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Abstract. In this paper, we introduce and study a new system of generalized nonlinear

mixed variational-like inequalities. By applying the Lemma of Ky Fan, we prove an exis-

tence theorem of solution of auxiliary problem for the system of generalized nonlinear mixed

variational-like inequalities. By virtue of this existence result, we suggest and analyze an

iterative method to compute the approximate solutions of the system of generalized nonlin-

ear mixed variational-like inequalities and establish the convergence criteria of the iterative

method. The results presented in this paper improve, extend and unify many known results

in this area.

1. Introduction

Variational inequality theory has appeared as an effective and powerful
tool to study and investigate a wide class of problems arising in pure and
applied sciences including elasticity, optimization, economics, transportation
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and structural analysis see, e.g., [1, 2, 4–6, 9–15, 17–24] and the references
therein. It is worth mentioning that the projection method and its variant
forms cannot be extended for constructing iterative algorithms for variational-
like inequalities, since it is not possible to find the projection. To overcome
this drawback, one uses usually the auxiliary principle technique which does
not depend on the projection mapping. This technique deals with finding a
suitable auxiliary problem for the original problem. Further, this auxiliary
problem is used to construct an algorithm for solving the original problem.
Glowinski et al. [9] introduced this technique and used it to study the existence
of a solution of mixed variational inequality. Later, Huang and Deng [10] and
Zeng et al. [24] extended this technique to suggest and analyze a number of
algorithms for solving various classes of variational inequalities.

In 1985, Pang [17] decomposed the original variational inequality problem
into a system of variational inequality problems and discussed the convergence
for system of variational inequality problems. Later, it was noticed that vari-
ational inequality problem over product of sets and the system of variational
inequality problems both have same solution set, see for applications [3, 8].
Since then, many authors, see for example [1, 4, 8] studied the existence the-
ory of various classes of system of variational inequality problems by exploiting
fixed point theorems and minimax theorems. On the other hand, only a few
iterative algorithms has been constructed for approximating the solution of
system of variational inequality problems. Recently, Verma [19] studied the
approximate solvability for a system of variational inequality problems based
on system of projection methods.

Motivated and inspired by the research work going on in this field, we
shall introduce and study consider a system of generalized nonlinear mixed
variational-like inequalities problems and its related auxiliary problems in real
Hilbert spaces. By the Lemma of Ky Fan [7], we prove an existence theorem
of solution of auxiliary problem for the system of generalized nonlinear mixed
variational-like inequalities. Further, by exploiting this theorem, we construct
an algorithm for the system of generalized nonlinear mixed variational-like
inequalities. Furthermore, we prove the existence of solution of the system
of generalized nonlinear mixed variational-like inequalities and discuss the
convergence analysis of the algorithm. The results presented in this paper
improve, extend and unify many known results in this area.

2. Preliminaries

Throughout the paper unless otherwise stated, let I = {1, 2} be an index
set and for each i ∈ I, let Hi be a real Hilbert space whose inner product and
norm are denoted by 〈·, ·〉i and ‖ · ‖i, respectively. For each i ∈ I, let Ki be
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a nonempty convex subset of Hi and CB(Hi) be the family of all nonempty
bounded closed subsets of Hi. For each i ∈ I, given single-valued mapping
Ni : H1 × H2 → Hi, ηi : Ki × Ki → Hi, linear mapping gi : Ki → Ki, and
set-valued mappings A : K1 → CB(H1), T : K2 → CB(H2). Now we consider
the following system of generalized nonlinear mixed variational-like inequality
problems: for given (w∗1, w

∗
2) ∈ H1×H2, find (x, y) ∈ K1×K2, u ∈ Ax, v ∈ Ty

such that
〈N1(u, v)− w∗1, η1(g1(s1), g1(x))〉1
+ b1(x, g1(s1))− b1(x, g1(x)) ≥ 0, ∀ s1 ∈ K1,

(2.1)

and
〈N2(u, v)− w∗2, η2(g2(s2), g2(y))〉2
+ b2(y, g2(s2))− b2(y, g2(y)) ≥ 0, ∀ s2 ∈ K2,

(2.2)

where for each i ∈ I, the bifunction bi : Hi × Hi → R satisfies the following
properties:

(c1) bi is linear in the first argument,
(c2) bi is bounded, that is, there exists a constant γi > 0 such that

bi(ui, vi) ≤ γi‖ui‖i‖vi‖i, ∀ui, vi ∈ Hi,

(c3) bi(ui, vi)− bi(ui, wi) ≤ bi(ui, vi − wi), ∀ui, vi, wi ∈ Hi,
(c4) bi is convex in the second argument.

Remark 2.1. ([10]) (1) For each i ∈ I, we have

|bi(ui, vi)| ≤ γi‖ui‖i‖vi‖i, bi(ui, 0) = bi(0, vi) = 0, ∀ui, vi ∈ Hi.

(2) For each i ∈ I, we have

|bi(ui, vi)− bi(ui, wi)| ≤ γi‖ui‖i‖vi − wi‖i, ∀ui, vi, wi ∈ Hi.

This implies that for each i ∈ I, bi is continuous with respect to the second
argument.

We need the following definitions, assumptions, lemma and known results
in the sequel:

Definition 2.2. Let K be a nonempty convex subset of a real Hilbert space H.
A set-valued mapping A : K → CB(H) is said to be Ĥ-Lipschitz continuous
if there exists a constant ξ > 0 such that

Ĥ(A(x), A(y)) ≤ ξ‖x− y‖, ∀x, y ∈ H,

where Ĥ(·, ·) is the Hausdorff metric on CB(H).

Definition 2.3. Let N : H ×H → H be a nonlinear mapping and A : K →
CB(H) be a set-valued mapping.
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(1) N is said to be Lipschitz continuous in the first argument if there exists
a constant α > 0 such that

‖N(u,w)−N(v, w)‖ ≤ α‖u− v‖, ∀u, v, w ∈ H;

(2) N is said to be strongly Lipschitz continuous in the first argument with
respect to A if there exists a constant β > 0 such that

‖x− y − (N(u,w)−N(v, w))‖ ≤ β‖x− y‖,
for all w, x, y ∈ K,u ∈ Ax, v ∈ Ty.

Similarly, we can define the Lipschitz continuity of N in the second argument.

Definition 2.4. Let g : K×K → K, a mapping η : K×K → H is said to be

(1) g-strongly monotone if there exists a constant σ > 0 such that

〈η(g(x), g(y)), x− y〉 ≥ σ‖x− y‖2, ∀x, y ∈ K,
(2) Lipschitz continuous if there exists a constant δ > 0 such that

‖η(x, y)‖ ≤ δ‖x− y‖, ∀x, y ∈ K,
(3) g is said to be Lipschitz continuous if there exists a constant a > 0

such that

‖g(x)− g(y)‖ ≤ a‖x− y‖, ∀x, y ∈ K.

Definition 2.5. Let D be a nonempty convex subset of a real Hilbert space
H and f : D → (−∞,+∞] be a real functional.

