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1. Introduction

In 2008, Suzuki [12] generalized the Banach contraction principle [2].

Theorem 1.1. ([12]) Let (X, d) be a complete metric space and let T be a
mapping on X. Define a non-increasing function θ : [0, 1)→

(
1
2 , 1
]

by

θ(r) =

 1
(1− r)r−2
(1 + r)−1

if 0 ≤ r ≤ (
√
5−1)
2 ,

if (
√
5−1)
2 ≤ r ≤

if 2−
1
2 ≤ r < 1.

2−
1
2 ,

Assume that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y)⇒ d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then there exists a unique fixed point z of T . Moreover
limn T

nx = z for all x ∈ X.

Bhaskar and Lakshmikantham [4] introduced the notion of coupled fixed
point and they provide some coupled fixed point results also.

Recently Sedghi et al. [9] defined Sb-metric spaces using the concept of
S-metric spaces [10].

The aim of this paper is to prove Suzuki type unique common coupled fixed
point theorem for four mappings satisfying generalized contractive condition
in a Sb-metric space. Throughout this paper R,R+ and N denote the set of
all real numbers, non-negative real numbers and positive integers, respectively.

First we recall some definitions, lemmas and examples.

Definition 1.2. ([10]) Let X be a non-empty set. A S−metric on X is a
function S : X3 → [0,+∞) that satisfies the following conditions for each
x, y, z, a ∈ X,

(S1) 0 < S(x, y, z) for all x, y, z ∈ X with x 6= y 6= z,
(S2) S(x, y, z) = 0⇔ x = y = z,
(S3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z, a ∈ X.

Then the pair (X,S) is called a S-metric space.

Definition 1.3. ([9]) Let X be a non-empty set and b ≥ 1 be given real
number. Suppose that S : X3 → [0,∞) is a function satisfying the following
properties:

(Sb1) 0 < S(x, y, z) for all x, y, z ∈ X with x 6= y 6= z,
(Sb2) S(x, y, z) = 0⇔ x = y = z,
(Sb3) S(x, y, z) ≤ b(S(x, x, a) + S(y, y, a) + S(z, z, a)) for all x, y, z, a ∈ X.

Then the function S is called a Sb-metric on X and the pair (X,S) is called a
Sb-metric space.
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Remark 1.4. ([9]) It should be noted that, the class of Sb-metric spaces is
effectively larger than that of S-metric spaces. Indeed each S-metric space is
a Sb-metric space with b = 1.

Following example shows that a Sb-metric on X need not be a S-metric on
X.

Example 1.5. ([9]) Let (X,S) be a S-metric space, and S∗(x, y, z) = S(x, y, z)p,

where p > 1 is a real number. Note that S∗ is a Sb-metric with b = 22(p−1).
Also, (X,S∗) is not necessarily a S-metric space.

Definition 1.6. ([9]) Let (X,S) be a Sb-metric space. Then, for x ∈ X, r > 0
we defined the open ball BS(x, r) and closed ball BS [x, r] with center x and
radius r as follows, respectively:

BS(x, r) = {y ∈ X : S(y, y, x) < r},
BS [x, r] = {y ∈ X : S(y, y, x) ≤ r}.

Lemma 1.7. ([9]) In a Sb-metric space, we have

S(x, x, y) ≤ bS(y, y, x)

and
S(y, y, x) ≤ bS(x, x, y).

Lemma 1.8. ([9]) In a Sb-metric space, we have

S(x, x, z) ≤ 2bS(x, x, y) + b2S(y, y, z).

Definition 1.9. ([9]) If (X,S) be a Sb-metric space. A sequence {xn} in X
is said to be:

(1) Sb-Cauchy sequence if, for each ε > 0, there exists n0 ∈ N such that
S(xn, xn, xm) < ε for each m,n ≥ n0.

(2) Sb-convergent to a point x ∈ X if, for each ε > 0, there exists a positive
integer n0 such that S(xn, xn, x) < ε or S(x, , x, xn) < ε for all n ≥ n0
and we denote by lim

n→∞
xn = x.

Definition 1.10. ([9]) A Sb-metric space (X,S) is called complete if every
Sb-Cauchy sequence is Sb-convergent in X.

Lemma 1.11. ([9]) Let (X,S) be a Sb-metric space with b ≥ 1 and suppose
that {xn} is a Sb-convergent to x. Then we have

(i) 1
2bS(y, x, x) ≤ lim

n→∞
inf S(y, y, xn) ≤ lim

n→∞
supS(y, y, xn) ≤ 2bS(y, y, x),

(ii) 1
b2
S(x, x, y) ≤ lim

n→∞
inf S(xn, xn, y) ≤ lim

n→∞
supS(xn, xn, y) ≤ b2S(x, x, y)

for all y ∈ X.

In particular, if x = y, then we have lim
n→∞

S(xn, xn, y) = 0.
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Definition 1.12. ([4]) An element (x, y) ∈ X × X is called a coupled fixed
point of a mapping F : X ×X → X if x = F (x, y) and y = F (y, x).

Definition 1.13. ([5]) An element (x, y) ∈ X ×X is called

(i) a coupled coincident point of mappings F : X×X → X and f : X → X
if fx = F (x, y) and fy = F (y, x).

(ii) a common coupled fixed point of mappings F : X × X → X and
f : X → X if x = fx = F (x, y) and y = fy = F (y, x).

2. Main Results

Now, we give our main results. Let Ψ be denotes the set of all functions
ψ : R+ → R+ satisfying:

(ψ1) ψ is continuous and monotonically increasing,
(ψ2) ψ(at) = aψ(t), where a is constant and t ∈ R+.

Let Φ be denotes the set of all functions φ : R+ → R+ satisfying:
(φ1) φ is lower semi continuous,
(φ2) φ(t) < t for t > 0.

