SOLVABILITY OF A SYSTEM OF GENERALIZED
 NONLINEAR MIXED VARIATIONAL-LIKE INEQUALITIES

Hongye $\mathbf{Y u}^{1}$, Shuangqi $\mathbf{W u}^{2}$ and Chahn Yong Jung ${ }^{3}$
${ }^{1}$ Liaoning Foreign Trade Schoo No. 35, Yangshu South Street, Dalian, Liaoning 116023, China
e-mail: yhy19590203@163.com
${ }^{2}$ Huludao No. 6 Senior High School
Huludao, Liaoning 125000, China e-mail: shungqiwu@163.com
${ }^{3}$ Department of Business Administration, Gyeongsang National University Jinju, Gyeongnam 52828, Korea
e-mail: bb5734@gnu.ac.kr

Abstract

In this paper, we introduce and study a new system of generalized nonlinear mixed variational-like inequalities. By applying the Lemma of Ky Fan, we prove an existence theorem of solution of auxiliary problem for the system of generalized nonlinear mixed variational-like inequalities. By virtue of this existence result, we suggest and analyze an iterative method to compute the approximate solutions of the system of generalized nonlinear mixed variational-like inequalities and establish the convergence criteria of the iterative method. The results presented in this paper improve, extend and unify many known results in this area.

1. Introduction

Variational inequality theory has appeared as an effective and powerful tool to study and investigate a wide class of problems arising in pure and applied sciences including elasticity, optimization, economics, transportation

[^0]and structural analysis see, e.g., $[1,2,4-6,9-15,17-24]$ and the references therein. It is worth mentioning that the projection method and its variant forms cannot be extended for constructing iterative algorithms for variationallike inequalities, since it is not possible to find the projection. To overcome this drawback, one uses usually the auxiliary principle technique which does not depend on the projection mapping. This technique deals with finding a suitable auxiliary problem for the original problem. Further, this auxiliary problem is used to construct an algorithm for solving the original problem. Glowinski et al. [9] introduced this technique and used it to study the existence of a solution of mixed variational inequality. Later, Huang and Deng [10] and Zeng et al. [24] extended this technique to suggest and analyze a number of algorithms for solving various classes of variational inequalities.

In 1985, Pang [17] decomposed the original variational inequality problem into a system of variational inequality problems and discussed the convergence for system of variational inequality problems. Later, it was noticed that variational inequality problem over product of sets and the system of variational inequality problems both have same solution set, see for applications $[3,8]$. Since then, many authors, see for example $[1,4,8]$ studied the existence theory of various classes of system of variational inequality problems by exploiting fixed point theorems and minimax theorems. On the other hand, only a few iterative algorithms has been constructed for approximating the solution of system of variational inequality problems. Recently, Verma [19] studied the approximate solvability for a system of variational inequality problems based on system of projection methods.

Motivated and inspired by the research work going on in this field, we shall introduce and study consider a system of generalized nonlinear mixed variational-like inequalities problems and its related auxiliary problems in real Hilbert spaces. By the Lemma of Ky Fan [7], we prove an existence theorem of solution of auxiliary problem for the system of generalized nonlinear mixed variational-like inequalities. Further, by exploiting this theorem, we construct an algorithm for the system of generalized nonlinear mixed variational-like inequalities. Furthermore, we prove the existence of solution of the system of generalized nonlinear mixed variational-like inequalities and discuss the convergence analysis of the algorithm. The results presented in this paper improve, extend and unify many known results in this area.

2. Preliminaries

Throughout the paper unless otherwise stated, let $I=\{1,2\}$ be an index set and for each $i \in I$, let H_{i} be a real Hilbert space whose inner product and norm are denoted by $\langle\cdot, \cdot\rangle_{i}$ and $\|\cdot\|_{i}$, respectively. For each $i \in I$, let K_{i} be
a nonempty convex subset of H_{i} and $C B\left(H_{i}\right)$ be the family of all nonempty bounded closed subsets of H_{i}. For each $i \in I$, given single-valued mapping $N_{i}: H_{1} \times H_{2} \rightarrow H_{i}, \eta_{i}: K_{i} \times K_{i} \rightarrow H_{i}$, linear mapping $g_{i}: K_{i} \rightarrow K_{i}$, and set-valued mappings $A: K_{1} \rightarrow C B\left(H_{1}\right), T: K_{2} \rightarrow C B\left(H_{2}\right)$. Now we consider the following system of generalized nonlinear mixed variational-like inequality problems: for given $\left(w_{1}^{*}, w_{2}^{*}\right) \in H_{1} \times H_{2}$, find $(x, y) \in K_{1} \times K_{2}, u \in A x, v \in T y$ such that

$$
\begin{align*}
& \left\langle N_{1}(u, v)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(x)\right)\right\rangle_{1} \tag{2.1}\\
& +b_{1}\left(x, g_{1}\left(s_{1}\right)\right)-b_{1}\left(x, g_{1}(x)\right) \geq 0, \quad \forall s_{1} \in K_{1},
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle N_{2}(u, v)-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}(y)\right)\right\rangle_{2} \tag{2.2}\\
& +b_{2}\left(y, g_{2}\left(s_{2}\right)\right)-b_{2}\left(y, g_{2}(y)\right) \geq 0, \quad \forall s_{2} \in K_{2},
\end{align*}
$$

where for each $i \in I$, the bifunction $b_{i}: H_{i} \times H_{i} \rightarrow R$ satisfies the following properties:
(c1) b_{i} is linear in the first argument,
(c2) b_{i} is bounded, that is, there exists a constant $\gamma_{i}>0$ such that

$$
b_{i}\left(u_{i}, v_{i}\right) \leq \gamma_{i}\left\|u_{i}\right\|_{i}\left\|v_{i}\right\|_{i}, \quad \forall u_{i}, v_{i} \in H_{i},
$$

(c3) $b_{i}\left(u_{i}, v_{i}\right)-b_{i}\left(u_{i}, w_{i}\right) \leq b_{i}\left(u_{i}, v_{i}-w_{i}\right), \quad \forall u_{i}, v_{i}, w_{i} \in H_{i}$,
(c4) b_{i} is convex in the second argument.
Remark 2.1. ([10]) (1) For each $i \in I$, we have

$$
\left|b_{i}\left(u_{i}, v_{i}\right)\right| \leq \gamma_{i}\left\|u_{i}\right\|_{i}\left\|v_{i}\right\|_{i}, \quad b_{i}\left(u_{i}, 0\right)=b_{i}\left(0, v_{i}\right)=0, \quad \forall u_{i}, v_{i} \in H_{i} .
$$

(2) For each $i \in I$, we have

$$
\left|b_{i}\left(u_{i}, v_{i}\right)-b_{i}\left(u_{i}, w_{i}\right)\right| \leq \gamma_{i}\left\|u_{i}\right\|_{i}\left\|v_{i}-w_{i}\right\|_{i}, \quad \forall u_{i}, v_{i}, w_{i} \in H_{i}
$$

This implies that for each $i \in I, b_{i}$ is continuous with respect to the second argument.

We need the following definitions, assumptions, lemma and known results in the sequel:

Definition 2.2. Let K be a nonempty convex subset of a real Hilbert space H. A set-valued mapping $A: K \rightarrow C B(H)$ is said to be \hat{H}-Lipschitz continuous if there exists a constant $\xi>0$ such that

$$
\hat{H}(A(x), A(y)) \leq \xi\|x-y\|, \quad \forall x, y \in H
$$

where $\hat{H}(\cdot, \cdot)$ is the Hausdorff metric on $C B(H)$.
Definition 2.3. Let $N: H \times H \rightarrow H$ be a nonlinear mapping and $A: K \rightarrow$ $C B(H)$ be a set-valued mapping.
(1) N is said to be Lipschitz continuous in the first argument if there exists a constant $\alpha>0$ such that

$$
\|N(u, w)-N(v, w)\| \leq \alpha\|u-v\|, \quad \forall u, v, w \in H ;
$$

(2) N is said to be strongly Lipschitz continuous in the first argument with respect to A if there exists a constant $\beta>0$ such that

$$
\|x-y-(N(u, w)-N(v, w))\| \leq \beta\|x-y\|,
$$

for all $w, x, y \in K, u \in A x, v \in T y$.
Similarly, we can define the Lipschitz continuity of N in the second argument.
Definition 2.4. Let $g: K \times K \rightarrow K$, a mapping $\eta: K \times K \rightarrow H$ is said to be
(1) g-strongly monotone if there exists a constant $\sigma>0$ such that

$$
\langle\eta(g(x), g(y)), x-y\rangle \geq \sigma\|x-y\|^{2}, \quad \forall x, y \in K
$$

(2) Lipschitz continuous if there exists a constant $\delta>0$ such that

$$
\|\eta(x, y)\| \leq \delta\|x-y\|, \quad \forall x, y \in K
$$

(3) g is said to be Lipschitz continuous if there exists a constant $a>0$ such that

$$
\|g(x)-g(y)\| \leq a\|x-y\|, \quad \forall x, y \in K
$$

Definition 2.5. Let D be a nonempty convex subset of a real Hilbert space H and $f: D \rightarrow(-\infty,+\infty]$ be a real functional.
(1) f is said to be convex if

$$
f(\alpha u+(1-\alpha) v) \leq \alpha f(u)+(1-\alpha) f(v), \quad \forall u, v \in D, \alpha \in[0,1]
$$

(2) f is said to be lower semicontinuous on D if for each $\alpha \in(-\infty,+\infty]$, the set $\{u \in D: f(u) \leq \alpha\}$ is closed in D,
(3) f is said to be concave if $-f$ is convex,
(4) f is said to be upper semicontinuous on D if $-f$ is lower semicontinuous on D.

Lemma 2.6. ([7]) Let B be a arbitrary nonempty subset in a topological vector space B and let $G: B \rightarrow 2^{E}$ be a KKM mapping. If $G(x)$ is closed for each $x \in B$ and is compact for at least one $x \in B$, then $\bigcap_{x \in B} G(x) \neq \emptyset$.

Proposition 2.7. ([2]) Let K be a nonempty convex subset of a real Hilbert space H and $f: K \rightarrow R$ be a lower semicontinuous and convex functional. Then f is weakly lower semicontinuous.

Lemma 2.8. ([1, 2]) Let X be a nonempty closed convex subset of a Hausdorff linear topological space E, and $\phi, \psi: X \times X \rightarrow R$ be mappings satisfying the following conditions:
(a) $\psi(x, y) \leq \phi(x, y), \forall x, y \in X$, and $\psi(x, x) \geq 0, \forall x \in X$;
(b) for each $x \in X, \phi(x, y)$ is upper semicontinuous with respect to y;
(c) for each $y \in X$, the set $\{x \in X: \psi(x, y)<0\}$ is a convex set;
(d) there exists a nonempty compact set $K \subset X$ and $x_{0} \in K$ such that $\psi\left(x_{0}, y\right)<0, \forall y \in X \backslash K ;$
Then there exists $\hat{y} \in K$ such that $\phi(x, \hat{y}) \geq 0, \forall x \in X$.
Assumption 2.9. The mappings $g: K \times K \rightarrow K$ and $\eta: K \times K \rightarrow H$ satisfy the following conditions:
(1) $\eta(x, y)=\eta(x, z)+\eta(z, y), \forall x, y, z \in K$;
(2) $\eta(x, y)$ is affine in the first argument, $\forall x, y, z \in K$;
(3) for an given $u, y, x \mapsto\langle N(u, v), \eta(y, g(x))\rangle$ is continuous from the weak topology to the weak topology.