(1) f is said to be convex if

f(αu+ (1− α)v) ≤ αf(u) + (1− α)f(v), ∀u, v ∈ D, α ∈ [0, 1],

(2) f is said to be lower semicontinuous on D if for each α ∈ (−∞,+∞],
the set {u ∈ D : f(u) ≤ α} is closed in D,

(3) f is said to be concave if −f is convex,
(4) f is said to be upper semicontinuous onD if−f is lower semicontinuous

on D.

Lemma 2.6. ([7]) Let B be a arbitrary nonempty subset in a topological vector
space B and let G : B → 2E be a KKM mapping. If G(x) is closed for each
x ∈ B and is compact for at least one x ∈ B, then

⋂
x∈B G(x) 6= ∅.

Proposition 2.7. ([2]) Let K be a nonempty convex subset of a real Hilbert
space H and f : K → R be a lower semicontinuous and convex functional.
Then f is weakly lower semicontinuous.
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Lemma 2.8. ([1, 2]) Let X be a nonempty closed convex subset of a Hausdorff
linear topological space E, and φ, ψ : X ×X → R be mappings satisfying the
following conditions:

(a) ψ(x, y) ≤ φ(x, y), ∀x, y ∈ X, and ψ(x, x) ≥ 0, ∀x ∈ X;
(b) for each x ∈ X, φ(x, y) is upper semicontinuous with respect to y;
(c) for each y ∈ X, the set {x ∈ X : ψ(x, y) < 0} is a convex set;
(d) there exists a nonempty compact set K ⊂ X and x0 ∈ K such that

ψ(x0, y) < 0, ∀y ∈ X \K;

Then there exists ŷ ∈ K such that φ(x, ŷ) ≥ 0, ∀x ∈ X.

Assumption 2.9. The mappings g : K×K → K and η : K×K → H satisfy
the following conditions:

(1) η(x, y) = η(x, z) + η(z, y), ∀x, y, z ∈ K;
(2) η(x, y) is affine in the first argument, ∀x, y, z ∈ K;
(3) for an given u, , y, x 7→ 〈N(u, v), η(y, g(x))〉 is continuous from the

weak topology to the weak topology.

3. Auxiliary problem and algorithm

For given (w∗1, w
∗
2) ∈ H1×H2 and (x1, x2) ∈ K1×K2, u ∈ Ax1, v ∈ Tx2, we

consider the following problem P1(u, v, x1, x2) : find (z1, z2) ∈ K1 ×K2 such
that

〈z1, s1 − z1〉1 ≥ 〈x1, s1 − z1〉1 − ρ〈N1(u, v)− w∗1, η1(g1(s1), g1(z1))〉1
+ ρb1(x1, g1(z1))− ρb1(x1, g1(s1)), ∀s1 ∈ K1,

(3.1)

〈z2, s2 − z2〉2 ≥ 〈x2, s1 − z2〉1 − ρ〈N2(u, v)− w∗2, η2(g2(s2), g2(z2))〉2
+ ρb2(x2, g2(z2))− ρb2(x2, g2(s2)), ∀s2 ∈ K2,

(3.2)

where ρ > 0 is a constant.

Theorem 3.1. For each i ∈ I, let Ki be a nonempty bounded closed subset
of a real Hilbert space Hi, linear mapping gi : Ki → Ki, bifunction bi(·, ·) sat-
isfies the condtions (c1)∼(c4), and Assumption 2.9 holds. Then the auxiliary
problem P1(u, v, x1, x2) has a solution.

Proof. For each i ∈ I, given w∗i ∈ Hi, xi ∈ Ki, u ∈ Ax1, v ∈ Tx2, we define the
mapping Gi : Ki → 2Hi by

Gi(si) =
{
zi ∈ Ki : 〈zi − xi, si − zi〉i + ρ[〈Ni(u, v)− w∗i , ηi(gi(si), gi(zi))〉i

+ bi(xi, gi(si))− bi(xi, gi(zi))] ≥ 0
}
, ∀si ∈ Ki.

Note that for each si ∈ Ki, Gi(si) is nonempty, since si ∈ Gi(si).
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We shall prove that Gi is a KKM mapping. Suppose that there is a fi-
nite subset {si1, si2, . . . , sik} of Ki and that αij ≥ 0 for j ∈ {1, 2, ..., k} with∑k

j=1 αij = 1 such that ẑi =
∑k

j=1 αijsij /∈ Gi(sij) for all j. Then we have

〈ẑi − xi, sij − ẑi〉i + ρ[〈Ni(u, v)− w∗i , ηi(gi(sij), gi(ẑi))〉i
+ bi(xi, gi(sij))− bi(xi, gi(ẑi))] < 0, ∀j.

Therefore

k∑
j=1

αij〈ẑi − xi, sij − ẑi〉i + ρ

k∑
j=1

αij〈Ni(u, v)− w∗i , ηi(gi(sij), gi(ẑi))〉i

+ ρ

k∑
j=1

αij [bi(xi, gi(sij))− bi(xi, gi(ẑi))] < 0.

From Assumption 2.9(1), we have ηi(x, x) = 0, ∀x ∈ Ki. By using the convex-
ity of bi(·, ·) in the second argument, Assumption 2.9(2) and g is linear, we
get

0 = 〈ẑi − xi, ẑi − ẑi〉i + ρ〈Ni(u, v)− w∗i , ηi(gi(ẑi), gi(ẑi))〉i
+ ρ[bi(xi, gi(ẑi))− bi(xi, gi(ẑi))] < 0,

which is a contradiction. Hence, Gi is a KKM mapping.

Since Gi(si)
w

[the weak closure of Gi(si)] is a weakly closed subset of a
bounded set Ki in Hi, it is weakly compact. Hence, by Lemma 2.6, we have⋂

si∈Ki
Gi(si)

w 6= ∅.
Let zi ∈

⋂
si∈Ki

Gi(si)
w
. Then for each si ∈ Ki, there exists a sequence

{zim} in Gi(si) such that zim → zi weakly. Hence we have

〈zim − xi, si − zim〉i + ρ[〈Ni(u, v)− w∗i , ηi(gi(si), gi(zim))〉i
+ bi(xi, gi(si))− bi(xi, gi(zim))] ≥ 0.

(3.3)

Now, since the ‖ · ‖i is weakly lower semicontinuous, we have

lim sup
m→∞

〈zim − xi, si − zim〉i

= lim sup
m→∞

[〈zim − xi, si〉i + 〈xi, zim〉i + ‖zim‖i]

≤ lim
m→∞

〈zim − xi, si〉i + lim
m→∞

〈xi, zim〉i − lim inf
m→∞

‖zim‖i
≤ 〈zi − xi, si − zi〉i.

Since bi(·, ·) is convex and continuous in the second argument, it is weakly
lower semicontinuous in the second argument. Thus, it follows from (3.3) and
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Assumption 2.9(3) that

〈zi − xi, si − zi〉i + ρ[〈Ni(u, v)− w∗i , ηi(gi(si), gi(zi))〉i
+ bi(xi, gi(si))− bi(xi, gi(zi))]
≥ lim sup

m→∞
{〈zim − xi, si − zim〉i + ρ[〈Ni(u, v)− w∗i , ηi(gi(si), gi(zim))〉i

+ bi(xi, gi(si))− bi(xi, gi(zim))]} ≥ 0,

and hence

〈zi, si − zi〉i ≥ 〈xi, si − zi〉i − ρ〈Ni(u, v)− w∗i , ηi(gi(si), gi(zi))〉i
+ ρbi(x, gi(zi))− ρbi(x, gi(si)), ∀ si ∈ Ki.

