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1. Introduction and preliminaries

Banach contraction principle states that any contraction on a complete
metric space has a unique fixed point. This principle guarantees the exis-
tence and uniqueness of the solution of considerable problems arising in math-
ematics. Because of its importance for mathematical theory, Banach con-
traction principle has been extended and generalized in many directions (see
[2, 10, 11, 12, 15]). The fixed point theory of multi-valued contraction map-
pings using the Hausdorff metric was initiated by Nadler [21], who extended
the Banach contraction principle to multi-valued mappings. Since then many
authors have studied various fixed point results for multi-valued mappings.
The theory of multi-valued mappings has many applications in control theory,
convex optimization, differential equations and economics. Recently, Sgroi and
Vetro have extended the concept of F-contraction for multi-valued mapping
and they proved the following theorem in [24].

Theorem 1.1. ([24]) Let (X, d) be a complete metric space and T : X →
CB(X). If there exists a mapping F : R+ → R, τ > 0 and real numbers
α, β, γ, δ, L ≥ 0 such that

2τ+F (H(Tx, Ty)) ≤ F (αd(x, y)+βd(x, Tx)+γd(y, Ty)+δd(x, Ty)+Ld(y, Tx))

for all x, y ∈ X, with Tx 6= Ty, where α+ β + γ + 2L = 1 and γ 6= 1, then T
has a fixed point.

From the application point of view, the situation is not yet completely
satisfactory because it frequently happens that a mapping T is a contraction
not only the entire space X but also merely on a subset Y of X. However, if
Y is closed and a Picard iterative sequence {xn} in X converges to some x
in X then by imposing a subtle restriction on the choice of x0, one may force
Picard iterative sequence to stay eventually in Y . In this case, closedness of
Y coupled with some suitable contractive condition establish the existence of
a fixed point of T.

We recall some basic definitions and results which will be used in the sequel.
Throughout this paper, we denote (0,∞) by R+, [0,∞) by R+

0 , (−∞,+∞) by
R and set of natural numbers by N.

Definition 1.2. ([28]) Let (X, d) be a metric space and T : X → X be a
mapping. Then T is said to be an F -contraction if there exists τ > 0 such
that

d(T (x), T (y)) > 0 implies τ + F (d(T (x), T (y))) ≤ F (d(x, y)), (1.1)

∀ x, y ∈ X, where F : R+ → R be a mapping satisfying the following proper-
ties:

(F1) : F is strictly increasing.
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(F2) : For each sequence {an} of positive numbers limn→∞ an = 0 if and
only if lim→∞ F (an) = −∞.

(F3) : There exists θ ∈ (0, 1) such that limα→0+(α)θF (α) = 0.
(F4) : F (inf A) = inf F (A) for all A ⊆ (0,∞) with inf A > 0.

We denote by ∆F and ∆F ∗ , the set of all functions satisfying the conditions
(F1) − (F3) and (F1) − (F4), respectively. One can note that ∆F ∗ ⊆ ∆F and
for example, f(x) = lnx, g(x) = x+ lnx are members of ∆F ∗ .

Remark 1.3. If F satisfies (F1), then it satisfies (F4) if and only if F is right
continuous.

Wardowski [28] established the following result using F-contraction:

Theorem 1.4. ([28]) Let (X, d) be a complete metric space and let T : X → X
be a F-contraction. Then T has a unique fixed point υ ∈ X and for any x0 ∈ X
the sequence {Tn(x0)} is convergent to υ.

Definition 1.5. ([13]) Let (X, d) be a metric space. A mapping T : X → X
is said to be Chatterjea contraction if it satisfies the following condition:

d (T (x) , T (y)) ≤ k

2
[d (x, T (y)) + d (y, T (x))]

for all x, y ∈ X and some k ∈ [0, 1[.