3. Auxiliary problem and algorithm

For given $\left(w_{1}^{*}, w_{2}^{*}\right) \in H_{1} \times H_{2}$ and $\left(x_{1}, x_{2}\right) \in K_{1} \times K_{2}, u \in A x_{1}, v \in T x_{2}$, we consider the following problem $P_{1}\left(u, v, x_{1}, x_{2}\right)$: find $\left(z_{1}, z_{2}\right) \in K_{1} \times K_{2}$ such that

$$
\begin{align*}
\left\langle z_{1}, s_{1}-z_{1}\right\rangle_{1} \geq & \left\langle x_{1}, s_{1}-z_{1}\right\rangle_{1}-\rho\left\langle N_{1}(u, v)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(z_{1}\right)\right)\right\rangle_{1} \tag{3.1}\\
& +\rho b_{1}\left(x_{1}, g_{1}\left(z_{1}\right)\right)-\rho b_{1}\left(x_{1}, g_{1}\left(s_{1}\right)\right), \quad \forall s_{1} \in K_{1}, \\
\left\langle z_{2}, s_{2}-z_{2}\right\rangle_{2} \geq & \left\langle x_{2}, s_{1}-z_{2}\right\rangle_{1}-\rho\left\langle N_{2}(u, v)-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}\left(z_{2}\right)\right)\right\rangle_{2} \tag{3.2}\\
& +\rho b_{2}\left(x_{2}, g_{2}\left(z_{2}\right)\right)-\rho b_{2}\left(x_{2}, g_{2}\left(s_{2}\right)\right), \quad \forall s_{2} \in K_{2},
\end{align*}
$$

where $\rho>0$ is a constant.
Theorem 3.1. For each $i \in I$, let K_{i} be a nonempty bounded closed subset of a real Hilbert space H_{i}, linear mapping $g_{i}: K_{i} \rightarrow K_{i}$, bifunction $b_{i}(\cdot, \cdot)$ satisfies the condtions (c1)~(c4), and Assumption 2.9 holds. Then the auxiliary problem $P_{1}\left(u, v, x_{1}, x_{2}\right)$ has a solution.

Proof. For each $i \in I$, given $w_{i}^{*} \in H_{i}, x_{i} \in K_{i}, u \in A x_{1}, v \in T x_{2}$, we define the mapping $G_{i}: K_{i} \rightarrow 2^{H_{i}}$ by

$$
\begin{aligned}
G_{i}\left(s_{i}\right)=\left\{z_{i} \in K_{i}:\right. & \left\langle z_{i}-x_{i}, s_{i}-z_{i}\right\rangle_{i}+\rho\left[\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(z_{i}\right)\right)\right\rangle_{i}\right. \\
& \left.\left.+b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right)-b_{i}\left(x_{i}, g_{i}\left(z_{i}\right)\right)\right] \geq 0\right\}, \quad \forall s_{i} \in K_{i} .
\end{aligned}
$$

Note that for each $s_{i} \in K_{i}, G_{i}\left(s_{i}\right)$ is nonempty, since $s_{i} \in G_{i}\left(s_{i}\right)$.

We shall prove that G_{i} is a KKM mapping. Suppose that there is a finite subset $\left\{s_{i 1}, s_{i 2}, \ldots, s_{i k}\right\}$ of K_{i} and that $\alpha_{i j} \geq 0$ for $j \in\{1,2, \ldots, k\}$ with $\sum_{j=1}^{k} \alpha_{i j}=1$ such that $\hat{z}_{i}=\sum_{j=1}^{k} \alpha_{i j} s_{i j} \notin G_{i}\left(s_{i j}\right)$ for all j. Then we have

$$
\begin{aligned}
& \left\langle\hat{z}_{i}-x_{i}, s_{i j}-\hat{z}_{i}\right\rangle_{i}+\rho\left[\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i j}\right), g_{i}\left(\hat{z}_{i}\right)\right)\right\rangle_{i}\right. \\
& \left.+b_{i}\left(x_{i}, g_{i}\left(s_{i j}\right)\right)-b_{i}\left(x_{i}, g_{i}\left(\hat{z}_{i}\right)\right)\right]<0, \quad \forall j .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \sum_{j=1}^{k} \alpha_{i j}\left\langle\hat{z}_{i}-x_{i}, s_{i j}-\hat{z}_{i}\right\rangle_{i}+\rho \sum_{j=1}^{k} \alpha_{i j}\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i j}\right), g_{i}\left(\hat{z}_{i}\right)\right)\right\rangle_{i} \\
& +\rho \sum_{j=1}^{k} \alpha_{i j}\left[b_{i}\left(x_{i}, g_{i}\left(s_{i j}\right)\right)-b_{i}\left(x_{i}, g_{i}\left(\hat{z}_{i}\right)\right)\right]<0 .
\end{aligned}
$$

From Assumption 2.9(1), we have $\eta_{i}(x, x)=0, \forall x \in K_{i}$. By using the convexity of $b_{i}(\cdot, \cdot)$ in the second argument, Assumption 2.9(2) and g is linear, we get

$$
\begin{aligned}
0= & \left\langle\hat{z}_{i}-x_{i}, \hat{z}_{i}-\hat{z}_{i}\right\rangle_{i}+\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(\hat{z}_{i}\right), g_{i}\left(\hat{z}_{i}\right)\right)\right\rangle_{i} \\
& +\rho\left[b_{i}\left(x_{i}, g_{i}\left(\hat{z}_{i}\right)\right)-b_{i}\left(x_{i}, g_{i}\left(\hat{z}_{i}\right)\right)\right]<0,
\end{aligned}
$$

which is a contradiction. Hence, G_{i} is a KKM mapping.
Since ${\overline{G_{i}\left(s_{i}\right)}}^{w}$ [the weak closure of $G_{i}\left(s_{i}\right)$] is a weakly closed subset of a bounded set K_{i} in H_{i}, it is weakly compact. Hence, by Lemma 2.6, we have $\bigcap_{s_{i} \in K_{i}}{\overline{G_{i}\left(s_{i}\right)}}^{w} \neq \emptyset$.

Let $z_{i} \in \bigcap_{s_{i} \in K_{i}}{\overline{G_{i}\left(s_{i}\right)}}^{w}$. Then for each $s_{i} \in K_{i}$, there exists a sequence $\left\{z_{i m}\right\}$ in $G_{i}\left(s_{i}\right)$ such that $z_{i m} \rightarrow z_{i}$ weakly. Hence we have

$$
\begin{align*}
& \left\langle z_{i m}-x_{i}, s_{i}-z_{i m}\right\rangle_{i}+\rho\left[\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(z_{i m}\right)\right)\right\rangle_{i}\right. \\
& \left.+b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right)-b_{i}\left(x_{i}, g_{i}\left(z_{i m}\right)\right)\right] \geq 0 . \tag{3.3}
\end{align*}
$$

Now, since the $\|\cdot\|_{i}$ is weakly lower semicontinuous, we have

$$
\begin{aligned}
& \limsup _{m \rightarrow \infty}\left\langle z_{i m}-x_{i}, s_{i}-z_{i m}\right\rangle_{i} \\
& =\limsup _{m \rightarrow \infty}\left[\left\langle z_{i m}-x_{i}, s_{i}\right\rangle_{i}+\left\langle x_{i}, z_{i m}\right\rangle_{i}+\left\|z_{i m}\right\|_{i}\right] \\
& \leq \lim _{m \rightarrow \infty}\left\langle z_{i m}-x_{i}, s_{i}\right\rangle_{i}+\lim _{m \rightarrow \infty}\left\langle x_{i}, z_{i m}\right\rangle_{i}-\liminf _{m \rightarrow \infty}\left\|z_{i m}\right\|_{i} \\
& \leq\left\langle z_{i}-x_{i}, s_{i}-z_{i}\right\rangle_{i} .
\end{aligned}
$$

Since $b_{i}(\cdot, \cdot)$ is convex and continuous in the second argument, it is weakly lower semicontinuous in the second argument. Thus, it follows from (3.3) and

Assumption 2.9(3) that

$$
\begin{aligned}
& \left\langle z_{i}-x_{i}, s_{i}-z_{i}\right\rangle_{i}+\rho\left[\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(z_{i}\right)\right)\right\rangle_{i}\right. \\
& \left.\quad+b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right)-b_{i}\left(x_{i}, g_{i}\left(z_{i}\right)\right)\right] \\
& \geq \limsup _{m \rightarrow \infty}\left\{\left\langle z_{i m}-x_{i}, s_{i}-z_{i m}\right\rangle_{i}+\rho\left[\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(z_{i m}\right)\right)\right\rangle_{i}\right.\right. \\
& \left.\left.\quad+b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right)-b_{i}\left(x_{i}, g_{i}\left(z_{i m}\right)\right)\right]\right\} \geq 0,
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left\langle z_{i}, s_{i}-z_{i}\right\rangle_{i} \geq & \left\langle x_{i}, s_{i}-z_{i}\right\rangle_{i}-\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(z_{i}\right)\right)\right\rangle_{i} \\
& +\rho b_{i}\left(x, g_{i}\left(z_{i}\right)\right)-\rho b_{i}\left(x, g_{i}\left(s_{i}\right)\right), \quad \forall s_{i} \in K_{i} .
\end{aligned}
$$

This shows that the auxiliary problem $P_{1}\left(u, v, x_{1}, x_{2}\right)$ has a solution.
By using Theorem 3.1, we now construct the algorithm for solving the system of generalized nonlinear mixed variational-like inequalities (2.1) and (2.2).

Algorithm 3.2. For given $\left(w_{1}^{*}, w_{2}^{*}\right) \in H_{1} \times H_{2}$ and $\left(x_{0}, y_{0}\right) \in K_{1} \times K_{2}, u_{0} \in$ $A x_{0}, v_{0} \in T y_{0}$, there exist the sequence $\left\{u_{n}\right\}_{n \geq 0} \subset H_{1},\left\{v_{n}\right\}_{n \geq 0} \subset H_{2}$, and $\left\{\left(x_{n}, y_{n}\right)\right\}_{n \geq 0} \subset K_{1} \times K_{2}$ satisfying the following conditions:

$$
\begin{array}{ll}
u_{n} \in A x_{n}, & \left\|u_{n}-u_{n+1}\right\|_{1} \leq\left(1+\frac{1}{n+1}\right) \hat{H}\left(A x_{n}, A x_{n+1}\right), \\
v_{n} \in T y_{n}, & \left\|v_{n}-v_{n+1}\right\|_{2} \leq\left(1+\frac{1}{n+1}\right) \hat{H}\left(T y_{n}, T y_{n+1}\right),
\end{array}
$$

and

$$
\begin{align*}
& \left\langle x_{n+1}, s_{1}-x_{n+1}\right\rangle_{1} \\
& \geq\left\langle x_{n}, s_{1}-x_{n+1}\right\rangle_{1}-\rho\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \tag{3.4}\\
& \quad+\rho b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right)-\rho b_{1}\left(x_{n}, g_{1}\left(s_{1}\right)\right), \quad \forall s_{1} \in K_{1}, n \geq 0, \\
& \left\langle y_{n+1}, s_{2}-y_{n+1}\right\rangle_{2} \\
& \geq\left\langle y_{n}, s_{1}-y_{n+1}\right\rangle_{1}-\rho\left\langle N_{2}\left(u_{n}, v_{n}\right)-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}\left(y_{n+1}\right)\right)\right\rangle_{2} \tag{3.5}\\
& \quad+\rho b_{2}\left(y_{n}, g_{2}\left(y_{n+1}\right)\right)-\rho b_{2}\left(y_{n}, g_{2}\left(s_{2}\right)\right), \quad \forall s_{2} \in K_{2}, n \geq 0,
\end{align*}
$$

where $\rho>0$ is a constant.
In the next section, we extend the auxiliary principle technique of Glowinski et al. [1] to study the the system of generalized nonlinear mixed variationallike inequalities (2.1) and (2.2). We give an existence theorem of a solution of the auxiliary problem for the the system of generalized nonlinear mixed variational-like inequalities (2.1) and (2.2).

Based on this existence theorem, we construct an iterative algorithm for the the system of generalized nonlinear mixed variational-like inequalities (2.1) and (2.2).