This shows that the auxiliary problem P1(u, v, x1, x2) has a solution. �

By using Theorem 3.1, we now construct the algorithm for solving the
system of generalized nonlinear mixed variational-like inequalities (2.1) and
(2.2).

Algorithm 3.2. For given (w∗1, w
∗
2) ∈ H1 ×H2 and (x0, y0) ∈ K1 ×K2, u0 ∈

Ax0, v0 ∈ Ty0, there exist the sequence {un}n≥0 ⊂ H1, {vn}n≥0 ⊂ H2, and
{(xn, yn)}n≥0 ⊂ K1 ×K2 satisfying the following conditions:

un ∈ Axn, ‖un − un+1‖1 ≤
(

1 +
1

n+ 1

)
Ĥ(Axn, Axn+1),

vn ∈ Tyn, ‖vn − vn+1‖2 ≤
(

1 +
1

n+ 1

)
Ĥ(Tyn, Tyn+1),

and

〈xn+1, s1 − xn+1〉1
≥ 〈xn, s1 − xn+1〉1 − ρ〈N1(un, vn)− w∗1, η1(g1(s1), g1(xn+1))〉1

+ ρb1(xn, g1(xn+1))− ρb1(xn, g1(s1)), ∀ s1 ∈ K1, n ≥ 0,

(3.4)

〈yn+1, s2 − yn+1〉2
≥ 〈yn, s1 − yn+1〉1 − ρ〈N2(un, vn)− w∗2, η2(g2(s2), g2(yn+1))〉2

+ ρb2(yn, g2(yn+1))− ρb2(yn, g2(s2)), ∀ s2 ∈ K2, n ≥ 0,

(3.5)

where ρ > 0 is a constant.

In the next section, we extend the auxiliary principle technique of Glowinski
et al. [1] to study the the system of generalized nonlinear mixed variational-
like inequalities (2.1) and (2.2). We give an existence theorem of a solution
of the auxiliary problem for the the system of generalized nonlinear mixed
variational-like inequalities (2.1) and (2.2).
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Based on this existence theorem, we construct an iterative algorithm for the
the system of generalized nonlinear mixed variational-like inequalities (2.1) and
(2.2).

For given (w∗1, w
∗
2) ∈ H1×H2 and (x1, x2) ∈ K1×K2, u ∈ Ax1, v ∈ Tx2, we

consider the following problem P2(u, v, x1, x2) : find (z1, z2) ∈ K1 ×K2 such
that

〈g1(z1), s1 − z1〉1
≥ 〈g1(x1), s1 − z1〉1 − ρ〈N1(u, v)− w∗1, η1(g1(s1), g1(z1))〉1

+ ρb1(x1, g1(z1))− ρb1(x1, g1(s1)), ∀s1 ∈ K1,

(3.6)

〈g2(z2), s2 − z2〉2
≥ 〈g2(x2), s2 − z2〉2 − ρ〈N2(u, v)− w∗2, η2(g2(s2), g2(z2))〉2

+ ρb2(x2, g2(z2))− ρb2(x2, g2(s2)), ∀s2 ∈ K2.

(3.7)

Theorem 3.3. For each i ∈ I, let gi : Ki → Ki, be Lipschitz continuous
and strongly monotone with constants ai > 0 and bi > 0, respectively; bi(·, ·)
satisfies the conditions (c1)∼(c4), ηi : Ki ×Ki → Hi satisfies Assumption 2.9
and Lipschitz continuous with constants δi > 0. Then the auxiliary problem
P2(u, v, x1, x2) has a solution.

Proof. Define the functionals φi and ψi : Ki ×Ki → R by

φi(si, zi) = 〈gi(si), si − zi〉i − 〈gi(xi), si − zi〉i
+ ρ〈Ni(u, v)− w∗i , ηi(gi(si), gi(zi))〉i
− ρbi(xi, gi(zi)) + ρbi(xi, gi(si))

and
ψi(si, zi) = 〈gi(zi), si − zi〉i − 〈gi(xi), si − zi〉i

+ ρ〈Ni(u, v)− w∗i , ηi(gi(si), gi(zi))〉i
− ρbi(xi, gi(zi)) + ρbi(xi, gi(si))

for all si, zi ∈ Ki, respectively. We shall prove that the mappings φi, ψi, satisfy
all the conditions of Lemma 2.8 in the weak topology.

Indeed, dearly φi and ψi satisfy condition (a) of Lemma 2.8. From property
(c4) of b, Remark 2.1(2) and the Lipschitz continuity of g, it follows that
bi(xi, gi(zi)) is convex and Lipschitz continuous with respect to zi. Again
from Assumption 2.9(3), it follows that the function

zi 7−→ 〈Ni(u, v)− w∗i , ηi(gi(si), gi(zi))〉i
is concave and upper semicontinuous. Therefore, we conclude that ψi(si, zi)
is weakly upper semicontinuous with respect to zi. Now we show that the set
{si ∈ Ki : φi(si, zi) < 0} is a convex set for each zi ∈ Ki. Indeed, suppose that
{si1, si2, . . . , sik} is a finite set of {si ∈ Ki : φi(si, zi) < 0} and that αij ≥ 0 for
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j ∈ {1, 2, ..., k} with
∑k

j=1 αij = 1. Then we write ŝi =
∑k

j=1 αijsij . Observe
that for all j,

〈gi(zi)− gi(xi), si − zi〉i + ρ〈Ni(u, v)− w∗i , ηi(gi(si), gi(zi))〉i
− ρbi(xi, gi(zi)) + ρbi(xi, gi(si)) < 0

and hence

0 >
k∑

j=1

αij〈gi(zi)− gi(xi), sij − zi〉i

+ ρ
k∑

j=1

αij〈Ni(u, v)− w∗i , ηi(gi(sij), gi(zi))〉i

− ρbi(xi, gi(zi)) + ρ

k∑
j=1

αijbi(xi, gi(sij))

≥ 〈gi(zi)− gi(xi), ŝi − zi〉i + ρ〈Ni(u, v)− w∗i , ηi(gi(ŝi), gi(zi))〉i
− ρbi(xi, gi(zi)) + ρbi(xi, gi(ŝi)).

This implies that ŝi ∈ {si ∈ Ki : φi(si, zi) < 0}. Therefore, conditions (b) and
(c) of Lemma 2.8 hold. Finally we shall prove that condition (d) of Lemma
2.8 holds. Indeed, let

ωi = b−1i [ai‖i‖xi‖i + ρδiai‖Ni(u, v)− w∗i ‖i + ργiai‖xi‖i],
Ti = {zi ∈ Ki : ‖zi‖i ≤ ωi}.