Theorem 2.1. Let (X,S) be a Sb-metric space. Suppose that A,B : X×X →
X and P,Q : X → X are satisfied:

(2.1.1) A(X ×X) ⊆ Q(X), B(X ×X) ⊆ P (X),
(2.1.2) {A,P} and {B,Q} are w-compatible pairs,
(2.1.3) One of P (X) or Q(X) is Sb-complete subspace of X,

(2.1.4)

1
8b3

min

{
S(A(x, y), A(x, y), Px), S(B(u, v), B(u, v), Qu),
S(A(y, x), A(y, x), Py), S(B(v, u), B(v, u), Qv)

}
≤ max

{
S(Px, Px,Qu),
S(Py, Py,Qv)

}
implies that

ψ (S(A(x, y), A(x, y), B(u, v))) ≤ 1

5b12
ψ (M (x, y, u, v))− φ (M (x, y, u, v))

for all x, y, u, v in X, where ψ ∈ Ψ, φ ∈ Φ and

M (x, y, u, v) = max



S(Px, Px,Qu), S(Py, Py,Qv),
S(A(x, y), A(x, y), Px), S(A(y, x), A(y, x), Py),

S(B(u, v), B(u, v), Qu), S(B(v, u), B(v, u), Qv),

S(A(x,y),A(x,y),Qu) S(B(u,v),B(u,v),Px)
1+S(Px,Px,Qu) ,

S(A(y,x),A(y,x),Qv) S(B(v,u),B(v,u),Py)
1+S(Py,Py,Qv)


.

Then A,B, P and Q have a unique common coupled fixed point in X ×X.
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Proof. Let x0, y0 ∈ X. From (2.1.1), we can construct the sequences {xn},
{yn}, {zn} and {wn} such that

A(x2n, y2n) = Qx2n+1 = z2n,
A(y2n, x2n) = Qy2n+1 = w2n,

B(x2n+1, y2n+1) = Px2n+2 = z2n+1,
B(y2n+1, x2n+1) = Py2n+2 = w2n+1, n = 0, 1, 2, · · · .

Case (i) Suppose z2m = z2m+1 and w2m = w2m+1 for some m.
Assume that z2m+1 6= z2m+2 or w2m+1 6= w2m+2. Since

1
8b3

min


S(A(x2m+2, y2m+2), A(x2m+2, y2m+2), Px2m+2),
S(B(x2m+1, y2m+1), B(x2m+1, y2m+1), Qx2m+1),
S(A(y2m+2, x2m+2), A(y2m+2, x2m+2), Py2m+2),
S(B(y2m+1, x2m+1), B(y2m+1, x2m+1), Qy2m+1)


≤ max

{
S(Px2m+2, Px2m+2, Qx2m+1), S(Py2m+2, Py2m+2, Qy2m+1)

}
,

from (2.1.4), we have

ψ (S(A(x2m+2, y2m+2), A(x2m+2, y2m+2), B(x2m+1, y2m+1)))

≤ 1

5b12
ψ (M (x2m+2, y2m+2, x2m+1, y2m+1))

−φ (M (x2m+2, y2m+2, x2m+1, y2m+1)) ,

where

M (x2m+2, y2m+2, x2m+1, y2m+1)

= max



S(z2m+1, z2m+1, z2m), S(w2m+1, w2m+1, w2m),
S(z2m+2, z2m+2, z2m+1), S(w2m+2, w2m+2, w2m+1),
S(z2m+1, z2m+1, z2m), S(w2m+1, w2m+1, w2m),
S(z2m+2,z2m+2,z2m+1) S(z2m+1,z2m+1,z2m)

1+S(z2m+1,z2m+1,z2m) ,
S(w2m+2,w2m+2,w2m+1) S(w2m+1,w2m+1,w2m)

1+S(w2m+1,w2m+1,w2m)


= max

{
S(z2m+2, z2m+2, z2m+1), S(w2m+2, w2m+2, w2m+1)

}
.

Thus

ψ (S(z2m+2, z2m+2, z2m+1))

≤ 1
5b12

ψ

(
max

{
S(z2m+2, z2m+2, z2m+1),
S(w2m+2, w2m+2, w2m+1)

})
−φ
(

max

{
S(z2m+2, z2m+2, z2m+1),
S(w2m+2, w2m+2, w2m+1)

})
.
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Similarly, we can prove

ψ (S(w2m+2, w2m+2, w2m+1))

≤ 1
5b12

ψ

(
max

{
S(z2m+2, z2m+2, z2m+1),
S(w2m+2, w2m+2, w2m+1)

})
−φ
(

max

{
S(z2m+2, z2m+2, z2m+1),
S(w2m+2, w2m+2, w2m+1)

})
.

It follows that

ψ

(
max

{
S(z2m+2, z2m+2, z2m+1),
S(w2m+2, w2m+2, w2m+1)

})
≤ 1

5b12
ψ

(
max

{
S(z2m+2, z2m+2, z2m+1),
S(w2m+2, w2m+2, w2m+1)

})
−φ
(

max

{
S(z2m+2, z2m+2, z2m+1),
S(w2m+2, w2m+2, w2m+1)

})
.

It follows that z2m+2 = z2m+1 and w2m+2 = w2m+1. Continuing in this process
we can conclude that z2m+k = z2m and w2m+k = w2m for all k ≥ 0. It follows
that {z2m} and {w2m} are Cauchy sequences.

Case (ii) Assume that z2n 6= z2n+1 and w2n 6= w2n+1 for all n.
Put Sn = max {S(zn+1, zn+1, zn), S(wn+1, wn+1, wn)}. Since

1
8b3

min


S(A(x2n+2, y2n+2), A(x2n+2, y2n+2), Px2n+2),
S(B(x2n+1, y2n+1), B(x2n+1, y2n+1), Qx2n+1),
S(A(y2n+2, x2n+2), A(y2n+2, x2n+2), Py2n+2),
S(B(y2n+1, x2n+1), B(y2n+1, x2n+1), Qy2n+1)


≤ max

{
S(Px2n+2, Px2n+2, Qx2n+1), S(Py2n+2, Py2n+2, Qy2n+1)

}
,

from (2.1.4), we have

ψ (S(z2n+2, z2n+2, z2n+1)) ≤ 1
5b12

ψ (M (x2m+2, y2m+2, x2m+1, y2m+1))
−φ (M (x2m+2, y2m+2, x2m+1, y2m+1)) ,

where

M (x2m+2, y2m+2, x2m+1, y2m+1)

= max



S(z2n+1, z2n+1, z2n), S(w2n+1, w2n+1, w2n),
S(z2n+2, z2n+2, z2n+1), S(w2n+2, w2n+2, w2n+1),
S(z2n+1, z2n+1, z2n), S(w2n+1, w2n+1, w2n),
S(z2n+2,z2n+2,z2n) S(z2n+1,z2n+1,z2n+1)

1+S(z2n+1,z2n+1,z2n)
,

S(w2n+2,w2n+2,w2n) S(w2n+1,w2n+1,w2n+1)
1+S(w2n+1,w2n+1,w2n)


= max

{
S(z2n+1, z2n+1, z2n), S(z2n+2, z2n+2, z2n+1),
S(w2n+1, w2n+1, w2n), S(w2n+2, w2n+2, w2n+1)

}
= max

{
S2n+1, S2n

}
.
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Therefore

ψ (S(z2n+2, z2n+2, z2n+1)) ≤
1

5b12
ψ (max {S2n+1, S2n})

−φ (max {S2n+1, S2n}) .