Definition 1.6. ([14]) Let T : X → 2X be a multi-valued mapping and
α : X ×X → R+

0 be a nonnegative mapping. Then we say that T is a multi-
valued α-admissible mapping if for x, y ∈ X, α(x, y) ≥ 1 implies α(u, v) ≥ 1.
for all u ∈ T (x) and v ∈ T (y).

Example 1.7. ([14]) Let X = R and α : X ×X → R+
0 defined by α(x, y) =

x2 + y2 for all x, y ∈ X. Define the mapping T : X → 2X by T (x) ={√
|x|,−

√
|x|
}

. Then T is multi-valued α-admissible.

Definition 1.8. Let T : X → 2X and α, η : X×X → R+
0 be mappings. Then

we say that T is multi-valued α-admissible mapping with respect to η if for
x, y ∈ X, α(x, y) ≥ η(x, y) implies that α(u, v) ≥ η(u, v) for all u ∈ T (x) and
v ∈ T (y).

Hussain et al. [17] introduced the following family of new functions.

Let ΠG denotes the set of all functions G : (R+
0 )4 → R+ which satisfy the

property:

(G): for all t1, t2, t3, t4 ∈ R+
0 , if t1t2t3t4 = 0, then there exists τ > 0 such

that G(t1, t2, t3, t4) = τ .

Let (X, d) be a metric space. For x ∈ X and A ⊆ X, we denote d(x,A) =
inf {d(x, y) : y ∈ A}. We denote by N(X) the class of all nonempty subsets
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of X, by CL(X) the class of all nonempty closed subsets of X, by CB(X)
the class of all nonempty closed and bounded subsets of X and by K(X), the
class of all compact subsets of X. Let H be the Hausdorff metric induced by
the metric d on X, that is,

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

for every A,B ∈ CB(X). If T : X → CB(X) is a multi-valued mapping, then
point q ∈ X is said to be a fixed point of T if q ∈ T (q).

Definition 1.9. Let (X, d) be a metric space. Let T : X → CB(X) and
α, η : X×X → [0,+∞) be functions. Then we say that T is (α−η)-continuous
multi-valued mapping on (CB(X), H), if for a given x ∈ X and a sequence

{xn} with xn
d→ x as n→∞, α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N, implies

T (xn)
H→ T (x), that is limn→∞ d(xn, x) = 0 and α(xn, xn+1) ≥ η(xn, xn+1) for

all n ∈ N, implies limn→∞H(T (xn), T (x)) = 0.

The following result play a vital role regarding the existence of the fixed
point of the mapping satisfying a contractive condition on the closed ball.

Theorem 1.10. ([19, Theorem 5.1.4]) Let (X, d) be a complete metric space,
T : X → X be a mapping, r > 0 and x0 be an arbitrary point in X. Suppose
there exists k ∈ [0, 1) with

d(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ Y = B(x0, r)

and d(x0, T (x0)) < (1 − k)r. Then there exists a unique point x∗ in B(x0, r)
such that x∗ = T (x∗).

2. Multi-valued F-contraction on closed ball

In this section, we shall introduce the Chatterjea type multi-valued F-
contraction on closed ball and obtain a fixed point theorem for this contraction
in complete metric space and we shall show, through an example, the impor-
tance of Theorem 2.2 among other famous fixed point theorems present in
literature.

Definition 2.1. Let (X, d) be a metric space. The mapping T : X → CB(X)
is called Chatterjea type multi-valued F-contraction on closed ball, if for all
x, y ∈ B(x0, r) ⊆ X, H(T (x), T (y)) > 0, then

2τ + F (H(T (x), T (y))) ≤ F
(
k

2
[d(x, T (y)) + d(y, T (x)]

)
, (2.1)

where 0 ≤ k < 1, F ∈ ∆F ∗ and τ > 0.
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Theorem 2.2. Let (X, d) be a complete metric space and T : X → CB(X) be

a Chatterjea type multi-valued F-contraction on closed ball B(x0, r). Moreover,

d(x0, x1) ≤ (1− λ)r, for some x1 ∈ T (x0) and λ =
k

2− k
, (2.2)

Then there exists a fixed point x∗ in B(x0, r).