For given $\left(w_{1}^{*}, w_{2}^{*}\right) \in H_{1} \times H_{2}$ and $\left(x_{1}, x_{2}\right) \in K_{1} \times K_{2}, u \in A x_{1}, v \in T x_{2}$, we consider the following problem $P_{2}\left(u, v, x_{1}, x_{2}\right)$: find $\left(z_{1}, z_{2}\right) \in K_{1} \times K_{2}$ such that

$$
\begin{align*}
& \left\langle g_{1}\left(z_{1}\right), s_{1}-z_{1}\right\rangle_{1} \\
& \geq\left\langle g_{1}\left(x_{1}\right), s_{1}-z_{1}\right\rangle_{1}-\rho\left\langle N_{1}(u, v)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(z_{1}\right)\right)\right\rangle_{1} \tag{3.6}\\
& \quad+\rho b_{1}\left(x_{1}, g_{1}\left(z_{1}\right)\right)-\rho b_{1}\left(x_{1}, g_{1}\left(s_{1}\right)\right), \quad \forall s_{1} \in K_{1} \\
& \left\langle g_{2}\left(z_{2}\right), s_{2}-z_{2}\right\rangle_{2} \\
& \geq\left\langle g_{2}\left(x_{2}\right), s_{2}-z_{2}\right\rangle_{2}-\rho\left\langle N_{2}(u, v)-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}\left(z_{2}\right)\right)\right\rangle_{2} \tag{3.7}\\
& \quad+\rho b_{2}\left(x_{2}, g_{2}\left(z_{2}\right)\right)-\rho b_{2}\left(x_{2}, g_{2}\left(s_{2}\right)\right), \quad \forall s_{2} \in K_{2}
\end{align*}
$$

Theorem 3.3. For each $i \in I$, let $g_{i}: K_{i} \rightarrow K_{i}$, be Lipschitz continuous and strongly monotone with constants $a_{i}>0$ and $b_{i}>0$, respectively; $b_{i}(\cdot, \cdot)$ satisfies the conditions $(\mathrm{c} 1) \sim(\mathrm{c} 4), \eta_{i}: K_{i} \times K_{i} \rightarrow H_{i}$ satisfies Assumption 2.9 and Lipschitz continuous with constants $\delta_{i}>0$. Then the auxiliary problem $P_{2}\left(u, v, x_{1}, x_{2}\right)$ has a solution.

Proof. Define the functionals ϕ_{i} and $\psi_{i}: K_{i} \times K_{i} \rightarrow R$ by

$$
\begin{aligned}
\phi_{i}\left(s_{i}, z_{i}\right)= & \left\langle g_{i}\left(s_{i}\right), s_{i}-z_{i}\right\rangle_{i}-\left\langle g_{i}\left(x_{i}\right), s_{i}-z_{i}\right\rangle_{i} \\
& +\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(z_{i}\right)\right)\right\rangle_{i} \\
& -\rho b_{i}\left(x_{i}, g_{i}\left(z_{i}\right)\right)+\rho b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\psi_{i}\left(s_{i}, z_{i}\right)= & \left\langle g_{i}\left(z_{i}\right), s_{i}-z_{i}\right\rangle_{i}-\left\langle g_{i}\left(x_{i}\right), s_{i}-z_{i}\right\rangle_{i} \\
& +\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(z_{i}\right)\right)\right\rangle_{i} \\
& -\rho b_{i}\left(x_{i}, g_{i}\left(z_{i}\right)\right)+\rho b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right)
\end{aligned}
$$

for all $s_{i}, z_{i} \in K_{i}$, respectively. We shall prove that the mappings ϕ_{i}, ψ_{i}, satisfy all the conditions of Lemma 2.8 in the weak topology.

Indeed, dearly ϕ_{i} and ψ_{i} satisfy condition (a) of Lemma 2.8. From property (c4) of b, Remark 2.1(2) and the Lipschitz continuity of g, it follows that $b_{i}\left(x_{i}, g_{i}\left(z_{i}\right)\right)$ is convex and Lipschitz continuous with respect to z_{i}. Again from Assumption 2.9(3), it follows that the function

$$
z_{i} \longmapsto\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(z_{i}\right)\right)\right\rangle_{i}
$$

is concave and upper semicontinuous. Therefore, we conclude that $\psi_{i}\left(s_{i}, z_{i}\right)$ is weakly upper semicontinuous with respect to z_{i}. Now we show that the set $\left\{s_{i} \in K_{i}: \phi_{i}\left(s_{i}, z_{i}\right)<0\right\}$ is a convex set for each $z_{i} \in K_{i}$. Indeed, suppose that $\left\{s_{i 1}, s_{i 2}, \ldots, s_{i k}\right\}$ is a finite set of $\left\{s_{i} \in K_{i}: \phi_{i}\left(s_{i}, z_{i}\right)<0\right\}$ and that $\alpha_{i j} \geq 0$ for
$j \in\{1,2, \ldots, k\}$ with $\sum_{j=1}^{k} \alpha_{i j}=1$. Then we write $\hat{s}_{i}=\sum_{j=1}^{k} \alpha_{i j} s_{i j}$. Observe that for all j,

$$
\begin{aligned}
& \left\langle g_{i}\left(z_{i}\right)-g_{i}\left(x_{i}\right), s_{i}-z_{i}\right\rangle_{i}+\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(z_{i}\right)\right)\right\rangle_{i} \\
& -\rho b_{i}\left(x_{i}, g_{i}\left(z_{i}\right)\right)+\rho b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right)<0
\end{aligned}
$$

and hence

$$
\begin{aligned}
0> & \sum_{j=1}^{k} \alpha_{i j}\left\langle g_{i}\left(z_{i}\right)-g_{i}\left(x_{i}\right), s_{i} j-z_{i}\right\rangle_{i} \\
& +\rho \sum_{j=1}^{k} \alpha_{i j}\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i} j\right), g_{i}\left(z_{i}\right)\right)\right\rangle_{i} \\
& -\rho b_{i}\left(x_{i}, g_{i}\left(z_{i}\right)\right)+\rho \sum_{j=1}^{k} \alpha_{i j} b_{i}\left(x_{i}, g_{i}\left(s_{i} j\right)\right) \\
\geq & \left\langle g_{i}\left(z_{i}\right)-g_{i}\left(x_{i}\right), \hat{s}_{i}-z_{i}\right\rangle_{i}+\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(\hat{s}_{i}\right), g_{i}\left(z_{i}\right)\right)\right\rangle_{i} \\
& -\rho b_{i}\left(x_{i}, g_{i}\left(z_{i}\right)\right)+\rho b_{i}\left(x_{i}, g_{i}\left(\hat{s}_{i}\right)\right) .
\end{aligned}
$$

This implies that $\hat{s}_{i} \in\left\{s_{i} \in K_{i}: \phi_{i}\left(s_{i}, z_{i}\right)<0\right\}$. Therefore, conditions (b) and (c) of Lemma 2.8 hold. Finally we shall prove that condition (d) of Lemma 2.8 holds. Indeed, let

$$
\begin{aligned}
\omega_{i} & =b_{i}^{-1}\left[a_{i}\left\|_{i}\right\| x_{i}\left\|_{i}+\rho \delta_{i} a_{i}\right\| N_{i}(u, v)-w_{i}^{*}\left\|_{i}+\rho \gamma_{i} a_{i}\right\| x_{i} \|_{i}\right], \\
T_{i} & =\left\{z_{i} \in K_{i}:\left\|z_{i}\right\|_{i} \leq \omega_{i}\right\} .
\end{aligned}
$$

Then T_{i} is a weakly compact subset of K_{i}. For any fixed $z_{i} \in K_{i} \backslash T_{i}$, take $s_{i 0} \in T_{i}$. From Assumption 2.9, the Lipschitz continuity of g_{i}, η_{i} and the strongly monotone of g_{i}, and Remark 2.6(2), we have

$$
\begin{aligned}
& \psi_{i}\left(s_{i 0}, z_{i}\right) \\
&= \psi_{i}\left(0, z_{i}\right) \\
&=-\left\langle g_{i}\left(z_{i}\right), z_{i}\right\rangle_{i}+\left\langle g_{i}\left(x_{i}\right), z_{i}\right\rangle_{i}+\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}(0), g_{i}\left(z_{i}\right)\right)\right\rangle_{i} \\
& \quad+\rho b_{i}\left(x_{i}, g_{i}\left(z_{i}\right)\right)+\rho b_{i}\left(x_{i}, g_{i}(0)\right) \\
&=\left\langle g_{i}(0)-g_{i}\left(z_{i}\right), z_{i}-0\right\rangle_{i}+\left\langle g_{i}\left(x_{i}\right)-g_{i}(0), z_{i}\right\rangle_{i} \\
&+\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}(0), g_{i}\left(z_{i}\right)\right)\right\rangle_{i}-\rho b_{i}\left(x_{i}, g_{i}\left(z_{i}\right)\right)+\rho b_{i}\left(x_{i}, g_{i}(0)\right) \\
& \leq-b_{i}\left\|z_{i}\right\|_{i}^{2}+\left\|g_{i}\left(x_{i}\right)-g_{i}(0)\right\|_{i}\left\|z_{i}\right\|_{i} \\
&+\rho\left\|N_{i}(u, v)-w_{i}^{*}\right\|_{i}\left\|\eta_{i}\left(g_{i}(0), g_{i}\left(z_{i}\right)\right)\right\|_{i}+\rho \gamma_{i} a_{i}\left\|z_{i}\right\|\left\|_{i}\right\| x_{i} \|_{i} \\
&=-\left\|z_{i}\right\|_{i}\left\{b_{i}\left\|z_{i}\right\|_{i}-\left[a_{i}\left\|_{i}\right\| x_{i}\left\|_{i}+\rho \delta_{i} a_{i}\right\| N_{i}(u, v)-w_{i}^{*}\left\|_{i}+\rho \gamma_{i} a_{i}\right\| x_{i} \|_{i}\right]\right\} .
\end{aligned}
$$

Therefore Condition (d) of Lemma 2.8 holds. By Lemma 2.8, there exists a $\bar{z}_{i} \in K_{i}$ such that $\phi_{i}\left(s_{i}, \bar{z}_{i}\right) \geq 0, \forall s_{i} \in K_{i}$, that is,

$$
\begin{align*}
& \left\langle g_{i}\left(s_{i}\right), s_{i}-\bar{z}_{i}\right\rangle_{i}-\left\langle g_{i}\left(x_{i}\right), s_{i}-\bar{z}_{i}\right\rangle_{i}+\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(\bar{z}_{i}\right)\right)\right\rangle_{i} \\
& \quad-\rho b_{i}\left(x_{i}, g_{i}\left(\bar{z}_{i}\right)\right)+\rho b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right) \geq 0, \quad \forall s_{i} \in K_{i} . \tag{3.8}
\end{align*}
$$

For arbitrary $t_{i} \in(0,1]$ and $s_{i} \in K_{i}$, let $x_{t_{i}}=t_{i} s_{i}+\left(1-t_{i}\right) \bar{z}_{i}$. Replacing s_{i} by \bar{z}_{i} in (3.8) and utilizing Assumption 2.9(3) and Property (iv) of b_{i}, we obtain

$$
\begin{aligned}
0 \leq & \left\langle g_{i}\left(x_{t_{i}}\right), x_{t_{i}}-\bar{z}_{i}\right\rangle_{i}-\left\langle g_{i}\left(x_{i}\right), x_{t_{i}}-\bar{z}_{i}\right\rangle_{i} \\
& +\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(x_{t_{i}}\right), g_{i}\left(\bar{z}_{i}\right)\right)\right\rangle_{i}-\rho b_{i}\left(x_{i}, g_{i}\left(\bar{z}_{i}\right)\right)+\rho b_{i}\left(x_{i}, g_{i}\left(x_{t_{i}}\right)\right) \\
= & t_{i}\left\langle g_{i}\left(x_{t_{i}}\right), s_{i}-\bar{z}_{i}\right\rangle_{i}-t_{i}\left\langle g_{i}\left(x_{i}\right), s_{i}-\bar{z}_{i}\right\rangle_{i} \\
& -\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(\bar{z}_{i}\right), g_{i}\left(t_{i} s_{i}+\left(1-t_{i}\right) \bar{z}_{i}\right)\right)\right\rangle_{i} \\
& -\rho b_{i}\left(x_{i}, g_{i}\left(\bar{z}_{i}\right)\right)+\rho b_{i}\left(x_{i}, g_{i}\left(t_{i} s_{i}+\left(1-t_{i}\right) \bar{z}_{i}\right)\right) \\
\leq & t_{i}\left\langle g_{i}\left(x_{t_{i}}\right), s_{i}-\bar{z}_{i}\right\rangle_{i}-t_{i}\left\langle g_{i}\left(x_{i}\right), s_{i}-\bar{z}_{i}\right\rangle_{i} \\
& +\rho t_{i}\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(\bar{z}_{i}\right)\right)\right\rangle_{i}+\rho t_{i}\left[b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right)-b_{i}\left(x_{i}, g_{i}\left(\bar{z}_{i}\right)\right)\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left\langle g_{i}\left(x_{t_{i}}\right), s_{i}-\bar{z}_{i}\right\rangle_{i}-\left\langle g_{i}\left(x_{i}\right), s_{i}-\bar{z}_{i}\right\rangle_{i}+\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(\bar{z}_{i}\right)\right)\right\rangle_{i} \\
& +\rho\left[b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right)-b_{i}\left(x_{i}, g_{i}\left(\bar{z}_{i}\right)\right)\right] \geq 0,
\end{aligned}
$$

and consequently,

$$
\begin{aligned}
\left\langle g_{i}\left(x_{t_{i}}\right), s_{i}-\bar{z}_{i}\right\rangle_{i} \geq & \left\langle g_{i}\left(x_{i}\right), s_{i}-\bar{z}_{i}\right\rangle_{i}-\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(\bar{z}_{i}\right)\right)\right\rangle_{i} \\
& +\rho b_{i}\left(x_{i}, g_{i}\left(\overline{z_{i}}\right)\right)-\rho b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right) .
\end{aligned}
$$