Then Ti is a weakly compact subset of Ki. For any fixed zi ∈ Ki \ Ti, take
si0 ∈ Ti. From Assumption 2.9, the Lipschitz continuity of gi, ηi and the
strongly monotone of gi, and Remark 2.6(2), we have

ψi(si0, zi)

= ψi(0, zi)

= −〈gi(zi), zi〉i + 〈gi(xi), zi〉i + ρ〈Ni(u, v)− w∗i , ηi(gi(0), gi(zi))〉i
+ ρbi(xi, gi(zi)) + ρbi(xi, gi(0))

= 〈gi(0)− gi(zi), zi − 0〉i + 〈gi(xi)− gi(0), zi〉i
+ ρ〈Ni(u, v)− w∗i , ηi(gi(0), gi(zi))〉i − ρbi(xi, gi(zi)) + ρbi(xi, gi(0))

≤ −bi‖zi‖2i + ‖gi(xi)− gi(0)‖i‖zi‖i
+ ρ‖Ni(u, v)− w∗i ‖i‖ηi(gi(0), gi(zi))‖i + ργiai‖zi‖i‖xi‖i

= −‖zi‖i{bi‖zi‖i − [ai‖i‖xi‖i + ρδiai‖Ni(u, v)− w∗i ‖i + ργiai‖xi‖i]}.
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Therefore Condition (d) of Lemma 2.8 holds. By Lemma 2.8, there exists a
z̄i ∈ Ki such that φi(si, z̄i) ≥ 0, ∀si ∈ Ki, that is,

〈gi(si), si − z̄i〉i − 〈gi(xi), si − z̄i〉i + ρ〈Ni(u, v)− w∗i , ηi(gi(si), gi(z̄i))〉i
− ρbi(xi, gi(z̄i)) + ρbi(xi, gi(si)) ≥ 0, ∀si ∈ Ki.

(3.8)

For arbitrary ti ∈ (0, 1] and si ∈ Ki, let xti = tisi + (1− ti)z̄i. Replacing si by
z̄i in (3.8) and utilizing Assumption 2.9(3) and Property (iv) of bi, we obtain

0 ≤ 〈gi(xti), xti − z̄i〉i − 〈gi(xi), xti − z̄i〉i
+ ρ〈Ni(u, v)− w∗i , ηi(gi(xti), gi(z̄i))〉i − ρbi(xi, gi(z̄i)) + ρbi(xi, gi(xti))

= ti〈gi(xti), si − z̄i〉i − ti〈gi(xi), si − z̄i〉i
− ρ〈Ni(u, v)− w∗i , ηi(gi(z̄i), gi(tisi + (1− ti)z̄i))〉i
− ρbi(xi, gi(z̄i)) + ρbi(xi, gi(tisi + (1− ti)z̄i))
≤ ti〈gi(xti), si − z̄i〉i − ti〈gi(xi), si − z̄i〉i

+ ρti〈Ni(u, v)− w∗i , ηi(gi(si), gi(z̄i))〉i + ρti[bi(xi, gi(si))− bi(xi, gi(z̄i))].

Hence,

〈gi(xti), si − z̄i〉i − 〈gi(xi), si − z̄i〉i + ρ〈Ni(u, v)− w∗i , ηi(gi(si), gi(z̄i))〉i
+ ρ[bi(xi, gi(si))− bi(xi, gi(z̄i))] ≥ 0,

and consequently,

〈gi(xti), si − z̄i〉i ≥ 〈gi(xi), si − z̄i〉i − ρ〈Ni(u, v)− w∗i , ηi(gi(si), gi(z̄i))〉i
+ ρbi(xi, gi(z̄i))− ρbi(xi, gi(si)).

Letting ti −→ 0+, we have

〈gi(z̄i), si − z̄i〉i ≥ 〈gi(xi), si − z̄i〉i − ρ〈Ni(u, v)− w∗i , ηi(gi(si), gi(z̄i))〉i
+ ρbi(xi, gi(z̄i))− ρbi(xi, gi(si)), ∀si ∈ Ki.

Therefore, z̄i ∈ Ki is a solution of the auxiliary problem P2(u, v, x1, x2). This
completes the proof. �

By using Theorem 3.3, we now construct the algorithm for solving the
system of generalized nonlinear mixed variational-like inequalities (2.1) and
(2.2).

Algorithm 3.4. For given (w∗1, w
∗
2) ∈ H1 ×H2 and (x0, y0) ∈ K1 ×K2, u0 ∈

Ax0, v0 ∈ Ty0, there exist the sequence {un}n≥0 ⊂ H1, {vn}n≥0 ⊂ H2, and
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{(xn, yn)}n≥0 ⊂ K1 ×K2 satisfying the following conditions:

un ∈ Axn, ‖un − un+1‖1 ≤
(

1 +
1

n+ 1

)
Ĥ(Axn, Axn+1),

vn ∈ Tyn, ‖vn − vn+1‖2 ≤
(

1 +
1

n+ 1

)
Ĥ(Tyn, Tyn+1),

and

〈g1(xn+1), s1 − xn+1〉1
≥ 〈g1(xn), s1 − xn+1〉1 − ρ〈N1(un, vn)− w∗1, η1(g1(s1), g1(xn+1))〉1

+ ρb1(xn, g1(xn+1))− ρb1(xn, g1(s1)), ∀ s1 ∈ K1, n ≥ 0,

(3.9)

〈g2(yn+1), s2 − yn+1〉2
≥ 〈g2(yn), s1 − yn+1〉1 − ρ〈N2(un, vn)− w∗2, η2(g2(s2), g2(yn+1))〉2

+ ρb2(yn, g2(yn+1))− ρb2(yn, g2(s2)), ∀ s2 ∈ K2, n ≥ 0,

(3.10)

where ρ > 0 is a constant.

4. Existence and convergence theorem

Theorem 4.1. For each i ∈ I, let Ki be a nonempty convex subset of Hi and
bifunction bi(·, ·) satisfies the conditions (c1)∼(c4). Let Ni : H1×H2 → Hi be
strongly Lipschitz continuous in the first argument and Lipschitz continuous in
the second argument with constants αi > 0 and βi > 0, respectively; set-valued
mappings A : K1 → CB(H1), T : K2 → CB(H2) be Ĥ-Lipschitz continuous
with constants ξ1 > 0 and ξ2 > 0, respectively; linear mapping gi : Ki → Ki,
be Lipschitz continuous with constants ai > 0; and ηi : Ki×Ki → Hi satisfies
Assumption 2.9 and ηi be gi-strongly monotone with constants σi > 0, Lipschitz
continuous with constants δi > 0. If there exists a constant ρ > 0 such that

0 < ρ < min

{
σi − (tiα1 + ciεi)

t2i − (tiα1 + ciεi)2
,

1

tiα1 + ciεi

}
,

tiα1 + ciεi < σi < ti,

(4.1a)

where

ti = δiai, ci = βiξi, ε1 =
γ1a1
c1

+ t2, ε2 =
γ2a1
c2

+ t1, i ∈ I,

then there are (x̂, ŷ) ∈ K1 × K2, û ∈ Ax̂, v̂ ∈ T ŷ satisfying the system of
generalized nonlinear mixed variational-like inequalities (2.1) and (2.2), and

(xn, yn)→ (x̂, ŷ), un → û, vn → v̂, n→∞,

where {(xn, yn)}n≥0, {un}n≥0, {vn}n≥0 are defined by Algorithm 3.2.
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Proof. Using Algorithm 3.2, we obtain that

