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Abstract. By using Leray-Schauder nonlinear alternative, this paper presents the existence

of solutions for a class of singular nonlinear third-order boundary value problem under some

weaker conditions that the nonlinear term f contains first and second derivatives.

This paper deals with the existence of solution for the following nonlinear
boundary value problem

{
x′′′(t) + h(t)f(t, x(t), x′(t), x′′(t)) = 0, 0 ≤ t ≤ 1,

x(0) = x′(0) = x(1),
(1)

where nonlinearity h(t) may be singular at t = 0 and/or t = 1.
Boundary value problems have been considering widely, and there are some

excellent results on the existence of solutions, (see [1], [2], [6]). At the same

0Received October 9, 2008. Revised January 5, 2009.
02000 Mathematics Subject Classification: 34B15, 34B16, 34B18.
0Keywords: Existence, boundary value problems, Leray-Schauder nonlinear alternative.
0Corresponding author: Yan Sun. E-mail addresses: ysun@shnu.edu.cn (Y. Sun).
0The author is supported financially by the National Natural Science Foundation of China

(10471075), the Natural Science Foundation of Shanghai Normal University (SK200703).



194 Yan Sun, Jong Kyu Kim and Yeol Je Cho

time, utilizing the method of upper and lower solutions or topological transver-
sality, differential inequality, shooting argument, some authors established the
existence of solutions for boundary value problems of third-order differential
equations (see [5], [6]).

Motivated by the results in [5] and [6], the aim of this paper is to consider
the existence of positive solutions for the BVP (1.1) using properties of Green’s
function and Leray-Schauder nonlinear alternative. The nonlinear term h(t)
may be singular at t = 0 and/or t = 1.

Definition 1. By a nonzero solution of the BVP (1.1), we mean a function
x(t) ∈ C3(0, 1) ∩ C[0, 1] satisfying the BVP (1.1) and with x not identically
zero on [0, 1], x(t) is called a positive solution of the BVP (1.1) if x(t) is a
solution of the BVP (1.1) and x(t) > 0 for any t ∈ (0, 1).

Let E be real Banach space and K ⊂ E be a cone in E. For all 0 < r <
R < +∞, let

Kr = {x ∈ K : ‖x‖ < r}, ∂Kr = {x ∈ K : ‖x‖ = r},
Kr,R = {x ∈ K : r ≤ ‖x‖ ≤ R}.

The proof of our main results uses the following fixed point theorem:

Lemma 1.([2]) Let X be a Banach space, and Ω be a bounded open set in
X, and 0 ∈ Ω, T : Ω −→ X be a completely continuous operator satisfying
Tx 6= λx, λ > 1, x ∈ ∂Ω. Then T has a fixed point in Ω.

Lemma 2. Let G(t, s) be the Green’s function for
{

x′′′(t) = 0, 0 < t < 1,

x(0) = x′(0) = x(1) = 0,

that is

G(t, s) =





1
2
s2(1− t)2 + s(1− t)(t− s), 0 ≤ s ≤ t ≤ 1,

1
2
t2(1− s)2, 0 ≤ t ≤ s ≤ 1.

(2)

Lemma 3.([1]) 1
2a(t)b(s) ≤ G(t, s) ≤ b(s) for any t, s ∈ [0, 1], where b(s) =

s(1− s)2, a(t) = t2(1− t).

Lemma 4. max
0≤t≤1

|G(t, s)| ≤ 1, max
0≤t≤1

| ∂
∂tG(t, s) |≤ 1, max

0≤t≤1
| ∂2

∂t2
G(t, s) |≤ 1.

For convenience, we list the following assumptions:

(H1) h ∈ C((0, 1), (0, +∞)) and 0 <
∫ 1
0 h(s)ds < +∞.
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(H2) f : [0, 1]×R×R×R −→ R is continuous and there exist nonnegative
function a, b, c, r ∈ C[0, 1] such that

| f(t, u, v, w) |≤ a(t)|u|+ b(t)|v|+ c(t)|w|+ r(t), 0 ≤ t ≤ 1

and
∫ 1
0 h(s)[a(s) + b(s) + c(s)]ds < 1.

