N ∈ N such that 2nx 6= 1 for all n > N . Replacing x
by 2nx in (3.9) and dividing by 2n+1, we have∥∥∥f(2n+1x)

2n+1
− f(2nx)

2n
+
f(0)

2n+1

∥∥∥ 6 ψ(2nx)

2n+1
, (n > N).
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Therefore ∥∥∥f(2n+1x)

2n+1
− f(2mx)

2m
+

n∑
i=m

f(0)

2i+1

∥∥∥
=
∥∥∥ n∑
i=m

[f(2i+1x)

2i+1
− f(2ix)

2i
+
f(0)

2i+1

]∥∥∥
6

n∑
i=m

ψ(2ix)

2i+1
, (m,n > N).

(3.11)

This implies that the sequence {f(2
nx)

2n } is Cauchy. Let us define A : R → X
by

A(x) := lim
n→∞

f(2nx)

2n
, (x ∈ R).

If x ∈ R \ { 1
2n : n ∈ N ∪ {0}}, then (3.11) holds for all n > m > 0. Letting

m = 0 and allowing n → ∞ in (3.11), we get (3.3). If 2kx = 1 for some
k ∈ N ∪ {0}, then (3.9) implies∥∥∥f(2kx)

2k
− f(x) +

k−1∑
i=0

f(0)

2i+1

∥∥∥ =
∥∥∥ k−1∑

i=0

[f(2i+1x)

2i+1
− f(2ix)

2i
+
f(0)

2i+1

]∥∥∥
6

k−1∑
i=0

ψ(2ix)

2i+1
,

∥∥∥f(2n+1x)

2n+1
− f(2k+1x)

2k+1
+

n∑
i=k+1

f(0)

2i+1

∥∥∥ 6 n∑
i=k+1

ψ(2ix)

2i+1
.

(3.12)

It follows from (3.10) that∥∥∥f(2k+1x)

2k+1
− f(2kx)

2k
+
f(0)

2k+1

∥∥∥ 6 δ

2k+1
, (3.13)

where δ := 1
2

[
ϕ(2, 1) + ϕ(0, 1) + ϕ(−1, 1) + ϕ(3,−1) + ϕ(1,−1)

]
. Hence we

have from (3.12) and (3.13),∥∥∥f(2n+1x)

2n+1
− f(x) +

n∑
i=0

f(0)

2i+1

∥∥∥ 6 n∑
i=0,i 6=k

ψ(2ix)

2i+1
+

δ

2k+1
. (3.14)

Allowing n→∞ in (3.14), we get (3.3). We now show that A is additive. Let
u, v ∈ R with u+ v 6= 1. We can find x, y ∈ R such that x+ y − xy = 2u and
x− y + xy = 2v. Hence (3.8) implies that

‖f(2u) + f(2v)− 2f(u+ v)‖ 6 Φ
(
u+ v,

u− v
1− u− v

)
. (3.15)
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Let x, y ∈ R. There exists N ∈ N such that 2n(x + y) 6= 1 for all n > N .
Hence (3.15) implies∥∥∥f(2n+1x)

2n+1
+
f(2n+1y)

2n+1
− f(2n(x+ y))

2n

∥∥∥ 6 1

2n+1
Φ
(

2nx+2ny,
2nx− 2ny

1− 2nx− 2ny

)
,

for all n > N . Allowing n→∞, we see that A(x)+A(y) = A(x+y). Therefore
A is additive. The uniqueness of A follows from (3.3). �

Corollary 3.2. Let δ be a fixed positive real number. If a mapping f : R→ X
satisfies the inequality

‖f(x− y + xy) + f(y)− f(x)− f(xy)‖ 6 δ (3.16)

for all x, y ∈ R, then there exists a unique additive mapping A : R → X such
that

‖f(x)−A(x)− f(0)‖ 6 4δ, x ∈ R. (3.17)

Proof. Setting ϕ(x, y) = δ, It follows from (3.9) and (3.10) that

‖f(2x)− 2f(x) + f(0)‖ 6 4δ, (x ∈ R). (3.18)

Let x ∈ R. Replacing x by 2nx in (3.18) and dividing by 2n+1, we have∥∥∥f(2n+1x)

2n+1
− f(2nx)

2n
+
f(0)

2n+1

∥∥∥ 6 2δ

2n
, (n ∈ N ∪ {0}).

Therefore ∥∥∥f(2n+1x)

2n+1
− f(2mx)

2m
+

n∑
i=m

f(0)

2i+1

∥∥∥
=
∥∥∥ n∑
i=m

[f(2i+1x)

2i+1
− f(2ix)

2i
+
f(0)

2i+1

]∥∥∥
6

n∑
i=m

2δ

2i
, (m,n > N).

(3.19)

This implies that the sequence {f(2
nx)

2n } is Cauchy. Let us define A : R → X
by

A(x) := lim
n→∞

f(2nx)

2n
, (x ∈ R).