Similarly, we can prove that

ψ (S(w2n+2, w2n+2, w2n+1)) ≤
1

5b12
ψ (max {S2n+1, S2n})

−φ (max {S2n+1, S2n}) .

Thus

ψ (S2n+1) ≤ 1
5b12

ψ
(
max

{
S2n+1, S2n

})
− φ

(
max

{
S2n+1, S2n

})
.

If S2n+1 is maximum, then we get a contradiction so that S2n is maximum.
Thus

ψ (S2n+1) ≤
1

5b12
ψ (S2n)− φ (S2n) (2.1)

< ψ (S2n) .

Similarly we can conclude that ψ (S2n) < ψ (S2n−1). Since ψ is nondecreasing
and continuous, it is clear that {Sn} is a non-increasing sequence of non-
negative real numbers and must converges to a real number say k ≥ 0. Suppose
k > 0. Letting n→∞, in (2.1), we have

ψ(k) ≤ 1

5b12
ψ(k)− φ(k) < ψ(k).

This is a contradiction. Hence k = 0. Thus, we have

lim
n→∞

S(zn+1, zn+1, zn) = 0 (2.2)

and

lim
n→∞

S(wn+1, wn+1, wn) = 0. (2.3)

Now we prove that {z2n} and {w2n} are Cauchy sequences in (X,S). On
contrary we suppose that {z2n} and {w2n} are not Cauchy. Then there exist
ε > 0 and monotonically increasing sequences of natural numbers {2mk} and
{2nk} such that for nk > mk,

max{S(z2mk
, z2mk

, z2nk
), S(w2mk

, w2mk
, w2nk

)} ≥ ε (2.4)

and

max{S(z2mk
, z2mk

, z2nk−2
), S(w2mk

, w2mk
, w2nk−2

)} < ε. (2.5)
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From (2.4) and (2.5), we have

ε ≤ Mk = max{S(z2mk
, z2mk

, z2nk
), S(w2mk

, w2mk
, w2nk

)}
≤ 2bmax{S(z2mk

, z2mk
, z2mk+2), S(w2mk

, w2mk
, w2mk+2)}

+b2 max{S(z2mk+2, z2mk+2, z2nk
), S(w2mk+2, w2mk+2, w2nk

))}
≤ 2b (2bmax{S(z2mk

, z2mk
, z2mk+1), S(w2mk

, w2mk
, w2mk+1)})

+2b
(
b2 max{S(z2mk+1, z2mk+1, z2mk+2), S(w2mk+1, w2mk+1, w2mk+2)}

)
+b2 (2bmax{S(z2mk+2, z2mk+2, z2nk+1), S(w2mk+2, w2mk+2, w2nk+1)})
+b2

(
b2 max{S(z2nk+1, z2nk+1, z2nk

), S(w2nk+1, w2nk+1, w2nk
)}
)

= 4b3 max{S(z2mk+1, z2mk+1, z2mk
), S(w2mk+1, w2mk+1, w2mk

)}
+2b4 max{S(z2mk+2, z2mk+2, z2mk+1), S(w2mk+2, w2mk+2, w2mk+1)}
+2b3 max{S(z2mk+2, z2mk+2, z2nk+1), S(w2mk+2, w2mk+2, w2nk+1)}
+b4 max{S(z2nk+1, z2nk

, z2nk
), S(w2nk+1, w2nk

, w2nk
)}.

Letting k →∞ and apply ψ on both sides, we have that

ψ
( ε

2b3

)
(2.6)

≤ lim
k→∞

ψ (max{S(z2mk+2, z2mk+2, z2nk+1), S(w2mk+2, w2mk+2, w2nk+1)}) .

Now first we claim that

1

8b3
min


S(A(x2mk+2, y2mk+2), A(x2mk+2, y2mk+2), Px2mk+2),
S(B(x2nk+1, y2nk+1), B(x2nk+1, y2nk+1), Qx2nk+1),
S(A(y2mk+2, x2mk+2), A(y2mk+2, x2mk+2), Py2mk+2),
S(B(y2nk+1, x2nk+1), B(y2nk+1, x2nk+1), Qy2nk+1)


≤ max

{
S(Px2mk+2, Px2mk+2, Qx2nk+1),
S(Py2mk+2, Py2mk+2, Qy2nk+1)

}
. (2.7)

On contrary, suppose that

1
8b3

min


S(A(x2mk+2, y2mk+2), A(x2mk+2, y2mk+2), Px2mk+2),
S(B(x2nk+1, y2nk+1), B(x2nk+1, y2nk+1), Qx2nk+1),
S(A(y2mk+2, x2mk+2), A(y2mk+2, x2mk+2), Py2mk+2),
S(B(y2nk+1, x2nk+1), B(y2nk+1, x2nk+1), Qy2nk+1)


> max

{
S(Px2mk+2, Px2mk+2, Qx2nk+1),
S(Py2mk+2, Py2mk+2, Qy2nk+1)

}
.
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Now from (2.4), we have

ε ≤ max{S(z2mk
, z2mk

, z2nk
), S(w2mk

, w2mk
, w2nk

)}
≤ 2b2 max{S(z2mk+1, z2mk+1, z2mk

), S(w2mk+1, w2mk+1, w2mk
)}

+b2 max{S(z2mk+1, z2mk+1, z2nk
), S(w2mk+1, w2mk+1, w2nk

)}
< 2b2 max{S(z2mk+1, z2mk+1, z2mk

), S(w2mk+1, w2mk+1, w2mk
)}

+b2
1

8b3
min


S(z2mk+2, z2mk+2, z2mk+1),
S(w2mk+2, w2mk+2, w2mk+1),
S(z2nk+1, z2nk+1, z2nk

),
S(w2nk+1, w2nk+1, w2nk

)

 .