Letting $t_{i} \longrightarrow 0^{+}$, we have

$$
\begin{aligned}
\left\langle g_{i}\left(\bar{z}_{i}\right), s_{i}-\bar{z}_{i}\right\rangle_{i} \geq & \left\langle g_{i}\left(x_{i}\right), s_{i}-\bar{z}_{i}\right\rangle_{i}-\rho\left\langle N_{i}(u, v)-w_{i}^{*}, \eta_{i}\left(g_{i}\left(s_{i}\right), g_{i}\left(\bar{z}_{i}\right)\right)\right\rangle_{i} \\
& +\rho b_{i}\left(x_{i}, g_{i}\left(\bar{z}_{i}\right)\right)-\rho b_{i}\left(x_{i}, g_{i}\left(s_{i}\right)\right), \quad \forall s_{i} \in K_{i} .
\end{aligned}
$$

Therefore, $\bar{z}_{i} \in K_{i}$ is a solution of the auxiliary problem $P_{2}\left(u, v, x_{1}, x_{2}\right)$. This completes the proof.

By using Theorem 3.3, we now construct the algorithm for solving the system of generalized nonlinear mixed variational-like inequalities (2.1) and (2.2).

Algorithm 3.4. For given $\left(w_{1}^{*}, w_{2}^{*}\right) \in H_{1} \times H_{2}$ and $\left(x_{0}, y_{0}\right) \in K_{1} \times K_{2}, u_{0} \in$ Ax $x_{0}, v_{0} \in T y_{0}$, there exist the sequence $\left\{u_{n}\right\}_{n \geq 0} \subset H_{1},\left\{v_{n}\right\}_{n \geq 0} \subset H_{2}$, and
$\left\{\left(x_{n}, y_{n}\right)\right\}_{n \geq 0} \subset K_{1} \times K_{2}$ satisfying the following conditions:

$$
\begin{array}{cl}
u_{n} \in A x_{n}, & \left\|u_{n}-u_{n+1}\right\|_{1} \leq\left(1+\frac{1}{n+1}\right) \hat{H}\left(A x_{n}, A x_{n+1}\right) \\
v_{n} \in T y_{n}, & \left\|v_{n}-v_{n+1}\right\|_{2} \leq\left(1+\frac{1}{n+1}\right) \hat{H}\left(T y_{n}, T y_{n+1}\right),
\end{array}
$$

and

$$
\begin{align*}
& \left\langle g_{1}\left(x_{n+1}\right), s_{1}-x_{n+1}\right\rangle_{1} \\
& \geq\left\langle g_{1}\left(x_{n}\right), s_{1}-x_{n+1}\right\rangle_{1}-\rho\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \tag{3.9}\\
& \quad+\rho b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right)-\rho b_{1}\left(x_{n}, g_{1}\left(s_{1}\right)\right), \quad \forall s_{1} \in K_{1}, n \geq 0, \\
& \left\langle g_{2}\left(y_{n+1}\right), s_{2}-y_{n+1}\right\rangle_{2} \\
& \geq\left\langle g_{2}\left(y_{n}\right), s_{1}-y_{n+1}\right\rangle_{1}-\rho\left\langle N_{2}\left(u_{n}, v_{n}\right)-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}\left(y_{n+1}\right)\right)\right\rangle_{2} \tag{3.10}\\
& \quad+\rho b_{2}\left(y_{n}, g_{2}\left(y_{n+1}\right)\right)-\rho b_{2}\left(y_{n}, g_{2}\left(s_{2}\right)\right), \quad \forall s_{2} \in K_{2}, n \geq 0,
\end{align*}
$$

where $\rho>0$ is a constant.

4. Existence and convergence theorem

Theorem 4.1. For each $i \in I$, let K_{i} be a nonempty convex subset of H_{i} and bifunction $b_{i}(\cdot, \cdot)$ satisfies the conditions (c1)~(c4). Let $N_{i}: H_{1} \times H_{2} \rightarrow H_{i}$ be strongly Lipschitz continuous in the first argument and Lipschitz continuous in the second argument with constants $\alpha_{i}>0$ and $\beta_{i}>0$, respectively; set-valued mappings $A: K_{1} \rightarrow C B\left(H_{1}\right), T: K_{2} \rightarrow C B\left(H_{2}\right)$ be \hat{H}-Lipschitz continuous with constants $\xi_{1}>0$ and $\xi_{2}>0$, respectively; linear mapping $g_{i}: K_{i} \rightarrow K_{i}$, be Lipschitz continuous with constants $a_{i}>0$; and $\eta_{i}: K_{i} \times K_{i} \rightarrow H_{i}$ satisfies Assumption 2.9 and η_{i} be g_{i}-strongly monotone with constants $\sigma_{i}>0$, Lipschitz continuous with constants $\delta_{i}>0$. If there exists a constant $\rho>0$ such that

$$
\begin{align*}
0<\rho<\min \left\{\frac{\sigma_{i}-\left(t_{i} \alpha_{1}+c_{i} \epsilon_{i}\right)}{t_{i}^{2}-\left(t_{i} \alpha_{1}+c_{i} \epsilon_{i}\right)^{2}}, \frac{1}{t_{i} \alpha_{1}+c_{i} \epsilon_{i}}\right\}, \tag{4.1a}\\
t_{i} \alpha_{1}+c_{i} \epsilon_{i}<\sigma_{i}<t_{i},
\end{align*}
$$

where

$$
t_{i}=\delta_{i} a_{i}, \quad c_{i}=\beta_{i} \xi_{i}, \quad \epsilon_{1}=\frac{\gamma_{1} a_{1}}{c_{1}}+t_{2}, \quad \epsilon_{2}=\frac{\gamma_{2} a_{1}}{c_{2}}+t_{1}, \quad i \in I,
$$

then there are $(\hat{x}, \hat{y}) \in K_{1} \times K_{2}, \hat{u} \in A \hat{x}, \hat{v} \in T \hat{y}$ satisfying the system of generalized nonlinear mixed variational-like inequalities (2.1) and (2.2), and

$$
\left(x_{n}, y_{n}\right) \rightarrow(\hat{x}, \hat{y}), \quad u_{n} \rightarrow \hat{u}, \quad v_{n} \rightarrow \hat{v}, \quad n \rightarrow \infty
$$

where $\left\{\left(x_{n}, y_{n}\right)\right\}_{n \geq 0},\left\{u_{n}\right\}_{n \geq 0},\left\{v_{n}\right\}_{n \geq 0}$ are defined by Algorithm 3.2.

Proof. Using Algorithm 3.2, we obtain that

$$
\begin{align*}
& \left\langle x_{n}, s_{1}-x_{n}\right\rangle_{1} \\
& \geq\left\langle x_{n-1}, s_{1}-x_{n}\right\rangle_{1}-\rho\left\langle N_{1}\left(u_{n-1}, v_{n-1}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n}\right)\right)\right\rangle_{1} \tag{4.2a}\\
& \quad+\rho b_{1}\left(x_{n-1}, g_{1}\left(x_{n}\right)\right)-\rho b_{1}\left(x_{n-1}, g_{1}\left(s_{1}\right)\right), \\
& \\
& \left\langle y_{n}, s_{2}-y_{n}\right\rangle_{2} \tag{4.3a}\\
& \geq\left\langle y_{n-1}, s_{1}-y_{n}\right\rangle_{1}-\rho\left\langle N_{2}\left(u_{n-1}, v_{n-1}\right)-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}\left(y_{n}\right)\right)\right\rangle_{2} \\
& \quad+\rho b_{2}\left(y_{n-1}, g_{2}\left(y_{n}\right)\right)-\rho b_{2}\left(y_{n-1}, g_{2}\left(s_{2}\right)\right), \\
& \tag{4.4a}\\
& \quad\left\langle x_{n+1}, s_{1}-x_{n+1}\right\rangle_{1} \\
& \geq \\
& \quad\left\langle x_{n}, s_{1}-x_{n+1}\right\rangle_{1}-\rho\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \tag{4.5a}\\
& \quad+\rho b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right)-\rho b_{1}\left(x_{n}, g_{1}\left(s_{1}\right)\right), \\
& \\
& \left\langle y_{n+1}, s_{2}-y_{n+1}\right\rangle_{2} \\
& \geq\left\langle y_{n}, s_{1}-y_{n+1}\right\rangle_{1}-\rho\left\langle N_{2}\left(u_{n}, v_{n}\right)-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}\left(y_{n+1}\right)\right)\right\rangle_{2} \\
& \quad+\rho b_{2}\left(y_{n}, g_{2}\left(y_{n+1}\right)\right)-\rho b_{2}\left(y_{n}, g_{2}\left(s_{2}\right)\right)
\end{align*}
$$

for all $n \geq 1$. Taking $s_{1}=x_{n+1}$ in (4.2a) and $s_{1}=x_{n}$ in (4.4a), we conclude that

$$
\begin{align*}
& \left\langle x_{n}, x_{n+1}-x_{n}\right\rangle_{1} \\
& \geq\left\langle x_{n-1}, x_{n+1}-x_{n}\right\rangle_{1}-\rho\left\langle N_{1}\left(u_{n-1}, v_{n-1}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(x_{n+1}\right), g_{1}\left(x_{n}\right)\right)\right\rangle_{1} \tag{4.6a}\\
& \quad+\rho b_{1}\left(x_{n-1}, g_{1}\left(x_{n}\right)\right)-\rho b_{1}\left(x_{n-1}, g_{1}\left(x_{n+1}\right)\right), \\
& \\
& \quad\left\langle x_{n+1}, x_{n}-x_{n+1}\right\rangle_{1} \tag{4.7a}\\
& \quad \geq\left\langle x_{n}, x_{n}-x_{n+1}\right\rangle_{1}-\rho\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \\
& \quad+\rho b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right)-\rho b_{1}\left(x_{n}, g_{1}\left(x_{n}\right)\right) .
\end{align*}
$$