Letting m = 0 and allowing n → ∞ in (3.19), we get (3.17). The proof of
additivity and uniqueness of A is similar to the proof in Theorem 3.1. �

Theorem 3.3. Let δ be a fixed positive real number. If mappings f, g, h, k :
R→ X satisfy

‖f(x− y + xy) + g(y)− h(x)− k(xy)‖ 6 δ (3.20)
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for all x, y ∈ R, then there exists a unique additive mapping A : R → X such
that

‖f(x)−A(x) +A(1)− f(1)‖ 6 24δ, (3.21)

‖g(x)−A(x)−A(1)− g(−1)‖ 6 26δ, (3.22)

‖h(x)−A(x) +A(1)− h(1)‖ 6 26δ, (3.23)

‖k(x)−A(x)−A(1)− k(−1)‖ 6 28δ (3.24)

for all x ∈ R.

Proof. Setting x = 0, y = 0 and x = 1, respectively, in (3.20), we get

‖f(−y) + g(y)− h(0)− k(0)‖ 6 δ, (3.25)

‖f(x)− h(x) + g(0)− k(0)‖ 6 δ, (3.26)

‖g(y)− k(y) + f(1)− h(1)‖ 6 δ. (3.27)

Using (3.25), (3.26), (3.27) and (3.20), we have

‖f(x− y + xy)− f(x)− f(−y)− g(xy)

− f(1)− g(0) + h(0) + h(1) + 2k(0)‖ 6 4δ, (x, y ∈ R).
(3.28)

Using (3.25) and (3.28), we get

‖f(x− y + xy)− f(x)− f(−y) + f(−xy)

− f(1)− g(0) + h(1) + k(0)‖ 6 5δ,
(3.29)

for all x, y ∈ R. It follows from (3.27) that

‖f(1) + g(0)− h(1)− k(0)‖ 6 δ.
Therefore (3.29) implies that

‖f(x− y + xy)− f(x)− f(−y) + f(−xy)‖ 6 6δ, (x, y ∈ R). (3.30)

Replacing y by −y in (3.30), we have

‖f(x+ y − xy)− f(x)− f(y) + f(xy)‖ 6 6δ, (x, y ∈ R).

Hence by a result of [13] (see also [6, 8]), there exists a unique additive mapping
A : R→ X such that

‖f(x)−A(x) +A(1)− f(1)‖ 6 24δ, x ∈ R. (3.31)

Now using (3.25) and (3.31), we have

‖A(x)− g(x) +A(1)− f(1) + h(0) + k(0)‖ 6 25δ, x ∈ R.
Using again (3.25) (by letting y = −1), we conclude (3.22).

Similarly, using (3.21), (3.22), (3.26) and (3.27), we obtain (3.23) and (3.24).
This completes the proof. �

Here we use the Gajda’s example [4] to give the next result.
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Example 3.4. Let φ : R→ R be defined by

φ(x) :=

 x for |x| < 1;
1 for x > 1;
−1 for x 6 −1.

Consider the function f : R→ R by the formula

f(x) :=
∞∑
n=0

2−nφ(2nx).

Then f is continuous and satisfies

|f(x− y + xy) + f(y)− f(x)− f(xy)| 6 16(|x|+ |y|) (3.32)

for all x, y ∈ R, and the range of |f(x)−A(x)|/|x| for x 6= 0 is unbounded for
each additive function A : R→ R.

Proof. It is clear that f is continuous and bounded by 2 on R. If |x|+ |y| = 0
or |x|+ |y| > 1

2 , then

|f(x− y + xy) + f(y)− f(x)− f(xy)| 6 8 6 16(|x|+ |y|).

Now suppose that 0 < |x| + |y| < 1
2 . Then there exists an integer k > 1 such

that
1

2k+1
6 |x|+ |y| < 1

2k
. (3.33)

Therefore,

2m|x− y + xy|, 2m|x|, 2m|y|, 2m|xy| < 1

for all m = 0, 1, · · · , k − 1. From the definition of f and (3.33), we have

|f(x− y + xy) + f(y)− f(x)− f(xy)|

6
∞∑
n=k

2−n
[
|φ(2n(x− y + xy))|+ |φ(2ny)|+ |φ(2nx)|+ |φ(2nxy)|

]
6

8

2k
6 16(|x|+ |y|).

Thus f satisfies (3.32).
Let A : R→ R be an additive function such that

|f(x)−A(x)| 6 β|x|

for all x ∈ R, where β > 0 is a constant. Since A is additive, there exists a
constant c ∈ R such that A(x) = cx for all rational numbers x. So we have

|f(x)| 6 (β + |c|)|x| (3.34)
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for all rational numbers x. Let m ∈ N with m > β + |c|. If x is a rational
number in (0, 21−m), then 2nx ∈ (0, 1) for all n = 0, 1, · · · ,m− 1. So

f(x) >
m−1∑
n=0

2−nφ(2nx) = mx > (β + |c|)x

which contradicts (3.34). �
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