Letting k →∞, we have ε ≤ 0. It is a contradiction. Hence the claim is holds,
that is, (2.7) holds.

Now from (2.1.4), we have

ψ (S(z2mk+2, z2mk+2, z2mk+1))

≤ 1
5b12

ψ


max



S(z2mk+1, z2mk+1, z2nk
),

S(w2mk+1, w2mk+1, w2nk
),

S(z2mk+2, z2mk+2, z2mk+1),
S(w2mk+2, w2mk+2, w2mk+1),
S(z2nk+1, z2nk+1, z2nk

),
S(w2nk+1, w2nk+1, w2nk

),
S(z2mk+2,z2mk+2,z2nk

) S(z2nk+1,z2nk+1,z2mk+1)

1+S(z2mk+1,z2mk+1,z2nk
) ,

S(w2mk+2,w2mk+2,w2nk
) S(w2nk+1,w2nk+1,w2mk+1)

1+S(w2mk+1,w2mk+1,w2nk
)





−φ


max



S(z2mk+1, z2mk+1, z2nk
),

S(w2mk+1, w2mk+1, w2nk
),

S(z2mk+2, z2mk+2, z2mk+1),
S(w2mk+2, w2mk+2, w2mk+1),
S(z2nk+1, z2nk+1, z2nk

),
S(w2nk+1, w2nk+1, w2nk

),
S(z2mk+2,z2mk+2,z2nk

) S(z2nk+1,z2nk+1,z2mk+1)

1+S(z2mk+1,z2mk+1,z2nk
) ,

S(w2mk+2,w2mk+2,w2nk
) S(w2nk+1,w2nk+1,w2mk+1)

1+S(w2mk+1,w2mk+1,w2nk
)




.

Similarly,
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ψ (S(w2mk+2, w2mk+2, w2mk+1))

≤ 1
5b12

ψ


max



S(z2mk+1, z2mk+1, z2nk
),

S(w2mk+1, w2mk+1, w2nk
),

S(z2mk+2, z2mk+2, z2mk+1),
S(w2mk+2, w2mk+2, w2mk+1),
S(z2nk+1, z2nk+1, z2nk

),
S(w2nk+1, w2nk+1, w2nk

),
S(z2mk+2,z2mk+2,z2nk

) S(z2nk+1,z2nk+1,z2mk+1)

1+S(z2mk+1,z2mk+1,z2nk
) ,

S(w2mk+2,w2mk+2,w2nk
) S(w2nk+1,w2nk+1,w2mk+1)

1+S(w2mk+1,w2mk+1,w2nk
)





−φ


max



S(z2mk+1, z2mk+1, z2nk
), S(w2mk+1, w2mk+1, w2nk

),
S(z2mk+2, z2mk+2, z2mk+1),
S(w2mk+2, w2mk+2, w2mk+1),
S(z2nk+1, z2nk+1, z2nk

), S(w2nk+1, w2nk+1, w2nk
),

S(z2mk+2,z2mk+2,z2nk
) S(z2nk+1,z2nk+1,z2mk+1)

1+S(z2mk+1,z2mk+1,z2nk
) ,

S(w2mk+2,w2mk+2,w2nk
) S(w2nk+1,w2nk+1,w2mk+1)

1+S(w2mk+1,w2mk+1,w2nk
)




.

Thus,

ψ (max {S(z2mk+2, z2mk+2, z2mk+1), S(w2mk+2, w2mk+2, w2mk+1)})

≤ 1

5b12
ψ


max



S(z2mk+1, z2mk+1, z2nk
),

S(w2mk+1, w2mk+1, w2nk
),

S(z2mk+2, z2mk+2, z2mk+1),
S(w2mk+2, w2mk+2, w2mk+1),
S(z2nk+1, z2nk+1, z2nk

), S(w2nk+1, w2nk+1, w2nk
),

S(z2mk+2,z2mk+2,z2nk
) S(z2nk+1,z2nk+1,z2mk+1)

1+S(z2mk+1,z2mk+1,z2nk
) ,

S(w2mk+2,w2mk+2,w2nk
) S(w2nk+1,w2nk+1,w2mk+1)

1+S(w2mk+1,w2mk+1,w2nk
)





−φ


max



S(z2mk+1, z2mk+1, z2nk
),

S(w2mk+1, w2mk+1, w2nk
),

S(z2mk+2, z2mk+2, z2mk+1),
S(w2mk+2, w2mk+2, w2mk+1),
S(z2nk+1, z2nk+1, z2nk

),
S(w2nk+1, w2nk+1, w2nk

),
S(z2mk+2,z2mk+2,z2nk

) S(z2nk+1,z2nk+1,z2mk+1)

1+S(z2mk+1,z2mk+1,z2nk
) ,

S(w2mk+2,w2mk+2,w2nk
) S(w2nk+1,w2nk+1,w2mk+1)

1+S(w2mk+1,w2mk+1,w2nk
)




.

(2.8)
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But

max{S(z2mk+1, z2mk+1, z2nk
), S(w2mk+1, w2mk+1, w2nk

)}
≤ 2bmax{S(z2mk+1, z2mk+1, z2mk

), S(w2mk+1, w2mk+1, w2mk
)}

+b2 max{S(z2mk
, z2mk

, z2nk
), S(w2mk

, w2mk
, w2nk

)}
≤ 2bmax{S(z2mk+1, z2mk+1, z2mk

), S(w2mk+1, w2mk+1, w2mk
)}

+b2
(
2bmax{S(z2mk

, z2mk
, z2nk−2

), S(w2mk
, w2mk

, w2nk−2
)}
)

+b2
(
b2 max{S(z2nk−2, z2nk−2, z2nk

), S(w2nk−2, w2nk−2, w2nk
)}
)

< 2bmax{S(z2mk+1, z2mk+1, z2mk
), S(w2mk+1, w2mk+1, w2mk

)}
+2b3ε+b4(2bmax{S(z2nk−2, z2nk−2, z2nk−1), S(w2nk−2, w2nk−2, w2nk−1)})
+b4

(
b2 max{S(z2nk−1

, z2nk−1, z2nk
), S(w2nk−1, w2nk−1, w2nk

)}
)

≤ 2bmax{S(z2mk+1, z2mk+1, z2mk
), S(w2mk+1, w2mk+1, w2mk

)}
+2b3ε+ b7 max{S(z2nk

, z2nk
, z2nk−1), S(w2nk

, w2nk
, w2nk−1)}

+2b6 max{S(z2nk−1, z2nk−1, z2nk−2), S(w2nk−1, w2nk−1, w2nk−2)}.