Proof. Let x0 ∈ X be an arbitrary point and x1 ∈ X. If x1 ∈ T (x1), then
x1 is a fixed point of T and we are done. Assume that x1 /∈ T (x1), then
T (x0) 6= T (x1). Since F is continuous from the right, there exists a real number
h > 1 such that

F (hH (T (x0), T (x1))) ≤ F (H (T (x0), T (x1))) + τ,

choose a point x1 in X such that x1 ∈ T (x0) and x1 /∈ T (x1), continuing
in this manner, we can define a sequence {xn} such that xn+1 ∈ T (xn) and
xn /∈ T (xn) for all n ≥ 0.

First we show that xn ∈ B(x0, r) for all n ∈ N by using mathematical
induction method. From (2.2), we have

d(x0, x1) ≤ (1− λ)r < r, (2.3)

for some x1 ∈ T (x0), which shows that x1 ∈ B(x0, r). Suppose that xj ∈
B(x0, r) for some j ∈ N . Since T (x0) 6= T (x1), from (2.1), we obtain

2τ + F (H(T (x0), T (x1))) ≤ F
(
k

2
[d(x0, T (x1)) + d(x1, T (x0))]

)
.

Since,
d(x1, T (x1)) ≤ H(T (x0), T (x1)) < hH(T (x0), T (x1)),

by condition (F1), we have

F (d(x1, T (x1))) ≤ F (hH(T (x0), T (x1)))

≤ F (H (T (x0), T (x1))) + τ. (2.4)

By (F4) we can write (note that d(x1, T (x1)) > 0)

F (d(x1, T (x1))) = inf
y∈T (x1)

F (d(x1, y))

and by (2.4), we have

inf
y∈T (x1)

F (d(x1, y)) ≤ F (H (T (x0), T (x1))) + τ. (2.5)

By (2.5), there exists x2 ∈ T (x1) such that

F (d(x1, x2)) ≤ F (hH(T (x0), T (x1))) ≤ F (H(T (x0), T (x1))) + τ.

Thus,

2τ + F (d(x1, x2)) ≤ 2τ + F (H(T (x0), T (x1))) + τ,
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it implies that,

τ + F (d(x1, x2)) ≤ F

(
k

2
[d(x0, x2) + d(x1, T (x0))]

)
≤ F

(
k

2
[d(x0, x2)]

)
,

where d(x1, T (x0)) = 0. Since F is strictly increasing, we have

d(x1, x2) <
k

2
[d(x0, x1) + d(x1, x2)] ,

it implies that

d(x1, x2) <
k

2− k
d(x0, x1).

Thus, for 0 < λ = k
2−k < 1 we have,

d(x1, x2) < λd(x0, x1).

Repeating these steps for x3, x4, · · · , xj , we obtain

d(xj , xj+1) < λjd(x0, x1). (2.6)

Now, using triangle inequality and (2.6), we have

d(x0, xj+1) ≤ d(x0, x1) + d (x1, x2) + · · ·+ d(xj , xj+1)

< d(x0, x1)
[
1 + λ+ λ2 + · · ·+ λj

]
≤ (1− λ)r

(1− λj+1)

1− λ
< r.

This implies that xj+1 ∈ B(x0, r). Hence xn ∈ B(x0, r) for all n ∈ N .
Since,

d(xn, T (xn)) ≤ H(T (xn−1), T (xn)) < hH(T (xn−1), T (xn)),

by (F1), we have

F (d(xn, T (xn))) ≤ F (hH(T (xn−1), T (xn)))

≤ F (H (T (xn−1), T (xn))) + τ. (2.7)

By (F4), we can write (note that d(xn, T (xn)) > 0)

F (d(xn, T (xn))) = inf
y∈T (xn)

F (d(xn, y))

and by (2.7), we have

inf
y∈T (xn)

F (d(xn, y)) ≤ F (H (T (xn−1), T (xn))) + τ. (2.8)
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By (2.8), there exists xn+1 ∈ T (xn) such that

d(xn, xn+1) ≤ hH(T (xn−1), T (xn)).