Adding (4.6a) and (4.7a), we have

$$
\begin{aligned}
& \left\langle x_{n}-x_{n+1}, x_{n+1}-x_{n}\right\rangle_{1} \\
& \geq\left\langle x_{n-1}-x_{n}, x_{n+1}-x_{n}\right\rangle_{1} \\
& \quad-\rho\left\langle N_{1}\left(u_{n-1}-, v_{n-1}\right)-N_{1}\left(u_{n}, v_{n}\right), \eta_{1}\left(g_{1}\left(x_{n+1}\right), g_{1}\left(x_{n}\right)\right)\right\rangle_{1} \\
& \quad+\rho b_{1}\left(x_{n-1}-x_{n}, g_{1}\left(x_{n}\right)\right)-\rho b_{1}\left(x_{n}-x_{n-1}, g_{1}\left(x_{n+1}\right)\right),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
&\left\|x_{n}-x_{n+1}\right\|_{1}^{2} \\
& \leq\left\langle x_{n-1}-x_{n}, x_{n}-x_{n+1}\right\rangle_{1} \\
&+\rho\left\langle N_{1}\left(u_{n-1}, v_{n-1}\right)-N_{1}\left(u_{n}, v_{n}\right), \eta_{1}\left(g_{1}\left(x_{n+1}\right), g_{1}\left(x_{n}\right)\right\rangle_{1}\right. \\
&+\rho b_{1}\left(x_{n}-x_{n-1}, g_{1}\left(x_{n}\right)-g_{1}\left(x_{n+1}\right)\right) \\
&=\left\langle x_{n-1}-x_{n}, x_{n}-x_{n+1}-\rho \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \\
&+\rho\left\langle x_{n-1}-x_{n}-\left(N_{1}\left(u_{n-1}, v_{n-1}\right)-N_{1}\left(u_{n}, v_{n}\right)\right), \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \\
&+\rho b_{1}\left(x_{n}-x_{n-1}, g_{1}\left(x_{n}\right)-g_{1}\left(x_{n+1}\right)\right) .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\| & x_{n}-x_{n+1} \|_{1}^{2} \\
\leq & \left\|x_{n-1}-x_{n}\right\|_{1}\left\|x_{n}-x_{n+1}-\rho \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1} \\
& +\rho\left\|x_{n-1}-x_{n}-\left(N_{1}\left(u_{n-1}, v_{n-1}\right)-N_{1}\left(u_{n}, v_{n}\right)\right)\right\|_{1} \tag{4.8a}\\
& \times\left\|\eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1} \\
& \left.+\rho \gamma_{1}\left\|x_{n}-x_{n-1}\right\|_{1} \| g_{1}\left(x_{n}\right)-g_{1}\left(x_{n+1}\right)\right) \|_{1} .
\end{align*}
$$

Since η_{1} is g_{1}-strongly monotone with constants $\sigma_{1}>0$, Lipschitz continuous with constants $\delta_{1}>0$ and g_{i} is Lipschitz continuous with constants $a_{1}>0$, from (4.8a) we have

$$
\begin{align*}
\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n+1}\right)\right\|_{1} & \leq a_{1}\left\|x_{n}-x_{n+1}\right\|_{1} \\
\left\|\eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1} & \leq \delta_{1} a_{1}\left\|x_{n}-x_{n+1}\right\|_{1}, \tag{4.9a}
\end{align*}
$$

and

$$
\begin{aligned}
& \left\|x_{n}-x_{n+1}-\rho \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1}^{2} \\
& \leq\left\|x_{n}-x_{n+1}\right\|_{1}^{2}-2 \rho\left\langle x_{n}-x_{n+1}, \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right) \|_{1}\right. \\
& \quad+\rho^{2}\left\|\eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1}^{2} \\
& \leq \\
& \left(1-2 \rho \sigma_{1}+\rho^{2} \delta_{1}^{2} a_{1}^{2}\right)\left\|x_{n}-x_{n+1}\right\|_{1}^{2},
\end{aligned}
$$

which implies that

$$
\begin{align*}
& \left\|x_{n}-x_{n+1}-\rho \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1} \\
& \leq \sqrt{1-2 \rho \sigma_{1}+\rho^{2} \delta_{1}^{2} a_{1}^{2}}\left\|x_{n}-x_{n+1}\right\|_{1} . \tag{4.10a}
\end{align*}
$$

Since N_{1} is strongly Lipschitz continuous in the first argument with constants $\alpha_{1}>0$ and is Lipschitz continuous in the second argument with constants
$\beta_{2}>0$, from (4.8a) we have

$$
\begin{align*}
& \left\|x_{n-1}-x_{n}-\left(N_{1}\left(u_{n-1}, v_{n-1}\right)-N_{1}\left(u_{n}, v_{n}\right)\right)\right\|_{1} \\
& \leq\left\|x_{n-1}-x_{n}-\left(N_{1}\left(u_{n-1}, v_{n-1}\right)-N_{1}\left(u_{n}, v_{n-1}\right)\right)\right\|_{1} \\
& \quad+\left\|N_{1}\left(u_{n}, v_{n-1}\right)-N_{1}\left(u_{n}, v_{n}\right)\right\|_{1} \tag{4.11a}\\
& \leq \alpha_{1}\left\|x_{n-1}-x_{n}\right\|_{1}+\beta_{2}\left\|v_{n-1}-v_{n}\right\|_{2} \\
& \leq \alpha_{1}\left\|x_{n-1}-x_{n}\right\|_{1}+\beta_{2} \xi_{2}\left(1+\frac{1}{n+1}\right)\left\|y_{n-1}-y_{n}\right\|_{2} .
\end{align*}
$$

From (4.9a), (4.10a) and (4.11a), we give that

$$
\begin{align*}
& \left\|x_{n}-x_{n+1}\right\|_{1} \\
& \leq\left(\sqrt{1-2 \rho \sigma_{1}+\rho^{2} \delta_{1}^{2} a_{1}^{2}}+\rho \delta_{1} a_{1} \alpha_{1}+\rho \gamma_{1} a_{1}\right)\left\|x_{n-1}-x_{n}\right\|_{1} \tag{4.12a}\\
& \quad+\rho \delta_{1} a_{1} \beta_{2} \xi_{2}\left(1+\frac{1}{n+1}\right)\left\|y_{n-1}-y_{n}\right\|_{2} .
\end{align*}
$$

Taking $s_{1}=y_{n+1}$ in (4.3a) and $s_{2}=y_{n}$ in (4.5a), similarly we have

$$
\begin{align*}
& \left\|y_{n}-y_{n+1}\right\|_{2} \\
& \leq\left(\sqrt{1-2 \rho \sigma_{2}+\rho^{2} \delta_{2}^{2} a_{2}^{2}}+\rho \delta_{2} a_{2} \alpha_{2}+\rho \gamma_{2} a_{2}\right)\left\|y_{n-1}-y_{n}\right\|_{2} \tag{4.13a}\\
& \quad+\rho \delta_{2} a_{2} \beta_{1} \xi_{1}\left(1+\frac{1}{n+1}\right)\left\|x_{n-1}-x_{n}\right\|_{1} .
\end{align*}
$$

Combining (4.12a) and (4.13a), we infer

$$
\begin{align*}
& \left\|x_{n}-x_{n+1}\right\|_{1}+\left\|y_{n}-y_{n+1}\right\|_{2} \\
& \leq \\
& \quad\left(\sqrt{1-2 \rho \sigma_{1}+\rho^{2} \delta_{1}^{2} a_{1}^{2}}+\rho \delta_{1} a_{1} \alpha_{1}\right. \tag{4.14a}\\
& \left.\quad+\rho \beta_{1} \xi_{1}\left[\frac{\gamma_{1} a_{1}}{\beta_{1} \xi_{1}}+\delta_{2} a_{2}\left(1+\frac{1}{n+1}\right)\right]\right)\left\|x_{n}-x_{n+1}\right\|_{1} \\
& \quad+\left(\sqrt{1-2 \rho \sigma_{2}+\rho^{2} \delta_{2}^{2} a_{2}^{2}}+\rho \delta_{2} a_{2} \alpha_{2}\right. \\
& \\
& \left.\quad+\rho \beta_{2} \xi_{2}\left[\frac{\gamma_{2} a_{2}}{\beta_{2} \xi_{2}}+\delta_{1} a_{1}\left(1+\frac{1}{n+1}\right)\right]\right)\left\|y_{n}-y_{n+1}\right\|_{2} \\
& = \\
& \max \left\{\theta_{1 n}, \theta_{2 n}\right\}\left(\left\|x_{n-1}-x_{n}\right\|_{1}+\left\|y_{n-1}-y_{n}\right\|_{2}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& \theta_{1 n}=\sqrt{1-2 \rho \sigma_{1}+\rho^{2} \delta_{1}^{2} a_{1}^{2}}+\rho \delta_{1} a_{1} \alpha_{1}+\rho \beta_{1} \xi_{1}\left[\frac{\gamma_{1} a_{1}}{\beta_{1} \xi_{1}}+\delta_{2} a_{2}\left(1+\frac{1}{n+1}\right)\right] \\
& \theta_{2 n}=\sqrt{1-2 \rho \sigma_{2}+\rho^{2} \delta_{2}^{2} a_{2}^{2}}+\rho \delta_{2} a_{2} \alpha_{2}+\rho \beta_{2} \xi_{2}\left[\frac{\gamma_{2} a_{2}}{\beta_{2} \xi_{2}}+\delta_{1} a_{1}\left(1+\frac{1}{n+1}\right)\right]
\end{aligned}
$$

Letting

$$
\begin{aligned}
& \theta_{1}=\sqrt{1-2 \rho \sigma_{1}+\rho^{2} \delta_{1}^{2} a_{1}^{2}}+\rho \delta_{1} a_{1} \alpha_{1}+\rho \beta_{1} \xi_{1}\left[\frac{\gamma_{1} a_{1}}{\beta_{1} \xi_{1}}+\delta_{2} a_{2}\right] \\
& \theta_{2}=\sqrt{1-2 \rho \sigma_{2}+\rho^{2} \delta_{2}^{2} a_{2}^{2}}+\rho \delta_{2} a_{2} \alpha_{2}+\rho \beta_{2} \xi_{2}\left[\frac{\gamma_{2} a_{2}}{\beta_{2} \xi_{2}}+\delta_{1} a_{1}\right]
\end{aligned}
$$

We can see that $\theta_{1 n} \rightarrow \theta_{1}$ and $\theta_{2 n} \rightarrow \theta_{2}$ as $n \rightarrow \infty$.
Now, defined the norm $\|\cdot\|_{*}$ on $H_{1} \times H_{2}$ by

$$
\|(u, v)\|_{*}=\|u\|_{1}+\|v\|_{2} \quad \forall(u, v) \in H_{1} \times H_{2} .
$$

Observe that $\left(H_{1} \times H_{2},\|\cdot\|_{*}\right)$ is a Banach space. Hence (4.14a) implies that

$$
\begin{equation*}
\left\|\left(x_{n}, y_{n}\right)-\left(x_{n+1}, y_{n+1}\right)\right\|_{*} \leq \max \left\{\theta_{1 n}, \theta_{2 n}\right\}\left\|\left(x_{n-1}, y_{n-1}\right)-\left(x_{n}, y_{n}\right)\right\|_{*} . \tag{4.15a}
\end{equation*}
$$

For each $i \in I$, according to the condition (4.1a), we have $\theta_{i}<1$. Hence, there is a positive number $\theta_{0}<1$ and integer $n_{0} \geq 1$ such that $\theta_{\text {in }} \leq \theta_{0}<1$ for all $n \geq n_{0}$. Therefore, it follows from (4.15a) that $\left\{\left(x_{n}, y_{n}\right)\right\}$ is a Cauchy sequence in $K_{1} \times K_{2}$. Let $\left(x_{n}, y_{n}\right) \rightarrow(\hat{x}, \hat{y})$ in $K_{1} \times K_{2}$ as $n \rightarrow \infty$, since the set-valued mappings A and T are both \hat{H}-Lipschitz continuous, from Algorithm 3.2 we get that

$$
\begin{gathered}
\left\|u_{n}-u_{n+1}\right\|_{1} \leq\left(1+\frac{1}{n+1}\right) \hat{H}\left(A x_{n}, A x_{n+1}\right) \leq 2 \xi_{1}\left\|x_{n}-x_{n+1}\right\|_{1} \\
\left\|v_{n}-v_{n+1}\right\|_{2} \leq\left(1+\frac{1}{n+1}\right) \hat{H}\left(T y_{n}, T y_{n+1}\right) \leq 2 \xi_{2}\left\|y_{n}-y_{n+1}\right\|_{2}
\end{gathered}
$$