Letting k →∞, we have

lim
k→∞

max{S(z2mk+1, z2mk+1, z2nk
), S(w2mk+1, w2mk+1, w2nk

)} ≤ 2b3ε.

Also, we have

lim
k→∞

S(z2mk+2, z2mk+2, z2nk
) S(z2nk+1, z2nk+1, z2mk+1)

1 + S(z2mk+1, z2mk+1, z2nk
)

≤ lim
k→∞

[ [
2bS(z2mk+2, z2mk+2, z2mk+1) + b2S(z2mk+1

, z2mk+1
, z2nk

)
][

2bS(z2nk+1, z2nk+1, z2nk
) + b2S(z2nk

, z2nk
, z2mk+1)

] ]
1 + S(z2mk+1, z2mk+1, z2nk

)

≤ lim
k→∞

b5S(z2mk+1, z2mk+1, z2nk
) S(z2mk+1, z2mk+1, z2nk

)

1 + S(z2mk+1, z2mk+1, z2nk
)

≤ lim
k→∞

b5S(z2mk+1, z2mk+1, z2nk
)

≤ 2b8ε.

Similarly, we obtain that

lim
k→∞

S(z2mk+2, z2mk+2, z2nk
) S(w2nk+1, w2nk+1, w2mk+1)

1 + S(w2mk+1, w2mk+1, w2nk
)

≤ 2b8ε.
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Letting k →∞ in (2.8). Then we have

lim
k→∞

ψ (max {S(z2mk+2, z2mk+2, z2mk+1), S(w2mk+2, w2mk+2, w2mk+1)})

≤ 1

5b12
ψ
(
max{2b3ε, 0, 0, 0, 0, 2b8ε, 2b8ε}

)

− lim
k→∞

φ


max



S(z2mk+1, z2mk+1, z2nk
),

S(w2mk+1, w2mk+1, w2nk
),

S(z2mk+2, z2mk+2, z2mk+1),
S(w2mk+2, w2mk+2, w2mk+1),
S(z2nk+1, z2nk+1, z2nk

),
S(w2nk+1, w2nk+1, w2nk

),
S(z2mk+2,z2mk+2,z2nk

) S(z2nk+1,z2nk+1,z2mk+1)

1+S(z2mk+1,z2mk+1,z2nk
) ,

S(w2mk+2,w2mk+2,w2nk
) S(w2nk+1,w2nk+1,w2mk+1)

1+S(w2mk+1,w2mk+1,w2nk
)




≤ 1

5b12
ψ
(
2b8ε

)
. (2.9)

Now letting n→∞ in (2.6), from (2.2), (2.3) and (2.9), we have

ψ
( ε

2b3

)
≤ 1

5b12
ψ
(
2b8ε

)
.

This is a contradiction. Hence {z2n} and {w2n} are Sb-Cauchy sequences in
(X,S). In addition,

max{S(z2n+1, z2n+1, z2m+1), S(w2n+1, w2n+1, w2m+1)}
≤ 2bmax{S(z2n+1, z2n+1, z2n), S(w2n+1, w2n+1, w2n)}

+bmax{S(z2m+1, z2m+1, z2n), S(w2m+1, w2m+1, w2n)}
≤ 2bmax{S(z2n+1, z2n+1, z2n), S(w2n+1, w2n+1, w2n)}

+2b2 max{S(z2m+1, z2m+1, z2m), S(w2m+1, w2m+1, w2m)}
+b2 max{S(z2n, z2n, z2m), S(w2n, w2n, w2m)}.

It is clear that

S(z2n+1, z2n+1, z2m+1) < ε

and

S(w2n+1, w2n+1, w2m+1) < ε.

Therefore {z2n+1} and {w2n+1} are also Sb-Cauchy sequences in (X,S). Thus
{zn} and {wn} are Sb-Cauchy sequences in (X,S).

Suppose P (X) is an Sb- complete subspace of (X,S). Then the sequences
{z2n+1} and {w2n+1} are convergent to α and β in P (X). Thus there exists a
and b in P (X) such that

lim
n→∞

zn = α = Pa and lim
n→∞

wn = β = Pb. (2.10)
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Before going to prove the common coupled fixed point for the mappings
A,B, P and Q, first we claim that for each n ≥ 1 at least one of the fol-
lowing assertion is hold.

1
8b3

min

{
S(z2n+1, z2n+1, z2n),
S(w2n+1, w2n+1, w2n)

}
≤ max

{
S(α, α, z2n), S(β, β, w2n)

}
or

1
8b3

min

{
S(z2n, z2n, z2n−1),
S(w2n, w2n, w2n−1)

}
≤ max

{
S(α, α, z2n−2), S(β, β, w2n−2)

}
.

On contrary suppose that

1
8b3

min

{
S(z2n+1, z2n+1, z2n),
S(w2n+1, w2n+1, w2n)

}
> max

{
S(α, α, z2n), S(β, β, w2n)

}
and

1
8b3

min

{
S(z2n, z2n, z2n−1),
S(w2n, w2n, w2n−1)

}
> max

{
S(α, α, z2n−1), S(β, β, w2n−1)

}
.

Now, we know that

min

{
S(z2n, z2n, z2n−1),
S(w2n, w2n, w2n−1)

}
≤ min

{
2bS(z2n, z2n, α) + b2S(α, α, z2n−1),
2bS(w2n, w2n, β) + b2S(β, β, z2n−1)

}

≤ 2b2 max

{
S(α, α, z2n),
S(β, β, w2n)

}
+ b2 max

{
S(α, α, z2n−1),
S(β, β, z2n−1)

}
< 1

4b min

{
S(z2n+1, z2n+1, z2n),
S(w2n+1, w2n+1, w2n)

}
+ 1

8b min

{
S(z2n, z2n, z2n−1),
S(w2n, w2n, w2n−1)

}
≤ 1

4b min

{
S(z2n, z2n, z2n−1),
S(w2n, w2n, w2n−1)

}
+ 1

8b min

{
S(z2n, z2n, z2n−1),
S(w2n, w2n, w2n−1)

}
= 3

8b min

{
S(z2n, z2n, z2n−1),
S(w2n, w2n, w2n−1)

}
.