〈xn, s1 − xn〉1
≥ 〈xn−1, s1 − xn〉1 − ρ〈N1(un−1, vn−1)− w∗1, η1(g1(s1), g1(xn))〉1

+ ρb1(xn−1, g1(xn))− ρb1(xn−1, g1(s1)),
(4.2a)

〈yn, s2 − yn〉2
≥ 〈yn−1, s1 − yn〉1 − ρ〈N2(un−1, vn−1)− w∗2, η2(g2(s2), g2(yn))〉2

+ ρb2(yn−1, g2(yn))− ρb2(yn−1, g2(s2)),
(4.3a)

〈xn+1, s1 − xn+1〉1
≥ 〈xn, s1 − xn+1〉1 − ρ〈N1(un, vn)− w∗1, η1(g1(s1), g1(xn+1))〉1

+ ρb1(xn, g1(xn+1))− ρb1(xn, g1(s1)),
(4.4a)

〈yn+1, s2 − yn+1〉2
≥ 〈yn, s1 − yn+1〉1 − ρ〈N2(un, vn)− w∗2, η2(g2(s2), g2(yn+1))〉2

+ ρb2(yn, g2(yn+1))− ρb2(yn, g2(s2))
(4.5a)

for all n ≥ 1. Taking s1 = xn+1 in (4.2a) and s1 = xn in (4.4a), we conclude
that

〈xn, xn+1 − xn〉1
≥ 〈xn−1, xn+1−xn〉1−ρ〈N1(un−1, vn−1)−w∗1, η1(g1(xn+1), g1(xn))〉1

+ ρb1(xn−1, g1(xn))− ρb1(xn−1, g1(xn+1)),

(4.6a)

〈xn+1, xn − xn+1〉1
≥ 〈xn, xn − xn+1〉1 − ρ〈N1(un, vn)− w∗1, η1(g1(xn), g1(xn+1))〉1

+ ρb1(xn, g1(xn+1))− ρb1(xn, g1(xn)).

(4.7a)

Adding (4.6a) and (4.7a), we have

〈xn − xn+1, xn+1 − xn〉1
≥ 〈xn−1 − xn, xn+1 − xn〉1
− ρ〈N1(un−1−, vn−1)−N1(un, vn), η1(g1(xn+1), g1(xn))〉1
+ ρb1(xn−1 − xn, g1(xn))− ρb1(xn − xn−1, g1(xn+1)),



A system of generalized nonlinear mixed variational-like inequalities 193

which implies that

‖xn − xn+1‖21
≤ 〈xn−1 − xn, xn − xn+1〉1

+ ρ〈N1(un−1, vn−1)−N1(un, vn), η1(g1(xn+1), g1(xn)〉1
+ ρb1(xn − xn−1, g1(xn)− g1(xn+1))

= 〈xn−1 − xn, xn − xn+1 − ρη1(g1(xn), g1(xn+1))〉1
+ ρ〈xn−1 − xn − (N1(un−1, vn−1)−N1(un, vn)), η1(g1(xn), g1(xn+1))〉1
+ ρb1(xn − xn−1, g1(xn)− g1(xn+1)).

It follows that

‖xn − xn+1‖21
≤ ‖xn−1 − xn‖1‖xn − xn+1 − ρη1(g1(xn), g1(xn+1))‖1

+ ρ‖xn−1 − xn − (N1(un−1, vn−1)−N1(un, vn))‖1
× ‖η1(g1(xn), g1(xn+1))‖1
+ ργ1‖xn − xn−1‖1‖g1(xn)− g1(xn+1))‖1.

(4.8a)

Since η1 is g1-strongly monotone with constants σ1 > 0, Lipschitz continuous
with constants δ1 > 0 and gi is Lipschitz continuous with constants a1 > 0,
from (4.8a) we have

‖g1(xn)− g1(xn+1)‖1 ≤ a1‖xn − xn+1‖1,
‖η1(g1(xn), g1(xn+1))‖1 ≤ δ1a1‖xn − xn+1‖1,

(4.9a)

and

‖xn − xn+1 − ρη1(g1(xn), g1(xn+1))‖21
≤ ‖xn − xn+1‖21 − 2ρ〈xn − xn+1, η1(g1(xn), g1(xn+1))‖1

+ ρ2‖η1(g1(xn), g1(xn+1))‖21
≤ (1− 2ρσ1 + ρ2δ21a

2
1)‖xn − xn+1‖21,

which implies that

‖xn − xn+1 − ρη1(g1(xn), g1(xn+1))‖1

≤
√

1− 2ρσ1 + ρ2δ21a
2
1‖xn − xn+1‖1.

(4.10a)

Since N1 is strongly Lipschitz continuous in the first argument with constants
α1 > 0 and is Lipschitz continuous in the second argument with constants
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β2 > 0, from (4.8a) we have

‖xn−1 − xn − (N1(un−1, vn−1)−N1(un, vn))‖1
≤ ‖xn−1 − xn − (N1(un−1, vn−1)−N1(un, vn−1))‖1

+ ‖N1(un, vn−1)−N1(un, vn)‖1
≤ α1‖xn−1 − xn‖1 + β2‖vn−1 − vn‖2

≤ α1‖xn−1 − xn‖1 + β2ξ2

(
1 +

1

n+ 1

)
‖yn−1 − yn‖2.

(4.11a)

From (4.9a), (4.10a) and (4.11a), we give that

‖xn − xn+1‖1

≤
(√

1− 2ρσ1 + ρ2δ21a
2
1 + ρδ1a1α1 + ργ1a1

)
‖xn−1 − xn‖1

+ ρδ1a1β2ξ2

(
1 +

1

n+ 1

)
‖yn−1 − yn‖2.

(4.12a)

Taking s1 = yn+1 in (4.3a) and s2 = yn in (4.5a), similarly we have

‖yn − yn+1‖2

≤
(√

1− 2ρσ2 + ρ2δ22a
2
2 + ρδ2a2α2 + ργ2a2

)
‖yn−1 − yn‖2

+ ρδ2a2β1ξ1

(
1 +

1

n+ 1

)
‖xn−1 − xn‖1.

(4.13a)

Combining (4.12a) and (4.13a), we infer

‖xn − xn+1‖1 + ‖yn − yn+1‖2

≤
(√

1− 2ρσ1 + ρ2δ21a
2
1 + ρδ1a1α1

+ ρβ1ξ1

[
γ1a1
β1ξ1

+ δ2a2

(
1 +

1

n+ 1

)])
‖xn − xn+1‖1

+

(√
1− 2ρσ2 + ρ2δ22a

2
2 + ρδ2a2α2

+ ρβ2ξ2

[
γ2a2
β2ξ2

+ δ1a1

(
1 +

1

n+ 1

)])
‖yn − yn+1‖2

= max{θ1n, θ2n}(‖xn−1 − xn‖1 + ‖yn−1 − yn‖2),

(4.14a)

where

θ1n =
√

1− 2ρσ1 + ρ2δ21a
2
1 + ρδ1a1α1 + ρβ1ξ1

[
γ1a1
β1ξ1

+ δ2a2

(
1 +

1

n+ 1

)]
,

θ2n =
√

1− 2ρσ2 + ρ2δ22a
2
2 + ρδ2a2α2 + ρβ2ξ2

[
γ2a2
β2ξ2

+ δ1a1

(
1 +

1

n+ 1

)]
.
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Letting

θ1 =
√

1− 2ρσ1 + ρ2δ21a
2
1 + ρδ1a1α1 + ρβ1ξ1

[
γ1a1
β1ξ1

+ δ2a2

]
,

θ2 =
√

1− 2ρσ2 + ρ2δ22a
2
2 + ρδ2a2α2 + ρβ2ξ2

[
γ2a2
β2ξ2

+ δ1a1

]
.