Therefore $\left\{\left(u_{n}, v_{n}\right)\right\}$ is also a Cauchy sequence in $H_{1} \times H_{2}$, let $\left(u_{n}, v_{n}\right) \rightarrow$ $(\hat{u}, \hat{v}) \in H_{1} \times H_{2}$ as $n \rightarrow \infty$. Noticing $u_{n} \in A x_{n}$, we have

$$
\begin{aligned}
d(\hat{u}, A \hat{x}) & \leq\left\|\hat{u}-u_{n}\right\|_{1}+d\left(u_{n}, A x_{n}\right)+\hat{H}\left(A x_{n}, A \hat{x}\right) \\
& \leq\left\|\hat{u}-u_{n}\right\|_{1}+\xi_{1}\left\|x_{n}-\hat{x}\right\|_{1} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

hence $\hat{u} \in A \hat{x}$. Similarly, we can show $\hat{v} \in T \hat{y}$.
Now, we rewrite (3.4) and (3.5) as follows:

$$
\begin{align*}
& \left\langle x_{n+1}-x_{n}, s_{1}-x_{n+1}\right\rangle_{1}+\rho\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \\
& +\rho b_{1}\left(x_{n}, g_{1}\left(s_{1}\right)\right)-\rho b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right) \geq 0 \tag{4.16a}\\
& \left\langle y_{n+1}-y_{n}, s_{2}-y_{n+1}\right\rangle_{2}+\rho\left\langle N_{2}\left(u_{n}, v_{n}\right)-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}\left(y_{n+1}\right)\right)\right\rangle_{2} \tag{4.17a}\\
& +\rho b_{2}\left(y_{n}, g_{2}\left(s_{2}\right)\right)-\rho b_{2}\left(y_{n}, g_{2}\left(y_{n+1}\right)\right) \geq 0 .
\end{align*}
$$

Since $\left(x_{n}, y_{n}\right) \rightarrow(\hat{x}, \hat{y}),\left(u_{n}, v_{n}\right) \rightarrow(\hat{u}, \hat{v})$ strongly in $K_{1} \times K_{2}$ and $u_{n} \in A x_{n}$, we have

$$
\begin{aligned}
& \mid\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \\
& \quad-\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(\hat{x})\right)\right\rangle_{1} \mid \\
& \leq\left|\left\langle N_{1}\left(u_{n}, v_{n}\right)-N_{1}(\hat{u}, \hat{v}), \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1}\right| \\
& \quad+\left|\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)-\eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(\hat{x})\right)\right\rangle_{1}\right| \\
& \leq\left(\left\|N_{1}\left(u_{n}, v_{n}\right)-N_{1}\left(\hat{u}, v_{n}\right)\right\|_{1}+\left\|N_{1}\left(\hat{u}, v_{n}\right)-N_{1}(\hat{u}, \hat{v})\right\|_{1}\right) \\
& \quad \times\left\|\eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1}+\left\|N_{1}(\hat{u}, \hat{v})-w_{1}^{*}\right\|_{1}\left\|\eta_{1}\left(g_{1}\left(x_{n+1}\right), g_{1}(\hat{x})\right)\right\|_{1} \\
& \leq\left(\xi_{1}\left\|u_{n}-\hat{u}\right\|_{1}+\xi_{2}\left\|v_{n}-\hat{v}\right\|_{1}\right)\left\|\eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1} \\
&+\delta_{1} a_{1}\left\|N_{1}(\hat{u}, \hat{v})-w_{1}^{*}\right\|_{1}\left\|x_{n+1}-\hat{x}\right\|_{1} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Furthermore, from the property of b_{1} and Remark 2.1 it follows that

$$
\begin{aligned}
& \left|b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right)-b_{1}\left(\hat{x}, g_{1}(\hat{x})\right)\right| \\
& \leq\left|b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right)-b_{1}\left(x_{n}, g_{1}(\hat{x})\right)\right|+\left|b_{1}\left(x_{n}, g_{1}(\hat{x})\right)-b_{1}(\hat{x}, \|)\right| \\
& \leq \gamma_{1} a_{1}\left\|x_{n}\right\|_{1}\left\|x_{n+1}-\hat{x}\right\|_{1}+\gamma_{1}\left\|x_{n}-\hat{x}\right\|_{1}\left\|g_{1}(\hat{x})\right\|_{1} \rightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

hence $b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right) \rightarrow b_{1}\left(\hat{x}, g_{1}(\hat{x})\right)$ and $b_{1}\left(x_{n}, g_{1}\left(s_{1}\right)\right) \rightarrow b_{1}\left(\hat{x}, g_{1}\left(s_{1}\right)\right)$ as $n \rightarrow \infty$.

Let $n \rightarrow \infty$ in (4.16a), we obtain

$$
\begin{aligned}
& \left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(\hat{x})\right)\right\rangle_{1} \\
& +b_{1}\left(\hat{x}, g_{1}\left(s_{1}\right)\right)-b_{1}\left(\hat{x}, g_{1}(\hat{x})\right) \geq 0, \quad \forall s_{1} \in K_{1},
\end{aligned}
$$

let $n \rightarrow \infty$ in (4.17a), similarly we have

$$
\begin{aligned}
& \left\langle N_{2}(\hat{u}, \hat{v})-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}(\hat{y})\right)\right\rangle_{2} \\
& +b_{2}\left(\hat{y}, g_{2}\left(s_{2}\right)\right)-b_{2}\left(\hat{y}, g_{2}(\hat{y})\right) \geq 0, \quad \forall s_{2} \in K_{2} .
\end{aligned}
$$

Therefore $(\hat{x}, \hat{y}, \hat{u}, \hat{v})$ is a solutions of the problem (2.1) and (2.2). This completes the proof.

Theorem 4.2. For each $i \in I$, let K_{i} be a nonempty convex subset of H_{i} and bifunction $b_{i}(\cdot, \cdot)$ satisfies the conditions (c1)~(c4). Let $N_{i}: H_{1} \times H_{2} \rightarrow H_{i}$ be strongly Lipschitz continuous in the first argument and be Lipschitz continuous in the second argument with constants $\alpha_{i}>0$ and $\beta_{i}>0$, respectively; setvalued mappings $A: K_{1} \rightarrow C B\left(H_{1}\right), T: K_{2} \rightarrow C B\left(H_{2}\right)$ be \hat{H}-Lipschitz continuous with constants $\xi_{1}>0$ and $\xi_{2}>0$, respectively; linear mapping g_{i} : $K_{i} \rightarrow K_{i}$, be Lipschitz continuous with constants $a_{i}>0$; and $\eta_{i}: K_{i} \times K_{i} \rightarrow H_{i}$ satisfies Assumption 2.9 and η_{i} be g_{i}-strongly monotone with constants $\sigma_{i}>0$, Lipschitz continuous with constants $\delta_{i}>0$. If there exists a constant $\rho>0$
such that

$$
\begin{equation*}
A_{i}<0, \quad B_{i}^{2}-A_{i} C_{i}>0, \quad\left|\rho-\frac{B_{i}}{A_{i}}\right|<\frac{\sqrt{B_{i}^{2}-A_{i} C_{i}}}{\left|A_{i}\right|} \tag{4.1b}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{i} & =\left[t_{i}\left(\alpha_{i}+\sqrt{1-2 b_{i}+a_{i}^{2}}\right)+c_{i} \epsilon_{i}\right]^{2}-t_{i}^{2}, \\
B_{i} & =a_{i}^{2} \sigma_{i}\left[t_{i}\left(\alpha_{i}+\sqrt{1-2 b_{i}+a_{i}^{2}}\right)+c_{i} \epsilon_{i}\right], \quad C_{i}=b_{i}^{2}-a_{i}^{2} \\
t_{i} & =\delta_{i} a_{i}, \quad c_{i}=b_{i} \beta_{i} \xi_{i}, \quad \epsilon_{1}=\frac{\gamma_{1} a_{1}}{c_{1}}+\frac{t_{2}}{b_{2}}, \quad \epsilon_{2}=\frac{\gamma_{2} a_{1}}{c_{2}}+\frac{t_{1}}{b_{1}}, \quad i=1,2,
\end{aligned}
$$

then there are $(\hat{x}, \hat{y}) \in K_{1} \times K_{2}, \hat{u} \in A \hat{x}, \hat{v} \in T \hat{y}$ satisfying the system of generalized nonlinear mixed variational-like inequalities (2.1) and (2.2), and

$$
\left(x_{n}, y_{n}\right) \rightarrow(\hat{x}, \hat{y}), \quad u_{n} \rightarrow \hat{u}, \quad v_{n} \rightarrow \hat{v}, \quad n \rightarrow \infty
$$

where $\left\{\left(x_{n}, y_{n}\right)\right\}_{n \geq 0},\left\{u_{n}\right\}_{n \geq 0},\left\{v_{n}\right\}_{n \geq 0}$ are defined by Algorithm 3.4.
Proof. Using Algorithm 3.4, we obtain that

$$
\begin{align*}
& \left\langle g_{1}\left(x_{n}\right), s_{1}-x_{n}\right\rangle_{1} \\
& \geq\left\langle g_{1}\left(x_{n-1}\right), s_{1}-x_{n}\right\rangle_{1}-\rho\left\langle N_{1}\left(u_{n-1}, v_{n-1}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n}\right)\right)\right\rangle_{1} \tag{4.2b}\\
& \quad+\rho b_{1}\left(x_{n-1}, g_{1}\left(x_{n}\right)\right)-\rho b_{1}\left(x_{n-1}, g_{1}\left(s_{1}\right)\right) \\
& \left\langle g_{2}\left(y_{n}\right), s_{2}-y_{n}\right\rangle_{2} \\
& \geq\left\langle g_{2}\left(y_{n-1}\right), s_{1}-y_{n}\right\rangle_{1}-\rho\left\langle N_{2}\left(u_{n-1}, v_{n-1}\right)-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}\left(y_{n}\right)\right)\right\rangle_{2} \tag{4.3b}\\
& \quad+\rho b_{2}\left(y_{n-1}, g_{2}\left(y_{n}\right)\right)-\rho b_{2}\left(y_{n-1}, g_{2}\left(s_{2}\right)\right) \\
& \quad\left\langle g_{1}\left(x_{n+1}\right), s_{1}-x_{n+1}\right\rangle_{1} \\
& \quad \geq\left\langle g_{1}\left(x_{n}\right), s_{1}-x_{n+1}\right\rangle_{1}-\rho\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \tag{4.4b}\\
& \quad+\rho b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right)-\rho b_{1}\left(x_{n}, g_{1}\left(s_{1}\right)\right) \\
& \quad\left\langle g_{2}\left(y_{n+1}\right), s_{2}-y_{n+1}\right\rangle_{2} \\
& \quad \geq\left\langle g_{2}\left(y_{n}\right), s_{1}-y_{n+1}\right\rangle_{1}-\rho\left\langle N_{2}\left(u_{n}, v_{n}\right)-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}\left(y_{n+1}\right)\right)\right\rangle_{2} \tag{4.5b}\\
& \quad+\rho b_{2}\left(y_{n}, g_{2}\left(y_{n+1}\right)\right)-\rho b_{2}\left(y_{n}, g_{2}\left(s_{2}\right)\right)
\end{align*}
$$

for all $n \geq 1$. Taking $s_{1}=x_{n+1}$ in (4.2b) and $s_{1}=x_{n}$ in (4.4b), we conclude that

$$
\begin{align*}
& \left\langle g_{1}\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle_{1} \\
& \geq\left\langle g_{1}\left(x_{n-1}\right), x_{n+1}-x_{n}\right\rangle_{1}-\rho\left\langle N_{1}\left(u_{n-1}, v_{n-1}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(x_{n+1}\right), g_{1}\left(x_{n}\right)\right)\right\rangle_{1} \\
& \quad+\rho b_{1}\left(x_{n-1}, g_{1}\left(x_{n}\right)\right)-\rho b_{1}\left(x_{n-1}, g_{1}\left(x_{n+1}\right)\right), \tag{4.6b}
\end{align*}
$$

$$
\begin{align*}
& \left\langle g_{1}\left(x_{n+1}\right), x_{n}-x_{n+1}\right\rangle_{1} \\
& \geq\left\langle g_{1}\left(x_{n}\right), x_{n}-x_{n+1}\right\rangle_{1}-\rho\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \tag{4.7b}\\
& \quad+\rho b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right)-\rho b_{1}\left(x_{n}, g_{1}\left(x_{n}\right)\right)
\end{align*}
$$