This is a contradiction. Hence our assertion is true.
First, we suppose that

1
8b3

min

{
S(z2n+1, z2n+1, z2n),
S(w2n+1, w2n+1, w2n)

}
≤ max

{
S(α, α, z2n), S(β, β, w2n)

}
.

Now we have to prove that A(a, b) = α and A(b, a) = β. On contrary, suppose
that A(a, b) 6= α or A(b, a) 6= β. Since

1
8b3

min


S(A(a, b), A(a, b), α),
S(z2n+1, z2n+1, z2n),
S(A(b, a), A(b, a), β),
S(w2n+1, w2n+1, w2n)

 ≤ max
{
S(α, α, z2n), S(β, β, w2n)

}
,
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from (2.1.4), definition of ψ and Lemma 1.11, we have

ψ
(

1
2bS(A(a, b), A(a, b), α

)
≤ lim

n→∞
inf ψ (S(A(a, b), A(a, b), B(x2n+1, y2n+1))

≤ 1
5b12

lim
n→∞

inf ψ


max



S(α, α, z2n), S(β, β, w2n),
S(A(a, b), A(a, b), α), S(A(b, a), A(b, a), β),
S(z2n+1, z2n+1, z2n), S(w2n+1, w2n+1, w2n),

[
S(A(a, b), A(a, b), Qx2n+1)
×S(z2n+1, z2n+1, α)

]
1+S(α,α,Qx2n+1)

,

[
S(A(b, a), A(b, a), w2n)
×S(w2n+1, w2n+1, β)

]
1+S(β,β,Qy2n+1)





− lim
n→∞

inf φ


max



S(α, α, z2n), S(β, β, w2n),
S(A(a, b), A(a, b), α), S(A(b, a), A(b, a), β),
S(z2n+1, z2n+1, z2n), S(w2n+1, w2n+1, w2n),

[
S(A(a, b), A(a, b), Qx2n+1)
×S(z2n+1, z2n+1, α)

]
1+S(α,α,Qx2n+1)

,

[
S(A(b, a), A(b, a), w2n)
×S(w2n+1, w2n+1, β)

]
1+S(β,β,Qy2n+1)




≤ 1

5b12
ψ
(
max

{
0, 0, S(A(a, b), A(a, b), α), S(A(b, a), A(b, a), β), 0, 0, 0, 0

})
= 1

5b12
ψ
(
max

{
S(A(a, b), A(a, b), α), S(A(b, a), A(b, a), β)

})
.

Similarly, we have

ψ

(
1

2b
S(A(b, a), A(b, a), β

)
≤ 1

5b12
ψ

(
max

{
S(A(a, b), A(a, b), α),
S(A(b, a), A(b, a), β)

})
.

Thus

ψ

(
1
2b max

{
S(A(a, b), A(a, b), α),
S(A(b, a), A(b, a), β)

})

≤ 1
5b12

ψ

(
max

{
S(A(a, b), A(a, b), α),
S(A(b, a), A(b, a), β)

})
.

By the definition of ψ, it follows that A(a, b) = α = Pa and A(b, a) = β = Pb.
Since (A,P ) is w-compatible pair, we have A(α, β) = Pα and A(β, α) = Pβ.
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From the definition of Sb-metric it is clear that

1
8b3

min

 S(A(α, β), A(α, β), Pα), S(A(β, α), A(β, α), Pβ)
S(B(x2n+1, y2n+1), B(x2n+1, y2n+1), Qx2n+1),
S(B(y2n+1, x2n+1), B(y2n+1, x2n+1), Qy2n+1)


≤ max

{
S(Pα, Pα,Qx2n+1), S(Pβ, Pβ,Qy2n+1)

}
.

From (2.1.4), by the definition of ψ and Lemma 1.11, we have

ψ
(

1
2bS(A(α, β), A(α, β), α

)

≤ 1
5b12

lim
n→∞

sup ψ

max



S(A(α, β), A(α, β), z2n),
S(A(β, α), A(β, α), w2n),
S(z2n+1, z2n+1, z2n),
S(w2n+1, w2n+1, w2n),
S(z2n+1, z2n+1, A(α, β)),
S(w2n+1, w2n+1, A(β, α)),





− lim
n→∞

sup φ

max



S(A(α, β), A(α, β), z2n),
S(A(β, α), A(β, α), w2n),
S(z2n+1, z2n+1, z2n),
S(w2n+1, w2n+1, w2n),
S(z2n+1, z2n+1, A(α, β)),
S(w2n+1, w2n+1, A(β, α)),




≤ 1

5b12
ψ

(
max

{
2bS(A(α, β), A(α, β), α), 2bS(A(β, α), A(β, α), β),

0, 0, b2S(α, α,A(α, β)), b2S(β, β,A(β, α)),

})
≤ 1

5b12
ψ
(
2b2 max

{
S(A(α, β), A(α, β), α), S(A(β, α), A(β, α), β)

})
.

Similarly, we have that

ψ

(
1

2b
S(A(α, β), A(α, β), α

)
≤ 1

5b12
ψ

(
2b2 max

{
S(A(α, β), A(α, β), α),
S(A(β, α), A(β, α), β)

})
.

Thus

ψ

(
1
2b max

{
S(A(α, β), A(α, β), α),
S(A(β, α), A(β, α), β)

})
≤ 1

5b12
ψ

(
2b2 max

{
S(A(α, β), A(α, β), α),
S(A(β, α), A(β, α), β)

})
.