Let

K = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1], x(t) ≥ 1
2
a(t)‖x‖, t ∈ [0, 1]},

where a(t) is defined as Lemma 3.
Denote ‖x‖0 = max

0≤t≤1
|x(t)|, x(t) ∈ C[0, 1], ‖x‖ = max{‖x‖0, ‖x′‖0, ‖x′′‖0}.

It is easy to see that K is a cone of X. Define an operator A : K −→ K by

Ax(t) =
∫ 1

0
G(t, s)h(s)f(s, x(s), x′(s), x′′(s))ds, t ∈ [0, 1].

Obviously, the existence of positive solutins for the BVP (1.1) is equivalent to
the existence of fixed points of the operator equation Ax = x, x ∈ C[0, 1].

Lemma 5. Assume that (H1) and (H2) hold, then AK ⊂ K and A : K −→ K
is completely continuous.

Proof. It follows from Lemma 3. that for all t ∈ [0, 1], we get

(Ax)(t) =
∫ 1

0
G(t, s)h(s)f(s, x(s), x′(s), x′′(s))ds

≤
∫ 1

0
b(s)h(s)f(s, x(s), x′(s), x′′(s))ds.

Therefore,

‖Ax‖ ≤
∫ 1

0
b(s)h(s)f(s, x(s), x′(s), x′′(s))ds.

For any x ∈ K, we know by Lemma 3. that

(Ax)(t) =
∫ 1

0
G(t, s)h(s)f(s, x(s), x′(s), x′′(s))ds

≥ 1
2
a(t)

∫ 1

0
b(s)h(s)f(s, x(s), x′(s), x′′(s))ds

≥ 1
2
a(t)‖Ax‖, 0 ≤ t ≤ 1.

Therefore, we have AK ⊂ K.
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Now, let us prove A : K −→ K is completely continuous. For each n ≥ 1
define the operator An : K −→ K by

(Anx)(t) =
∫ n−1

n

1
n

G(t, s)h(s)f(s, x(s), x′(s), x′′(s))ds, x ∈ K, t ∈ [0, 1]. (3)

By (H1), (H2) and the Arzela-Ascoli theorem, we know that An : K −→ K is
completely continuous. By Lemma 3. we have

|(Ax)(t)− (Anx)(t)| =
∣∣∣
∫ 1

n

0
G(t, s)h(s)f(s, x(s), x′(s), x′′(s))ds

+
∫ 1

n−1
n

G(t, s)h(s)f(s, x(s), x′(s), x′′(s))ds
∣∣∣

≤
∫ 1

n

0
b(s)h(s)|f(s, x(s), x′(s), x′′(s))|ds

+
∫ 1

n−1
n

b(s)h(s)|f(s, x(s), x′(s), x′′(s))|ds,

and so

|(Ax)(t)− (Anx)(t)| ≤
∫ 1

n

0
b(s)h(s)|f(s, x(s), x′(s), x′′(s))|ds

+
∫ 1

n−1
n

b(s)h(s)|f(s, x(s), x′(s), x′′(s))|ds.

Assumption (H1), (H2) and the absolute continuity of integral imply that

lim
n→∞ ‖Ax−Anx‖ = 0,

then A is completely continuous. ¤

Theorem 6. Assume that (H1) and (H2) hold, then the BVP (1.1) has at
least one positive solution.