We can see that θ1n → θ1 and θ2n → θ2 as n→∞.
Now, defined the norm ‖ · ‖∗ on H1 ×H2 by

‖(u, v)‖∗ = ‖u‖1 + ‖v‖2 ∀ (u, v) ∈ H1 ×H2.

Observe that (H1 ×H2, ‖ · ‖∗) is a Banach space. Hence (4.14a) implies that

‖(xn, yn)−(xn+1, yn+1)‖∗ ≤ max{θ1n, θ2n}‖(xn−1, yn−1)−(xn, yn)‖∗. (4.15a)

For each i ∈ I, according to the condition (4.1a), we have θi < 1. Hence, there
is a positive number θ0 < 1 and integer n0 ≥ 1 such that θin ≤ θ0 < 1 for all
n ≥ n0. Therefore, it follows from (4.15a) that {(xn, yn)} is a Cauchy sequence
in K1 ×K2. Let (xn, yn)→ (x̂, ŷ) in K1 ×K2 as n→∞, since the set-valued

mappings A and T are both Ĥ-Lipschitz continuous, from Algorithm 3.2 we
get that

‖un − un+1‖1 ≤
(

1 +
1

n+ 1

)
Ĥ(Axn, Axn+1) ≤ 2ξ1‖xn − xn+1‖1,

‖vn − vn+1‖2 ≤
(

1 +
1

n+ 1

)
Ĥ(Tyn, Tyn+1) ≤ 2ξ2‖yn − yn+1‖2.

Therefore {(un, vn)} is also a Cauchy sequence in H1 × H2, let (un, vn) →
(û, v̂) ∈ H1 ×H2 as n→∞. Noticing un ∈ Axn, we have

d(û, Ax̂) ≤ ‖û− un‖1 + d(un, Axn) + Ĥ(Axn, Ax̂)

≤ ‖û− un‖1 + ξ1‖xn − x̂‖1 → 0 as n→∞,

hence û ∈ Ax̂. Similarly, we can show v̂ ∈ T ŷ.
Now, we rewrite (3.4) and (3.5) as follows:

〈xn+1 − xn, s1 − xn+1〉1 + ρ〈N1(un, vn)− w∗1, η1(g1(s1), g1(xn+1))〉1
+ ρb1(xn, g1(s1))− ρb1(xn, g1(xn+1)) ≥ 0,

(4.16a)

〈yn+1 − yn, s2 − yn+1〉2 + ρ〈N2(un, vn)− w∗2, η2(g2(s2), g2(yn+1))〉2
+ ρb2(yn, g2(s2))− ρb2(yn, g2(yn+1)) ≥ 0.

(4.17a)
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Since (xn, yn) → (x̂, ŷ), (un, vn) → (û, v̂) strongly in K1 ×K2 and un ∈ Axn,
we have

|〈N1(un, vn)− w∗1, η1(g1(s1), g1(xn+1))〉1
− 〈N1(û, v̂)− w∗1, η1(g1(s1), g1(x̂))〉1|
≤ |〈N1(un, vn)−N1(û, v̂), η1(g1(s1), g1(xn+1))〉1|

+ |〈N1(û, v̂)− w∗1, η1(g1(s1), g1(xn+1))− η1(g1(s1), g1(x̂))〉1|
≤ (‖N1(un, vn)−N1(û, vn)‖1 + ‖N1(û, vn)−N1(û, v̂)‖1)
× ‖η1(g1(s1), g1(xn+1))‖1 + ‖N1(û, v̂)− w∗1‖1‖η1(g1(xn+1), g1(x̂))‖1
≤ (ξ1‖un − û‖1 + ξ2‖vn − v̂‖1)‖η1(g1(s1), g1(xn+1))‖1

+ δ1a1‖N1(û, v̂)− w∗1‖1‖xn+1 − x̂‖1 → 0 as n→∞.

Furthermore, from the property of b1 and Remark 2.1 it follows that

|b1(xn, g1(xn+1))− b1(x̂, g1(x̂))|
≤ |b1(xn, g1(xn+1))− b1(xn, g1(x̂))|+ |b1(xn, g1(x̂))− b1(x̂, ‖)|
≤ γ1a1‖xn‖1‖xn+1 − x̂‖1 + γ1‖xn − x̂‖1‖g1(x̂)‖1 → 0 as n→∞,

hence b1(xn, g1(xn+1)) → b1(x̂, g1(x̂)) and b1(xn, g1(s1)) → b1(x̂, g1(s1)) as
n→∞.

Let n→∞ in (4.16a), we obtain

〈N1(û, v̂)− w∗1, η1(g1(s1), g1(x̂))〉1
+ b1(x̂, g1(s1))− b1(x̂, g1(x̂)) ≥ 0, ∀s1 ∈ K1,

let n→∞ in (4.17a), similarly we have

〈N2(û, v̂)− w∗2, η2(g2(s2), g2(ŷ))〉2
+ b2(ŷ, g2(s2))− b2(ŷ, g2(ŷ)) ≥ 0, ∀s2 ∈ K2.

Therefore (x̂, ŷ, û, v̂) is a solutions of the problem (2.1) and (2.2). This com-
pletes the proof. �

Theorem 4.2. For each i ∈ I, let Ki be a nonempty convex subset of Hi and
bifunction bi(·, ·) satisfies the conditions (c1)∼(c4). Let Ni : H1×H2 → Hi be
strongly Lipschitz continuous in the first argument and be Lipschitz continuous
in the second argument with constants αi > 0 and βi > 0, respectively; set-
valued mappings A : K1 → CB(H1), T : K2 → CB(H2) be Ĥ-Lipschitz
continuous with constants ξ1 > 0 and ξ2 > 0, respectively; linear mapping gi :
Ki → Ki, be Lipschitz continuous with constants ai > 0; and ηi : Ki×Ki → Hi

satisfies Assumption 2.9 and ηi be gi-strongly monotone with constants σi > 0,
Lipschitz continuous with constants δi > 0. If there exists a constant ρ > 0
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such that

Ai < 0, B2
i −AiCi > 0,

∣∣∣∣ρ− Bi

Ai

∣∣∣∣ <
√
B2

i −AiCi

|Ai|
, (4.1b)

where

Ai = [ti(αi +
√

1− 2bi + a2i ) + ciεi]
2 − t2i ,

Bi = a2iσi[ti(αi +
√

1− 2bi + a2i ) + ciεi], Ci = b2i − a2i ,

ti = δiai, ci = biβiξi, ε1 =
γ1a1
c1

+
t2
b2
, ε2 =

γ2a1
c2

+
t1
b1
, i = 1, 2,

then there are (x̂, ŷ) ∈ K1 × K2, û ∈ Ax̂, v̂ ∈ T ŷ satisfying the system of
generalized nonlinear mixed variational-like inequalities (2.1) and (2.2), and

(xn, yn)→ (x̂, ŷ), un → û, vn → v̂, n→∞,

where {(xn, yn)}n≥0, {un}n≥0, {vn}n≥0 are defined by Algorithm 3.4.