By the definition of ψ, it follows that A(α, β) = α = Pα and A(β, α) =
β = Pβ. Therefore (α, β) is common coupled fixed point of A and P . Since
A(X×X) ⊆ Q(X), there exist x and y in X such that A(α, β) = α = Qx and
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A(β, α) = β = Qy. Since

1
8b3

min


S(A(α, β), A(α, β), Pα),
S(A(β, α), A(β, α), Pβ)
S(B(x, y), B(x, y), Qx),
S(B(y, x), B(y, x), Qy)

 ≤ max

{
S(Pα, Pα,Qx),
S(Pβ, Pβ,Qy)

}
,

from (2.1.4), we have

ψ (S(A(α, β), A(α, β), B(x, y))) ≤ 1
5b12

ψ

(
bmax

{
S(α, α,B(x, y)),
S(β, β,B(y, x))

})
−φ
(

max

{
S(B(x, y), B(x, y), α),
S(B(y, x), B(y, x), β)

})
.

Similarly

ψ (S(β, β,B(y, x))) ≤ 1
5b12

φ

(
bmax

{
S(α, α,B(x, y)),
S(β, β,B(y, x))

})
−φ
(

max

{
S(B(x, y), B(x, y), α),
S(B(y, x), B(y, x), β)

})
.

Thus

ψ

(
max

{
S(α, α,B(x, y)),
S(β, β,B(y, x))

})
≤ 1

5b12
φ

(
bmax

{
S(α, α,B(x, y)),
S(β, β,B(y, x))

})

−φ
(

max

{
S(B(x, y), B(x, y), α),
S(B(y, x), B(y, x), β)

})
.

It follows that B(x, y) = α = Qx and B(y, x) = β = Qy. Since (B,Q) is
w-compatible pair, we have B(α, β) = Qα, and B(β, α, ) = Qβ.
Since

1
8b3

min


S(A(α, β), A(α, β), Pα),
S(A(β, α), A(β, α), Pβ)
S(B(α, β), B(α, β), Qα),
S(B(β, α), B(β, α), Qβ)

 ≤ max

{
S(Pα, Pα,Qα),
S(Pβ, Pβ,Qβ)

}
,

from (2.1.4) we have

ψ (S(A(α, β), A(α, β), B(α, β)))

≤ 1
5b12

ψ

(
max

{
S(α, α,B(α, β)), S(β, β,B(β, α)),

S(B(α, β), B(α, β), α), S(B(β, α), B(β, α), β)

})

−φ
(

max

{
S(α, α,B(α, β)), S(β, β,B(β, α)),

S(B(α, β), B(α, β), α), S(B(β, α), B(β, α), β)

})
≤ 1

5b12
ψ
(
bmax

{
S(α, α,B(α, β)), S(β, β,B(β, α))

})
.
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Similarly

ψ (S(β, β,B(β, α))) ≤ 1

5b12
ψ
(
bmax

{
S(α, α,B(α, β)), S(β, β,B(β, α))

})
.

Thus

ψ

(
max

{
S(α, α,B(α, β)),
S(β, β,B(β, α))

})
≤ 1

5b12
ψ

(
bmax

{
S(α, α,B(α, β)),
S(β, β,B(β, α))

})
.

It implies that B(α, β) = α = Qα and B(β, α) = β = Qβ. Therefore (α, β) is
common coupled fixed point of A,B, P and Q.

To prove the uniqueness, let us take (α1, β1) is another common coupled
fixed point of A,B, P and Q. Since

1
8b3

min

{
S(A(α, β), A(α, β), Pα), S(A(β, α), A(β, α), Pβ),

S(B(α1, β1), B(α1, β1), Qα1), S(B(β1, α1), B(β1, α1), Qβ1)

}
≤ max

{
S(Pα, Pα,Qα1), S(Pβ, Pβ,Qβ1)

}
,

from (2.1.4) we have

ψ
(
S(α, α, α1)

)
= ψ

(
S(A(α, β), A(α, β), B(α1, β1))

)
≤ 1

5b12
ψ

max


S(α, α, α1), S(β, β, β1), S(α, α, α),

S(β, β, β), S(α1, α1, α1), S(β1, β1, β1),
S(α,α,α1)S(α1,α1,α)

1+S(α,α,α1)
, S(β,β,β

1)S(β1,β1,β)
1+S(β,β,β1)




−φ

max


S(α, α, α1), S(β, β, β1), S(α, α, α),

S(β, β, β), S(α1, α1, α1), S(β1, β1, β1),
S(α,α,α1)S(α1,α1,α)

1+S(α,α,α1)
, S(β,β,β

1)S(β1,β1,β)
1+S(β,β,β1)




≤ 1
5b12

ψ(bmax{S(α, α, α1), S(β, β, β1)}).
Similarly, we have

ψ
(
S(β, β, β1)

)
≤ 1

5b12
ψ(bmax{S(α, α, α1), S(β, β, β1)}).

Thus

ψ
(
max

{
S(α, α, α1), S(β, β, β1)

})
≤ 1

5b12
ψ(bmax{S(α, α, α1), S(β, β, β1)}).

It implies that α = α1 and β = β1. Hence (α, β) is the unique common
coupled fixed point of A,B, P and Q.

Similarly the remaining proof also follows when the Sub case(b) holds. That
is,

1
8b3

min

{
S(z2n, z2n, z2n−1),
S(w2n, w2n, w2n−1)

}
≤ max

{
S(α, α, z2n−1), S(β, β, w2n−1)

}
.

�
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Theorem 2.2. Let (X,S) be a complete Sb-metric space. Suppose that A :
X ×X → X is a mapping satisfying

1
8b3

min

{
S(A(x, y), A(x, y), x),
S(A(u, v), A(u, v), u),

}
≤ max

{
S(x, x, u),S(y, y, v)

}
which implies that

ψ (S(A(x, y), A(x, y), A(u, v))) ≤ 1

5b12
ψ (M (x, y, u, v))− φ (M (x, y, u, v)) ,

for all x, y, u, v in X, where ψ : R+ → R+ is linear and monotonically increas-
ing function and φ : R+ → R+ is lower semicontinuous, ψ(0) = φ(0) = 0 and
φ(t) > 0, for all t > 0 and

M (x, y, u, v) = max



S(x, x, u), S(y, y, v), S(A(x, y), A(x, y), x),
S(A(y, x), A(y, x), y), S(A(u, v),

A(u, v), u), S(A(v, u), A(v, u), v),
S(A(x,y),A(x,y),u) S(A(u,v),A(u,v),x)

1+S(x,x,u) ,

S(A(y,x),A(y,x),v) S(A(v,u),A(v,u),y)
1+S(y,y,v)


.