Now, since xn /∈ T (xn), condition (2.1) implies

2τ + F (d(xn, xn+1)) ≤ 2τ + F (H(T (xn−1), T (xn))) + τ

and so,

τ + F (d(xn, xn+1)) ≤ F

(
k

2
[d(xn−1, T (xn)) + d(xn, T (xn−1))]

)
≤ F

(
k

2
[d(xn−1, xn+1)]

)
≤ F

(
k

2
[d(xn−1, xn) + d(xn, xn+1)]

)
≤ F

(
k

2

[
d(xn−1, xn) +

k

2− k
d(xn−1, xn)

])
≤ F

(
k

2− k
d(xn−1, xn)

)
< F (d(xn−1, xn)) .

Thus, we get

F (d(xn, xn+1)) < F (d(xn−1, xn))− τ. (2.9)

By (F1), we have

F (d(xn−1, xn)) < F (d(xn−1, xn)) ≤ F (d(xn−2, xn−1))− τ.
By (2.9), we obtain

F (d(xn, xn+1)) ≤ F (d(xn−2, xn−1))− 2τ.

Repeating these steps, we get

F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ. (2.10)

By (2.10), we obtain limn→∞ F (d(xn, xn+1)) = −∞. Since F ∈ ∆F ,

lim
n→∞

d(xn, xn+1) = 0. (2.11)

By the property (F3), there exists κ ∈ (0, 1) such that

lim
n→∞

((d(xn, xn+1))
κ F (d(xn, xn+1))) = 0. (2.12)

Following (2.10), for all n ∈ N, we obtain

(d(xn, xn+1))
κ (F (d(xn, xn+1))− F (d(x0, x1))) ≤ − (d(xn, xn+1))

κ nτ ≤ 0.
(2.13)

By (2.11), (2.12) and letting n→∞, in (2.13), we have

lim
n→∞

(n (d(xn, xn+1))
κ) = 0. (2.14)
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Since (2.14) holds, there exists n1 ∈ N, such that n (d(xn, xn+1))
κ ≤ 1 for all

n ≥ n1, that is, for all n ≥ n1

d(xn, xn+1) ≤
1

n
1
κ

. (2.15)

Using (2.15), we get for m > n ≥ n1,
d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·+ d(xm−1, xm)

=
m−1∑
i=n

d(xi, xi+1)

≤
∞∑
i=n

d(xi, xi+1)

≤
∞∑
i=n

1

i
1
k

.

The convergence of the series
∑∞

i=n

1

i
1
κ

leads to limn,m→∞ d(xn, xm) = 0.Hence

{xn} is a Cauchy sequence in
(
B(x0, r), d

)
. Since

(
B(x0, r), d

)
is a complete

metric space, so there exists x∗ ∈ B(x0, r) such that xn → x∗ as n→∞.

In order to prove that x∗ ∈ T (x∗), there are two cases:

Case I: Assume that T is continuous. Then, the sequence {T (xi)}∞i=1 con-
verges to T (x∗). Since xi ∈ T (xi−1) for all i, it follows that x∗ ∈ T (x∗). Hence
x∗ is a fixed point of T .

Case II: Let T is not continuous. Then, we assume that H(T (xn), T (x∗) > 0,
otherwise the result is obvious. Using contractive condition (2.1), we obtain

2τ + F (H(T (xn), T (x∗))) ≤ F
(
k

2
[d (xn, T (x∗)) + d (x∗, T (xn))]

)
.

Since F is right continuous, so

d(xn+1, T (x∗)) ≤ H(T (xn), T (x∗)) < hH(T (xn), T (x∗)),

which implies that

F (d(xn+1, T (x∗)) < F (hH(T (xn), T (x∗))) ≤ F (H(T (xn), T (x∗))) + τ.