Proof. Using Algorithm 3.4, we obtain that

〈g1(xn), s1 − xn〉1
≥ 〈g1(xn−1), s1 − xn〉1 − ρ〈N1(un−1, vn−1)− w∗1, η1(g1(s1), g1(xn))〉1

+ ρb1(xn−1, g1(xn))− ρb1(xn−1, g1(s1)),
(4.2b)

〈g2(yn), s2 − yn〉2
≥ 〈g2(yn−1), s1 − yn〉1 − ρ〈N2(un−1, vn−1)− w∗2, η2(g2(s2), g2(yn))〉2

+ ρb2(yn−1, g2(yn))− ρb2(yn−1, g2(s2)),
(4.3b)

〈g1(xn+1), s1 − xn+1〉1
≥ 〈g1(xn), s1 − xn+1〉1 − ρ〈N1(un, vn)− w∗1, η1(g1(s1), g1(xn+1))〉1

+ ρb1(xn, g1(xn+1))− ρb1(xn, g1(s1)),
(4.4b)

〈g2(yn+1), s2 − yn+1〉2
≥ 〈g2(yn), s1 − yn+1〉1 − ρ〈N2(un, vn)− w∗2, η2(g2(s2), g2(yn+1))〉2

+ ρb2(yn, g2(yn+1))− ρb2(yn, g2(s2))
(4.5b)

for all n ≥ 1. Taking s1 = xn+1 in (4.2b) and s1 = xn in (4.4b), we conclude
that

〈g1(xn), xn+1 − xn〉1
≥ 〈g1(xn−1), xn+1 − xn〉1 − ρ〈N1(un−1, vn−1)− w∗1, η1(g1(xn+1), g1(xn))〉1

+ ρb1(xn−1, g1(xn))− ρb1(xn−1, g1(xn+1)),
(4.6b)
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〈g1(xn+1), xn − xn+1〉1
≥ 〈g1(xn), xn − xn+1〉1 − ρ〈N1(un, vn)− w∗1, η1(g1(xn), g1(xn+1))〉1

+ ρb1(xn, g1(xn+1))− ρb1(xn, g1(xn)).

(4.7b)

Adding (4.6b) and (4.7b), we have

〈g1(xn)− g1(xn+1), xn+1 − xn〉1
≥ 〈g1(xn−1)− g1(xn), xn+1 − xn〉1
− ρ〈N1(un−1−, vn−1)−N1(un, vn), η1(g1(xn+1), g1(xn))〉1
+ ρb1(xn−1 − xn, g1(xn))− ρb1(xn − xn−1, g1(xn+1)).

Since g1 is strongly monotone with constants b1 > 0, we have

‖g1(xn)− g1(xn+1)− (xn − xn+1)‖1 ≤
√

1− 2b1 + a21‖xn − xn+1‖1, (4.8b)

which implies that

b1‖xn − xn+1‖21 ≤ 〈g1(xn−1)− g1(xn), xn − xn+1〉1
+ ρ〈N1(un−1, vn−1)−N1(un, vn), η1(g1(xn+1), g1(xn)〉1
+ ρb1(xn − xn−1, g1(xn)− g1(xn+1))

= 〈g1(xn−1)− g1(xn), xn − xn+1 − ρη1(g1(xn), g1(xn+1))〉1
+ ρ〈g1(xn−1)− g1(xn)− (N1(un−1, vn−1)

−N1(un, vn)), η1(g1(xn), g1(xn+1))〉1
+ ρb1(xn − xn−1, g1(xn)− g1(xn+1)).

It follows that

b1‖xn − xn+1‖21
≤ ‖g1(xn−1)− g1(xn)‖1‖xn − xn+1 − ρη1(g1(xn), g1(xn+1))‖1

+ ρ‖g1(xn−1)− g1(xn)− (N1(un−1, vn−1)−N1(un, vn))‖1
× ‖η1(g1(xn), g1(xn+1))‖1

+ ργ1‖xn − xn−1‖1‖g1(xn)− g1(xn+1))‖1
≤ ‖g1(xn−1)− g1(xn)‖1‖xn − xn+1 − ρη1(g1(xn), g1(xn+1))‖1

+ ρ‖xn−1 − xn − (N1(un−1, vn−1)−N1(un, vn))‖1
× ‖η1(g1(xn), g1(xn+1))‖1+ρ‖g1(xn−1)−g1(xn)−(xn−1 − xn)‖1

+ ργ1‖xn − xn−1‖1‖g1(xn)− g1(xn+1))‖1.

(4.9b)
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From (4.9a), (4.10a), (4.11a) and (4.8b), we give that

‖xn − xn+1‖1

≤ b−11

(
a1

√
1− 2ρσ1 + ρ2δ21a

2
1

+ ρδ1a1

(
α1 +

√
1− 2b1 + a21

)
+ ργ1a1

)
‖xn−1 − xn‖1

+ ρb−11 δ1a1β2ξ2

(
1 +

1

n+ 1

)
‖yn−1 − yn‖2.

(4.10b)

Taking s1 = yn+1 in (4.3b) and s2 = yn in (4.5b), similarly we have

‖yn − yn+1‖2

≤ b−12

(
a2

√
1− 2ρσ2 + ρ2δ22a

2
2

+ ρδ2a2

(
α2 +

√
1− 2b2 + a22

)
+ ργ2a2

)
‖yn−1 − yn‖2

+ ρb−12 δ2a2β1ξ1

(
1 +

1

n+ 1

)
‖xn−1 − xn‖1.

(4.11b)

Combining (4.10b) and (4.11b), we infer

max{‖xn − xn+1‖1, ‖yn − yn+1‖2}

≤ b−11

(
a1

√
1− 2ρσ1 + ρ2δ21a

2
1 + ρδ1a1

(
α1 +

√
1− 2b1 + a21

)
+ ρb1β1ξ1

[
γ1a1
b1β1ξ1

+
δ2a2
b2

(
1 +

1

n+ 1

)])
‖xn − xn+1‖1

+ b−12

(
a2

√
1− 2ρσ2 + ρ2δ22a

2
2 + ρδ2a2

(
α2 +

√
1− 2b2 + a22

)
+ ρb2β2ξ2

[
γ2a2
b2β2ξ2

+
δ1a1
b1

(
1 +

1

n+ 1

)])
‖yn − yn+1‖2

= max{θ1n, θ2n}(‖xn−1 − xn‖1 + ‖yn−1 − yn‖2),

(4.12b)

where

θ1n = b−11

(
a1

√
1− 2ρσ1 + ρ2δ21a

2
1 + ρδ1a1

(
α1 +

√
1− 2b1 + a21

)
+ ρb1β1ξ1

[
γ1a1
b1β1ξ1

+
δ2a2
b2

(
1 +

1

n+ 1

)])
,

θ2n = b−12

(
a2

√
1− 2ρσ2 + ρ2δ22a

2
2 + ρδ2a2

(
α2 +

√
1− 2b2 + a22

)
+ ρb2β2ξ2

[
γ2a2
b2β2ξ2

+
δ1a1
b1

(
1 +

1

n+ 1

)])
.
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Letting

θ1 = b−11

(
a1

√
1− 2ρσ1 + ρ2δ21a

2
1 + ρδ1a1

(
α1 +

√
1− 2b1 + a21

)
+ ρb1β1ξ1

[
γ1a1
b1β1ξ1

+
δ2a2
b2

])
,

θ2 = b−12

(
a2

√
1− 2ρσ2 + ρ2δ22a

2
2 + ρδ2a2

(
α2 +

√
1− 2b2 + a22

)
+ ρb2β2ξ2

[
γ2a2
b2β2ξ2

+
δ1a1
b1

])
.