Then A has a unique coupled fixed point in X ×X.

Example 2.3. Let X = [0, 1] and S : X × X × X → R+ by S(x, y, z) =
(|y + z − 2x| + |y − z|)2. Then S is Sb metric space with b = 4. Define
A,B : X ×X → X and P,Q : X → X by A(x, y) = x+y

48
√
6
, B = x+y

49
√
6
, P (x) = x

4

and Q(x) = x
16 . Also define ψ, φ : R+ → R+ by ψ(t) = t and φ(t) = t

30b12
.

ψ (S(A(x, y), A(x, y), B(u, v)))
= (|A(x, y) +B(u, v)− 2A(x, y)|+ |A(x, y)−B(u, v)|)2

= (2 |A(x, y)−B(u, v)|)2

= 4
∣∣∣ x+y
47
√
3
− u+v

48
√
3

∣∣∣2
= 2

3

∣∣∣4x−u49
+ 4y−v

49

∣∣∣2
≤ 1

6(46)2

(
max

{∣∣4x−u
16

∣∣ , ∣∣∣4y−v16

∣∣∣})2
≤ 1

6(412)
max

{∣∣x
4 −

u
16

∣∣2 , ∣∣y4 − v
16

∣∣2}
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= 1
6(412)

max
{
S(Px, Px,Qu), S(Py, Py,Qv), S(A(x, y), A(x, y), Px)

}

≤ 1
3(b10)

ψ

max



S(Px, Px,Qu), S(Py, Py,Qv),
S(A(x, y), A(x, y), Px), S(A(y, x), A(y, x), Py),
S(B(u, v), B(u, v), Qu), S(B(v, u), B(v, u), Qv),

S(A(x,y),A(x,y),Qu) S(B(u,v),B(u,v),Px)
1+S(Px,Px,Qu) ,

S(A(y,x),A(y,x),Qv) S(B(v,u),B(v,u),Py)
1+S(Py,Py,Qv)





−φ

max



S(Px, Px,Qu), S(Py, Py,Qv),
S(A(x, y), A(x, y), Px), S(A(y, x), A(y, x), Py),
S(B(u, v), B(u, v), Qu), S(B(v, u), B(v, u), Qv),

S(A(x,y),A(x,y),Qu) S(B(u,v),B(u,v),Px)
1+S(Px,Px,Qu) ,

S(A(y,x),A(y,x),Qv) S(B(v,u),B(v,u),Py)
1+S(Py,Py,Qv)



 .

It is clear that all conditions of Theorem 2.1 satisfied and (0, 0) is a unique
common coupled fixed point of A,B, P and Q.

3. Application

In this section, we study the existence of a unique solution to an initial
value problem, as an application to Theorem 2.2.

Consider the initial value problem:

x1(t) = f(t, x(t), x(t)), t ∈ I = [0, 1], x(0) = x0, (3.1)

where f : I ×
[
x0
4 ,∞

)
×
[
x0
4 ,∞

)
→
[
x0
4 ,∞

)
and x0 ∈ R.

Theorem 3.1. Consider the initial value problem (3.1) with
f ∈ C

(
I ×

[
x0
4 ,∞

)
×
[
x0
4 ,∞

))
and

t∫
0

f(s, x(s), y(s))ds = 1√
6b4

min

{
t∫
0

f(s, , x(s), x(s))ds,
t∫
0

f(s, y(s), y(s))ds

}
.

Then there exists a unique solution in C
(
I,
[
x0
4 ,∞

))
for initial value problem

(3.1).

Proof. The integral equation corresponding to initial value problem (3.1) is

x(t) = x0 +

t∫
0

f(s, x(s), x(s))ds.
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Let X = C
(
I,
[
x0
4 ,∞

))
and S(x, y, z) = (|y+ z− 2x|+ |y− z|)2 for x, y ∈ X.

Define ψ, α, β : [0,∞)→ [0,∞) by ψ(t) = t, φ(t) = t
5b12

. Define A : X ×X →
X by

A(x, y)(t) = x0 +

t∫
0

f(s, x(s), y(s))ds. (3.2)

Now

S(A(x, y)(t), A(x, y)(t), A(u, v)(t))

= {| A(x, y)(t) +A(u, v)(t)− 2A(x, y)(t) |+ | A(x, y)(t)−A(u, v)(t) |}2

= 4 | A(x, y)(t)−A(u, v)(t) |2

= 4

∣∣∣∣ t∫
0

f(s, x(s), y(s))ds−
t∫
0

f(s, u(s), v(s))ds

∣∣∣∣2

= 4√
6b5

∣∣∣∣∣∣∣∣min


t∫
0

f(s, x(s), x(s))ds,

t∫
0

f(s, y(s), y(s))ds

−min


t∫
0

f(s, u(s), u(s))ds,

t∫
0

f(s, v(s), v(s))ds


∣∣∣∣∣∣∣∣
2

≤ 2
5b12

∣∣∣∣∣∣∣∣ max


t∫
0

f(s, x(s), x(s))ds−
t∫
0

f(s, u(s), u(s))ds,

t∫
0

f(s, y(s), y(s))ds−
t∫
0

f(s, v(s), v(s))ds


∣∣∣∣∣∣∣∣
2

= 2
3 b10

max



∣∣∣∣ t∫
0

f(s, x(s), x(s))ds−
t∫
0

f(s, u(s), u(s))ds,

∣∣∣∣2
∣∣∣∣ t∫
0

f(s, y(s), y(s))ds−
t∫
0

f(s, v(s), v(s))ds

∣∣∣∣2


= 1
6 b10

max
{

2 | x(t) − u(t) |2 , 2 | y(t) − v(t) |2
}

= 1
6 b10

max {S(x, x, u), S(y, y, v)}
≤ ψ(M(x, u, y, v))− φ(M(x, u, y, v)).

It follows from Theorem 2.2 that A has a unique coupled fixed point in X. �

4. Conclusion

In this attempt, we prove a Suzuki type unique common coupled fixed
point theorem for two pairs of w-compatible mappings along with (ψ − φ) -
and Rational contraction conditions in Sb-metric spaces. We also furnish an
example as well as application to integral equation.
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