Thus, we have

2τ + F (d(xn+1, T (x∗)) < 2τ + F (H(T (xn), T (x∗))) + τ

and so,

τ + F (d(xn+1, T (x∗)) < F

(
k

2
[d(xn, T (x∗)) + d(x∗, T (xn))]

)
,
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which implies

d (xn+1, T (x∗)) <
k

2
[d (xn, T (x∗)) + d (x∗, xn+1)] .

Letting n→∞, we get

d(x∗, T (x∗)) <
k

2
d(x∗, T (x∗)).

Hence, we have (
1− k

2

)
d(x∗, T (x∗)) < 0,

this implies that d(x∗, T (x∗)) = 0. Since T is closed, thus, x∗ ∈ T (x∗) which
completes the proof. �

Following example shows that the contractive condition (2.1) holds on closed

ball B(x0, r), whereas it does not hold true on the whole space.

Example 2.3. Let X = R+
0 and d (x, y) = |x− y| . Then (X, d) is a complete

metric space. Define a mapping T : X → CB(X) by

T (x) =


[
0, x4

]
, if x ∈ [0, 1];[

x− 1
2 , x−

1
4

]
, if x ∈ (1,∞).

Set τ = ln(
√

2), k =
3

10
, x0 =

1

2
, r =

1

2
, then B(x0, r) = [0, 1]. If F (α) =

ln(α), α > 0 and τ > 0, then for x1 = 1
8 ∈ T (x0),

d(x0, T (x0)) = inf
y∈T (x0)

d(x0, y) < d(x0, x1) =

∣∣∣∣12 − 1

8

∣∣∣∣ =
3

8
< (1− λ)r.

For x, y ∈ B(x0, r), the inequality∣∣∣x
4
− y

4

∣∣∣ < k

2

[∣∣∣x− y

4

∣∣∣+
∣∣∣y − x

4

∣∣∣] ,
holds. Thus,

H(T (x), T (y)) <
k

2
[d(x, T (y)) + d(y, T (x)] ,

which implies

2τ + ln (H(T (x), T (y))) ≤ ln

(
k

2
[d(x, T (y)) + d(y, T (x)]

)
.

That is,

2τ + F (H(T (x), T (y))) ≤ F
(
k

2
[d(x, T (y)) + d(y, T (x)]

)
.
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Now if x = 100, y = 10 ∈ (1,∞) , then

H(T (x), T (y)) =

∣∣∣∣x− 1

4
− y +

1

4

∣∣∣∣ = |x− y|

≥ k

2
[d(x, T (y)) + d(y, T (x)]

and consequently, contractive condition (2.1) does not hold on X. Hence, hy-
potheses of Theorem 2 hold on closed ball and x = 0 is a fixed point of T in
B(x0, r).

Corollary 2.4. Let (X, d) be a complete metric space and T : X → X be a

Chatterjea type F-contraction on closed ball B(x0, r) in complete metric space.
If

d(x0, T (x0)) ≤ (1− λ)r, where λ =
k

2− k
, (2.16)

then there exists a point x∗ in B(x0, r) such that T (x∗) = x∗.

3. Multi-valued (α, η,GF )-contraction on closed ball

This section contains introduction of Chatterjea type multi-valued (α, η,GF )-
contraction on closed ball, a new fixed point theorem for this contraction in
complete metric space and an illustrative example which explains usefulness of
Theorem 3 among other prominent fixed point theorems present in literature.

Definition 3.1. Let (X, d) be a metric space. Suppose that α, η : X×X → R+
0

are two functions. The mapping T : X → CB(X) is called a Chatterjea type

multi-valued (α, η,GF )-contraction on closed ball, if for all x, y ∈ B(x0, r) ⊆
X with η(x, y) ≤ α(x, y) and H(T (x), T (y)) > 0, we have

2τ(G) + F (H(T (x), T (y))) ≤ F
(
k

2
[d(x, T (y)) + d(y, T (x)]

)
, (3.1)

where τ(G) = G(d(x, T (x)), d(y, T (y)), d(x, T (y)), d(y, T (x))), 0 ≤ k < 1, G ∈
ΠG and F ∈ ∆F ∗ .