We can see that θ1n → θ1 and θ2n → θ2 as n → ∞. Now, defined the norm
‖ · ‖∗ on H1 ×H2 by

‖(u, v)‖∗ = max{‖u‖1, ‖v‖2}, ∀ (u, v) ∈ H1 ×H2.

It observe that (H1×H2, ‖ · ‖∗) is a Banach space. Hence (4.12b) implies that

‖(xn, yn)− (xn+1, yn+1)‖∗ ≤ max{θ1n, θ2n}‖(xn−1, yn−1)− (xn, yn)‖∗. (4.13b)

For each i ∈ I, according to the condition (4.1), we have θi < 1. Hence, there
is a positive number θ0 < 1 and integer n0 ≥ 1 such that θin ≤ θ0 < 1 for all
n ≥ n0. Therefore, it follows from (4.15a) that {(xn, yn)} is a Cauchy sequence
in K1 ×K2. Let (xn, yn)→ (x̂, ŷ) in K1 ×K2 as n→∞, since the set-valued

mappings A and T are both Ĥ-Lipschitz continuous, from Algorithm 3.4 we
get that

‖un − un+1‖1 ≤
(

1 +
1

n+ 1

)
Ĥ(Axn, Axn+1) ≤ 2ξ1‖xn − xn+1‖1,

‖vn − vn+1‖2 ≤
(

1 +
1

n+ 1

)
Ĥ(Tyn, Tyn+1) ≤ 2ξ2‖yn − yn+1‖2.

Therefore {(un, vn)} is also a Cauchy sequence in H1 × H2, let (un, vn) →
(û, v̂) ∈ H1 ×H2 as n→∞. Noticing un ∈ Axn, we have

d(û, Ax̂) ≤ ‖û− un‖1 + d(un, Axn) + Ĥ(Axn, Ax̂)

≤ ‖û− un‖1 + ξ1‖xn − x̂‖1 → 0 as n→∞,

hence û ∈ Ax̂. Similarly, we can show v̂ ∈ T ŷ.
Now, we rewrite (3.9) and (3.10) as follows:

〈g1(xn+1)− g1(xn), s1 − xn+1〉1
+ ρ〈N1(un, vn)− w∗1, η1(g1(s1), g1(xn+1))〉1
+ ρb1(xn, g1(s1))− ρb1(xn, g1(xn+1)) ≥ 0,

(4.14b)
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〈g1(yn+1)− g1(yn), s2 − yn+1〉2
+ ρ〈N2(un, vn)− w∗2, η2(g2(s2), g2(yn+1))〉2
+ ρb2(yn, g2(s2))− ρb2(yn, g2(yn+1)) ≥ 0.

(4.15b)

Since xn → x̂ strongly as n → ∞, 〈g1(xn+1) − g1(xn), s1 − xn+1〉1 → 0 as
n→∞. Note also that

〈N1(û, v̂)− w∗1, η1(g1(s1), g1(x̂))〉1
≥ lim sup

n→∞
〈N1(û, v̂)− w∗1, η1(g1(s1), g1(xn+1))〉1.

Since N1(un, vn) → N1(û, v̂) strongly in H1, from Assumption 2.9(3) and
boundedness of η1(g1(s1), g1(xn+1)), we obtain

0 ≤ 〈N1(û, v̂)− w∗1, η1(g1(s1), g1(x̂))〉1
− lim sup

n→∞
〈N1(û, v̂)− w∗1, η1(g1(s1), g1(xn+1))〉1

= lim inf
n→∞

{〈N1(û, v̂)− w∗1, η1(g1(s1), g1(x̂))〉1
− 〈N1(û, v̂)− w∗1, η1(g1(s1), g1(xn+1))〉1}

= lim inf
n→∞

{〈N1(û, v̂)− w∗1, η1(g1(s1), g1(x̂))〉1
− 〈N1(û, v̂)− w∗1, η1(g1(s1), g1(xn+1))〉1
+ 〈N1(û, v̂)− w∗1 − (N1(û, v̂)− w∗1), η1(g1(s1), g1(xn+1))〉1}

= lim inf
n→∞

{〈N1(û, v̂)− w∗1, η1(g1(s1), g1(x̂))〉1
− 〈N1(un, vn)− w∗1, η1(g1(s1), g1(xn+1))〉1},

and hence,

〈N1(û, v̂)− w∗1, η1(g1(s1), g1(x̂))〉1
≥ lim sup

n→∞
〈N1(un, vn)− w∗1, η1(g1(s1), g1(xn+1))〉1.

Furthermore, from the property of b1 and Remark 2.1 it follows that

|b1(xn, g1(xn+1))− b1(x̂, g1(x̂))|
≤ |b1(xn, g1(xn+1))− b1(xn, g1(x̂))|+ |b1(xn, g1(x̂))− b1(x̂, ‖)|
≤ γ1a1‖xn‖1‖xn+1 − x̂‖1 + γ1‖xn − x̂‖1‖g1(x̂)‖1 → 0 as n→∞,
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hence b1(xn, g1(xn+1)) → b1(x̂, g1(x̂)) and b1(xn, g1(s1)) → b1(x̂, g1(s1)) as
n→∞. Therefore, we get

0 ≤ lim sup
n→∞

{〈g1(xn+1)− g1(xn), s1 − xn+1〉1

+ ρ〈N1(un, vn)− w∗1, η1(g1(s1), g1(xn+1))〉1
+ ρb1(xn, g1(s1))− ρb1(xn, g1(xn+1))}
≤ ρ〈N1(û, v̂)− w∗1, η1(g1(s1), g1(x̂))〉1

+ ρb1(x̂, g1(s1))− ρb1(x̂, g1(x̂))

(4.16b)

which implies that

〈N1(û, v̂)−w∗1, η1(g1(s1), g1(x̂))〉1+b1(x̂, g1(s1))−b1(x̂, g1(x̂)) ≥ 0, ∀ s1 ∈ K1.

To (4.15b), similarly we have

〈N2(û, v̂)−w∗2, η2(g2(s2), g2(ŷ))〉2+b2(ŷ, g2(s2))−b2(ŷ, g2(ŷ)) ≥ 0, ∀ s2 ∈ K2.

Therefore (x̂, ŷ, û, v̂) is a solution of the problem (2.1) and (2.2). This com-
pletes the proof. �
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