Adding (4.6b) and (4.7b), we have

$$
\begin{aligned}
& \left\langle g_{1}\left(x_{n}\right)-g_{1}\left(x_{n+1}\right), x_{n+1}-x_{n}\right\rangle_{1} \\
& \geq\left\langle g_{1}\left(x_{n-1}\right)-g_{1}\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle_{1} \\
& \quad-\rho\left\langle N_{1}\left(u_{n-1}-, v_{n-1}\right)-N_{1}\left(u_{n}, v_{n}\right), \eta_{1}\left(g_{1}\left(x_{n+1}\right), g_{1}\left(x_{n}\right)\right)\right\rangle_{1} \\
& \quad+\rho b_{1}\left(x_{n-1}-x_{n}, g_{1}\left(x_{n}\right)\right)-\rho b_{1}\left(x_{n}-x_{n-1}, g_{1}\left(x_{n+1}\right)\right)
\end{aligned}
$$

Since g_{1} is strongly monotone with constants $b_{1}>0$, we have

$$
\begin{equation*}
\left\|g_{1}\left(x_{n}\right)-g_{1}\left(x_{n+1}\right)-\left(x_{n}-x_{n+1}\right)\right\|_{1} \leq \sqrt{1-2 b_{1}+a_{1}^{2}}\left\|x_{n}-x_{n+1}\right\|_{1} \tag{4.8b}
\end{equation*}
$$

which implies that

$$
\begin{aligned}
b_{1}\left\|x_{n}-x_{n+1}\right\|_{1}^{2} \leq & \left\langle g_{1}\left(x_{n-1}\right)-g_{1}\left(x_{n}\right), x_{n}-x_{n+1}\right\rangle_{1} \\
& +\rho\left\langle N_{1}\left(u_{n-1}, v_{n-1}\right)-N_{1}\left(u_{n}, v_{n}\right), \eta_{1}\left(g_{1}\left(x_{n+1}\right), g_{1}\left(x_{n}\right)\right\rangle_{1}\right. \\
& +\rho b_{1}\left(x_{n}-x_{n-1}, g_{1}\left(x_{n}\right)-g_{1}\left(x_{n+1}\right)\right) \\
= & \left\langle g_{1}\left(x_{n-1}\right)-g_{1}\left(x_{n}\right), x_{n}-x_{n+1}-\rho \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \\
& +\rho\left\langle g_{1}\left(x_{n-1}\right)-g_{1}\left(x_{n}\right)-\left(N_{1}\left(u_{n-1}, v_{n-1}\right)\right.\right. \\
& \left.\left.-N_{1}\left(u_{n}, v_{n}\right)\right), \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \\
& +\rho b_{1}\left(x_{n}-x_{n-1}, g_{1}\left(x_{n}\right)-g_{1}\left(x_{n+1}\right)\right)
\end{aligned}
$$

It follows that

$$
\begin{align*}
& b_{1}\left\|x_{n}-x_{n+1}\right\|_{1}^{2} \\
& \qquad \begin{array}{l}
\leq\left\|g_{1}\left(x_{n-1}\right)-g_{1}\left(x_{n}\right)\right\|_{1}\left\|x_{n}-x_{n+1}-\rho \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1} \\
\quad+\rho\left\|g_{1}\left(x_{n-1}\right)-g_{1}\left(x_{n}\right)-\left(N_{1}\left(u_{n-1}, v_{n-1}\right)-N_{1}\left(u_{n}, v_{n}\right)\right)\right\|_{1} \\
\quad \times\left\|\eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1} \\
\left.\quad+\rho \gamma_{1}\left\|x_{n}-x_{n-1}\right\|_{1} \| g_{1}\left(x_{n}\right)-g_{1}\left(x_{n+1}\right)\right) \|_{1} \\
\leq\left\|g_{1}\left(x_{n-1}\right)-g_{1}\left(x_{n}\right)\right\|_{1}\left\|x_{n}-x_{n+1}-\rho \eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1} \\
\quad+\rho\left\|x_{n-1}-x_{n}-\left(N_{1}\left(u_{n-1}, v_{n-1}\right)-N_{1}\left(u_{n}, v_{n}\right)\right)\right\|_{1} \\
\quad \times\left\|\eta_{1}\left(g_{1}\left(x_{n}\right), g_{1}\left(x_{n+1}\right)\right)\right\|_{1}+\rho\left\|g_{1}\left(x_{n-1}\right)-g_{1}\left(x_{n}\right)-\left(x_{n-1}-x_{n}\right)\right\|_{1} \\
\left.\quad+\rho \gamma_{1}\left\|x_{n}-x_{n-1}\right\|_{1} \| g_{1}\left(x_{n}\right)-g_{1}\left(x_{n+1}\right)\right) \|_{1}
\end{array} .
\end{align*}
$$

From (4.9a), (4.10a), (4.11a) and (4.8b), we give that

$$
\begin{align*}
& \left\|x_{n}-x_{n+1}\right\|_{1} \\
& \leq \\
& b_{1}^{-1}\left(a_{1} \sqrt{1-2 \rho \sigma_{1}+\rho^{2} \delta_{1}^{2} a_{1}^{2}}\right. \tag{4.10b}\\
& \left.\quad+\rho \delta_{1} a_{1}\left(\alpha_{1}+\sqrt{1-2 b_{1}+a_{1}^{2}}\right)+\rho \gamma_{1} a_{1}\right)\left\|x_{n-1}-x_{n}\right\|_{1} \\
& \quad+\rho b_{1}^{-1} \delta_{1} a_{1} \beta_{2} \xi_{2}\left(1+\frac{1}{n+1}\right)\left\|y_{n-1}-y_{n}\right\|_{2} .
\end{align*}
$$

Taking $s_{1}=y_{n+1}$ in (4.3b) and $s_{2}=y_{n}$ in (4.5b), similarly we have

$$
\begin{align*}
& \left\|y_{n}-y_{n+1}\right\|_{2} \\
& \leq b_{2}^{-1}\left(a_{2} \sqrt{1-2 \rho \sigma_{2}+\rho^{2} \delta_{2}^{2} a_{2}^{2}}\right. \\
& \left.\quad+\rho \delta_{2} a_{2}\left(\alpha_{2}+\sqrt{1-2 b_{2}+a_{2}^{2}}\right)+\rho \gamma_{2} a_{2}\right)\left\|y_{n-1}-y_{n}\right\|_{2} \tag{4.11b}\\
& \quad+\rho b_{2}^{-1} \delta_{2} a_{2} \beta_{1} \xi_{1}\left(1+\frac{1}{n+1}\right)\left\|x_{n-1}-x_{n}\right\|_{1} .
\end{align*}
$$

Combining (4.10b) and (4.11b), we infer

$$
\begin{align*}
& \max \left\{\left\|x_{n}-x_{n+1}\right\|_{1},\left\|y_{n}-y_{n+1}\right\|_{2}\right\} \\
& \leq b_{1}^{-1}\left(a_{1} \sqrt{1-2 \rho \sigma_{1}+\rho^{2} \delta_{1}^{2} a_{1}^{2}}+\rho \delta_{1} a_{1}\left(\alpha_{1}+\sqrt{1-2 b_{1}+a_{1}^{2}}\right)\right. \\
&\left.\quad+\rho b_{1} \beta_{1} \xi_{1}\left[\frac{\gamma_{1} a_{1}}{b_{1} \beta_{1} \xi_{1}}+\frac{\delta_{2} a_{2}}{b_{2}}\left(1+\frac{1}{n+1}\right)\right]\right)\left\|x_{n}-x_{n+1}\right\|_{1} \tag{4.12b}\\
& \quad+b_{2}^{-1}\left(a_{2} \sqrt{1-2 \rho \sigma_{2}+\rho^{2} \delta_{2}^{2} a_{2}^{2}}+\rho \delta_{2} a_{2}\left(\alpha_{2}+\sqrt{1-2 b_{2}+a_{2}^{2}}\right)\right. \\
&\left.\quad+\rho b_{2} \beta_{2} \xi_{2}\left[\frac{\gamma_{2} a_{2}}{b_{2} \beta_{2} \xi_{2}}+\frac{\delta_{1} a_{1}}{b_{1}}\left(1+\frac{1}{n+1}\right)\right]\right)\left\|y_{n}-y_{n+1}\right\|_{2} \\
&= \max \left\{\theta_{1 n}, \theta_{2 n}\right\}\left(\left\|x_{n-1}-x_{n}\right\|_{1}+\left\|y_{n-1}-y_{n}\right\|_{2}\right),
\end{align*}
$$

where

$$
\begin{aligned}
\theta_{1 n}= & b_{1}^{-1}\left(a_{1} \sqrt{1-2 \rho \sigma_{1}+\rho^{2} \delta_{1}^{2} a_{1}^{2}}+\rho \delta_{1} a_{1}\left(\alpha_{1}+\sqrt{1-2 b_{1}+a_{1}^{2}}\right)\right. \\
& \left.+\rho b_{1} \beta_{1} \xi_{1}\left[\frac{\gamma_{1} a_{1}}{b_{1} \beta_{1} \xi_{1}}+\frac{\delta_{2} a_{2}}{b_{2}}\left(1+\frac{1}{n+1}\right)\right]\right), \\
\theta_{2 n}= & b_{2}^{-1}\left(a_{2} \sqrt{1-2 \rho \sigma_{2}+\rho^{2} \delta_{2}^{2} a_{2}^{2}}+\rho \delta_{2} a_{2}\left(\alpha_{2}+\sqrt{1-2 b_{2}+a_{2}^{2}}\right)\right. \\
& \left.+\rho b_{2} \beta_{2} \xi_{2}\left[\frac{\gamma_{2} a_{2}}{b_{2} \beta_{2} \xi_{2}}+\frac{\delta_{1} a_{1}}{b_{1}}\left(1+\frac{1}{n+1}\right)\right]\right) .
\end{aligned}
$$

Letting

$$
\begin{aligned}
\theta_{1}=b_{1}^{-1} & \left(a_{1} \sqrt{1-2 \rho \sigma_{1}+\rho^{2} \delta_{1}^{2} a_{1}^{2}}+\rho \delta_{1} a_{1}\left(\alpha_{1}+\sqrt{1-2 b_{1}+a_{1}^{2}}\right)\right. \\
& \left.+\rho b_{1} \beta_{1} \xi_{1}\left[\frac{\gamma_{1} a_{1}}{b_{1} \beta_{1} \xi_{1}}+\frac{\delta_{2} a_{2}}{b_{2}}\right]\right), \\
\theta_{2}=b_{2}^{-1} & \left(a_{2} \sqrt{1-2 \rho \sigma_{2}+\rho^{2} \delta_{2}^{2} a_{2}^{2}}+\rho \delta_{2} a_{2}\left(\alpha_{2}+\sqrt{1-2 b_{2}+a_{2}^{2}}\right)\right. \\
& \left.+\rho b_{2} \beta_{2} \xi_{2}\left[\frac{\gamma_{2} a_{2}}{b_{2} \beta_{2} \xi_{2}}+\frac{\delta_{1} a_{1}}{b_{1}}\right]\right) .
\end{aligned}
$$

We can see that $\theta_{1 n} \rightarrow \theta_{1}$ and $\theta_{2 n} \rightarrow \theta_{2}$ as $n \rightarrow \infty$. Now, defined the norm $\|\cdot\|_{*}$ on $H_{1} \times H_{2}$ by

$$
\|(u, v)\|_{*}=\max \left\{\|u\|_{1},\|v\|_{2}\right\}, \quad \forall(u, v) \in H_{1} \times H_{2}
$$

It observe that $\left(H_{1} \times H_{2},\|\cdot\|_{*}\right)$ is a Banach space. Hence (4.12b) implies that

$$
\begin{equation*}
\left\|\left(x_{n}, y_{n}\right)-\left(x_{n+1}, y_{n+1}\right)\right\|_{*} \leq \max \left\{\theta_{1 n}, \theta_{2 n}\right\}\left\|\left(x_{n-1}, y_{n-1}\right)-\left(x_{n}, y_{n}\right)\right\|_{*} \tag{4.13b}
\end{equation*}
$$