Proof. Obviously, if f(t, 0, 0, 0) ≡ 0, 0 ≤ t ≤ 1, then BVP (1.1) has only trivial
solution. Therefore, we may assume that (t, x0, y0, z0) ∈ (0, 1) × R × R × R
such that f(t, x0, y0, z0) = α0 > 0. It follows from (H2) that

∫ 1

0
h(s)[a(s) + b(s) + c(s)]ds > 0

and ∫ 1

0
h(s)r(s)ds > 0.
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Now we assume that

M =
∫ 1

0
h(s)[a(s) + b(s) + c(s)]ds,

and

M∗ =
∫ 1

0
h(s)r(s)ds.

Then 0 < M < 1. Let R = M∗(1 −M)−1. Then R > 0. Let Ω = {x ∈ K :
‖x‖ < R}.

We claim that Tx 6= λx, for all λ > 1.
In fact, if not, there exists x0 ∈ ∂Ω, λ0 > 1 such that Tx0 = λ0x0. Since

‖x‖ = R, then ‖x‖0 ≤ R, ‖x′‖ ≤ R, ‖x′′‖ ≤ R. Thus

‖Tx(t)‖0 = max
0≤t≤1

∣∣∣∣
∫ 1

0
G(t, s)h(s)f(s, x(s), x′(s), x′′(s))ds

∣∣∣∣

≤
∫ 1

0
b(s)h(s)|f(s, x(s), x′(s), x′′(s))|ds

≤
∫ 1

0
h(s)[a(s)|x(s)|+ b(s)|x′(s)|+ c(s)|x′′(s)|+ r(s)]ds

≤
∫ 1

0
h(s)([a(s) + b(s) + c(s)]R + r(s))ds

≤ R

∫ 1

0
h(s)[a(s) + b(s) + c(s)]ds +

∫ 1

0
h(s)r(s)ds

≤ RM + M∗,

‖(Tx)′(t)‖0 = max
0≤t≤1

∣∣∣∣
∫ 1

0

∂

∂t
G(t, s)h(s)f(s, x(s), x′(s), x′′(s))ds

∣∣∣∣

≤
∫ 1

0
max
0≤t≤1

∣∣∣∣
∂

∂t
G(t, s)

∣∣∣∣h(s)|f(s, x(s), x′(s), x′′(s))|ds

≤
∫ 1

0
h(s)[a(s)|x(s)|+ b(s)|x′(s)|+ c(s)|x′′(s)|+ r(s)]ds

≤
∫ 1

0
h(s)([a(s) + b(s) + c(s)]R + r(s))ds

≤ R

∫ 1

0
h(s)([a(s) + b(s) + c(s)]ds +

∫ 1

0
h(s)r(s)ds

≤ RM + M∗
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and

‖(Tx)′′(t)‖0 = max
0≤t≤1

∣∣∣∣
∫ 1

0

∂2

∂t2
G(t, s)h(s)f(s, x(s), x′(s), x′′(s))ds

∣∣∣∣

≤
∫ 1

0
max
0≤t≤1

∣∣∣∣
∂2

∂t2
G(t, s)

∣∣∣∣h(s)|f(s, x(s), x′(s), x′′(s))|ds

≤
∫ 1

0
h(s)[a(s)|x(s)|+ b(s)|x′(s)|+ c(s)|x′′(s)|+ r(s)]ds

≤
∫ 1

0
h(s)([a(s) + b(s) + c(s)]R + r(s))ds

≤ R

∫ 1

0
h(s)([a(s) + b(s) + c(s)]ds +

∫ 1

0
h(s)r(s)ds

≤ RM + M∗.
Therefore ‖Tx‖ ≤ RM + M∗. Hence

λ0R = λ0‖x‖ = ‖Tx‖ ≤ RM + M∗ = M∗(1−M)−1M + M∗

=
M∗M
1−M

+ M∗ =
M∗M + M∗ −MM∗

1−M

= M∗(1−M)−1 = R.

Since R > 0, then λ0 ≤ 1, which is contradict with λ0 > 1.
It follows from Lemma 3. that T has at least one fixed point x∗ ∈ Ω. So

the BVP (1.1) has at least one solution x∗ ∈ E. This completes the proof. ¤
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