For each $i \in I$, according to the condition (4.1), we have $\theta_{i}<1$. Hence, there is a positive number $\theta_{0}<1$ and integer $n_{0} \geq 1$ such that $\theta_{\text {in }} \leq \theta_{0}<1$ for all $n \geq n_{0}$. Therefore, it follows from (4.15a) that $\left\{\left(x_{n}, y_{n}\right)\right\}$ is a Cauchy sequence in $K_{1} \times K_{2}$. Let $\left(x_{n}, y_{n}\right) \rightarrow(\hat{x}, \hat{y})$ in $K_{1} \times K_{2}$ as $n \rightarrow \infty$, since the set-valued mappings A and T are both \hat{H}-Lipschitz continuous, from Algorithm 3.4 we get that

$$
\begin{aligned}
\left\|u_{n}-u_{n+1}\right\|_{1} & \leq\left(1+\frac{1}{n+1}\right) \hat{H}\left(A x_{n}, A x_{n+1}\right) \leq 2 \xi_{1}\left\|x_{n}-x_{n+1}\right\|_{1} \\
\left\|v_{n}-v_{n+1}\right\|_{2} & \leq\left(1+\frac{1}{n+1}\right) \hat{H}\left(T y_{n}, T y_{n+1}\right) \leq 2 \xi_{2}\left\|y_{n}-y_{n+1}\right\|_{2}
\end{aligned}
$$

Therefore $\left\{\left(u_{n}, v_{n}\right)\right\}$ is also a Cauchy sequence in $H_{1} \times H_{2}$, let $\left(u_{n}, v_{n}\right) \rightarrow$ $(\hat{u}, \hat{v}) \in H_{1} \times H_{2}$ as $n \rightarrow \infty$. Noticing $u_{n} \in A x_{n}$, we have

$$
\begin{aligned}
d(\hat{u}, A \hat{x}) & \leq\left\|\hat{u}-u_{n}\right\|_{1}+d\left(u_{n}, A x_{n}\right)+\hat{H}\left(A x_{n}, A \hat{x}\right) \\
& \leq\left\|\hat{u}-u_{n}\right\|_{1}+\xi_{1}\left\|x_{n}-\hat{x}\right\|_{1} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

hence $\hat{u} \in A \hat{x}$. Similarly, we can show $\hat{v} \in T \hat{y}$.
Now, we rewrite (3.9) and (3.10) as follows:

$$
\begin{align*}
& \left\langle g_{1}\left(x_{n+1}\right)-g_{1}\left(x_{n}\right), s_{1}-x_{n+1}\right\rangle_{1} \\
& +\rho\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \tag{4.14b}\\
& +\rho b_{1}\left(x_{n}, g_{1}\left(s_{1}\right)\right)-\rho b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right) \geq 0
\end{align*}
$$

$$
\begin{align*}
& \left\langle g_{1}\left(y_{n+1}\right)-g_{1}\left(y_{n}\right), s_{2}-y_{n+1}\right\rangle_{2} \\
& +\rho\left\langle N_{2}\left(u_{n}, v_{n}\right)-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}\left(y_{n+1}\right)\right)\right\rangle_{2} \tag{4.15b}\\
& +\rho b_{2}\left(y_{n}, g_{2}\left(s_{2}\right)\right)-\rho b_{2}\left(y_{n}, g_{2}\left(y_{n+1}\right)\right) \geq 0
\end{align*}
$$

Since $x_{n} \rightarrow \hat{x}$ strongly as $n \rightarrow \infty,\left\langle g_{1}\left(x_{n+1}\right)-g_{1}\left(x_{n}\right), s_{1}-x_{n+1}\right\rangle_{1} \rightarrow 0$ as $n \rightarrow \infty$. Note also that

$$
\begin{aligned}
& \left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(\hat{x})\right)\right\rangle_{1} \\
& \geq \limsup _{n \rightarrow \infty}\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1}
\end{aligned}
$$

Since $N_{1}\left(u_{n}, v_{n}\right) \rightarrow N_{1}(\hat{u}, \hat{v})$ strongly in H_{1}, from Assumption 2.9(3) and boundedness of $\eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)$, we obtain

$$
\begin{aligned}
& 0 \leq\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(\hat{x})\right)\right\rangle_{1} \\
&-\limsup _{n \rightarrow \infty}\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \\
&=\liminf _{n \rightarrow \infty}\left\{\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(\hat{x})\right)\right\rangle_{1}\right. \\
&\left.-\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1}\right\} \\
&= \liminf _{n \rightarrow \infty}\left\{\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(\hat{x})\right)\right\rangle_{1}\right. \\
&-\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \\
&\left.+\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}-\left(N_{1}(\hat{u}, \hat{v})-w_{1}^{*}\right), \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1}\right\} \\
&= \liminf _{n \rightarrow \infty}\left\{\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(\hat{x})\right)\right\rangle_{1}\right. \\
&\left.-\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1}\right\}
\end{aligned}
$$

and hence,

$$
\begin{aligned}
& \left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(\hat{x})\right)\right\rangle_{1} \\
& \geq \limsup _{n \rightarrow \infty}\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1}
\end{aligned}
$$

Furthermore, from the property of b_{1} and Remark 2.1 it follows that

$$
\begin{aligned}
& \left|b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right)-b_{1}\left(\hat{x}, g_{1}(\hat{x})\right)\right| \\
& \leq\left|b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right)-b_{1}\left(x_{n}, g_{1}(\hat{x})\right)\right|+\left|b_{1}\left(x_{n}, g_{1}(\hat{x})\right)-b_{1}(\hat{x}, \|)\right| \\
& \quad \leq \gamma_{1} a_{1}\left\|x_{n}\right\|_{1}\left\|x_{n+1}-\hat{x}\right\|_{1}+\gamma_{1}\left\|x_{n}-\hat{x}\right\|_{1}\left\|g_{1}(\hat{x})\right\|_{1} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

hence $b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right) \rightarrow b_{1}\left(\hat{x}, g_{1}(\hat{x})\right)$ and $b_{1}\left(x_{n}, g_{1}\left(s_{1}\right)\right) \rightarrow b_{1}\left(\hat{x}, g_{1}\left(s_{1}\right)\right)$ as $n \rightarrow \infty$. Therefore, we get

$$
\begin{align*}
0 \leq & \limsup _{n \rightarrow \infty}\left\{\left\langle g_{1}\left(x_{n+1}\right)-g_{1}\left(x_{n}\right), s_{1}-x_{n+1}\right\rangle_{1}\right. \\
& +\rho\left\langle N_{1}\left(u_{n}, v_{n}\right)-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}\left(x_{n+1}\right)\right)\right\rangle_{1} \\
& \left.+\rho b_{1}\left(x_{n}, g_{1}\left(s_{1}\right)\right)-\rho b_{1}\left(x_{n}, g_{1}\left(x_{n+1}\right)\right)\right\} \tag{4.16b}\\
\leq & \rho\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(\hat{x})\right)\right\rangle_{1} \\
& +\rho b_{1}\left(\hat{x}, g_{1}\left(s_{1}\right)\right)-\rho b_{1}\left(\hat{x}, g_{1}(\hat{x})\right)
\end{align*}
$$

which implies that
$\left\langle N_{1}(\hat{u}, \hat{v})-w_{1}^{*}, \eta_{1}\left(g_{1}\left(s_{1}\right), g_{1}(\hat{x})\right)\right\rangle_{1}+b_{1}\left(\hat{x}, g_{1}\left(s_{1}\right)\right)-b_{1}\left(\hat{x}, g_{1}(\hat{x})\right) \geq 0, \quad \forall s_{1} \in K_{1}$.
To (4.15b), similarly we have
$\left\langle N_{2}(\hat{u}, \hat{v})-w_{2}^{*}, \eta_{2}\left(g_{2}\left(s_{2}\right), g_{2}(\hat{y})\right)\right\rangle_{2}+b_{2}\left(\hat{y}, g_{2}\left(s_{2}\right)\right)-b_{2}\left(\hat{y}, g_{2}(\hat{y})\right) \geq 0, \quad \forall s_{2} \in K_{2}$.
Therefore $(\hat{x}, \hat{y}, \hat{u}, \hat{v})$ is a solution of the problem (2.1) and (2.2). This completes the proof.

References

[1] Q.H. Ansari and J. C. Yao, A fixed point theorem and its applications to a system of variational inequalities, J. Bull. Aust. Math. Soc., 59 (1999), 433-442.
[2] Q. H. Ansari and J. C. Yao, Iterative schemes for solving mixed variational-like inequalities, J. Optim. Theory Appl., 108 (2001), 527-541.
[3] J.P. Aubin, Mathematical Methods of Game Theory and Economic, North-Holland, Amsterdam, 1982.
[4] C. Cohen and F. Chaplais, Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms, J. Optim. Theory Appl., 59 (1998), 369-390.
[5] X. P. Ding, General algorithm for nonlinear variational-like inequalities in reflexive Banach spaces, Indian J. Pure Appl. Math., 29 (1998), 109-120.
[6] X. P. Ding, Existence and algorithm of solutions for nonlinear mixed variational-like inequalities in Banach spaces, J. Comput. Appl. Math., 157 (2003), 419-434.
[7] K. Fan, A generalizations of Tychonoff's fixed-piont theorem, Math. Ann., 142 (1961), 305-310
[8] M. C. Ferris and J. S. Pang, Engineering and economics applications of complementarity problems, SIAM Rev., 39 (1997), 669-713.
[9] R. Glowinski, J. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.
[10] N. J. Huang and C. X. Deng, Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variationa-like inequalities, J. Math. Anal. Appl., 256 (2001), 345-359.
[11] K. R. Kazmi and F. A. Khan, Auxiliary problems and algorithm for a system of generalized variational-like inequality problems, Appl. Math. Comput., 187 (2007), 789-796.
[12] S.A. Khan and F. Suhel, Vector variational-like inequalities with pseudo semi-monotone mappings, Nonlinear Funct. Anal. and Appl., 16(2) (2011), 191-200.
[13] Z. Liu and S. M. Kang, Generalized multivalued nonlinear quasi-variational inclusions, Math. Nachr., 253 (2003), 45-54.
[14] Z. Liu, J. S. Ume and S. M. Kang, General strongly nonlinear quasi-variational inequalities with relaxed Lipschitz and relaxed monotone mappings, J. Optim. Theory Appl., 114 (2002), 639-656.
[15] Z. Liu, J. S. Ume and S. M. Kang, Nonlinear variational inequalities on reflexive Banach spaces and topological vector spaces, Int. J. Math. Math. Sci., 2003 (2003), 199-207.
[16] S. B. Nadler, Multi-valued contraction mappings, Pacific. J. Math., 30 (1969), 475-488.
[17] J. S. Pang, Asymmetric variational inequalities over product of sets: applications and iterative methods, Math. Program., 31 (1985), 206-219.
[18] J. Parida, M. Sahoo and A. Kumer, A variational-like inequality problem, Bull. Austral. Math. Soc., 39 (1989), 225-231.
[19] R. U. Verma, Projection methods, algorithms and a new system of nonlinear variational inequalities, Comput. Math. Appl., 41 (2001), 1025-1031.
[20] J. C. Yao, The generalized quasi-variational inequality problem with applications, J. Math. Anal. Appl., 158 (1991), 139-160.
[21] J. C. Yao, Abstract variational inequality problems and a basic theorem of complementarity, Comput. Math. Appl., 25 (1993), 73-79.
[22] J. C. Yao, Existence of generalized variational inequalities, Oper. Res. Lett., 15 (1994), 35-40.
[23] L. C. Zeng, Iterative algorithms for finding approximate solutions for general strongly nonlinear variational inequalities, J. Math. Anal. Appl., 187 (1994), 352-360.
[24] L. C. Zeng, S. Schaible and J.C. Yao, Iterative algorithm for generalized set-valued strongly nonlinear mixed variational-like inequalities, J. Optim. Theory Appl., 124 (2005), 725-738.

[^0]: ${ }^{0}$ Received October 28, 2017. Revised January 14, 2018.
 ${ }^{0} 2010$ Mathematics Subject Classification: 47J20, 49J40.
 ${ }^{0}$ Keywords: System of generalized nonlinear mixed variational-like inequalities, KKM mapping, auxiliary variational principle, iterative method, convergence.
 ${ }^{0}$ Corresponding author: C.Y. Jung(bb5734@gnu.ac.kr).