Theorem 3.2. Let (X, d) be a complete metric space. Let T : X → CB(X) be

a Chatterjea type multi-valued (α, η,GF )-contraction on closed ball B(x0, r)
satisfying the following conditions:

(1) T is a multi-valued α-admissible mapping with respect to η,
(2) there exists x0 ∈ X such that α(x0, u0) ≥ η(x0, u0) for all u0 ∈ T (x0),
(3) d(x0, x1) ≤ (1− λ)r, for some x1 ∈ T (x0) and λ = k

2−k .

Then there exists a fixed point x∗ of T in B(x0, r).
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Proof. Let x0 ∈ X be an arbitrary point such that α(x0, x1) ≥ η(x0, x1) for
all x1 ∈ T (x0). Since T is a multi-valued α-admissible mapping with respect
to η, for α(x0, x1) ≥ η(x0, x1)

α(x1, x2) ≥ η(x1, x2) for all x1 ∈ T (x0) and x2 ∈ T (x1).

Continuing in this process, we can define a sequence {xn} ⊂ X such that

xn /∈ T (xn), xn+1 ∈ T (xn)

and

η(xn−1, xn) ≤ α(xn−1, xn), (3.2)

for all xn−1 ∈ T (xn−2) and xn ∈ T (xn−1).
Now if x1 ∈ T (x1), then x1 is a fixed point of T . So, we assume that

x0 6= x1, then T (x0) 6= T (x1). Since F is right continuous, there exists a real
number h > 1 such that

F (hH (T (x0), T (x1))) ≤ F (H (T (x0), T (x1))) + τ(G).

If there exists n ∈ N such that d(xn, T (xn)) = 0, then xn is a fixed point of
T , so we are done. We assume that d(xn, T (xn)) > 0, for all n ∈ N. First we

show that xn ∈ B(x0, r) for all n ∈ N . From hypothesis (3) we obtain,

d(x0, x1) ≤ (1− λ)r < r for some x1 ∈ T (x0), (3.3)

which shows that x1 ∈ B(x0, r). Suppose that xj ∈ B(x0, r) for some j ∈ N .
Then from (3.1), we obtain

2τ(G) + F (H(T (x0), T (x1))) ≤ F
(
k

2
[d(x0, T (x1)) + d(x1, T (x0))]

)
.

Since,

d(x1, T (x1)) ≤ H(T (x0), T (x1)) < hH(T (x0), T (x1)),

by (F1), we have

F (d(x1, T (x1))) ≤ F (hH(T (x0), T (x1)))

≤ F (H (T (x0), T (x1))) + τ(G). (3.4)

By (F4), we can write (note that d(x1, T (x1)) > 0)

F (d(x1, T (x1))) = inf
y∈T (x1)

F (d(x1, y))

and by (3.4), we have

inf
y∈T (x1)

F (d(x1, y)) ≤ F (H (T (x0), T (x1))) + τ(G). (3.5)

By (3.5), there exists x2 ∈ T (x1) such that

F (d(x1, x2)) ≤ F (hH(T (x0), T (x1))) ≤ F (H(T (x0), T (x1))) + τ(G).
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Thus, we have

2τ(G) + F (d(x1, x2)) ≤ 2τ(G) + F (H(T (x0), T (x1))) + τ(G),

which implies that

τ(G) + F (d(x1, x2)) ≤ F

(
k

2
[d(x0, x2) + d(x1, T (x0))]

)
,

where τ(G) = G(d(x1, T (x1)), d(x2, T (x2)), d(x1, T (x2)), 0). Thus by property
(G), there exists τ > 0 such that τ(G) = τ . Therefore, we get

τ + F (d(x1, x2)) ≤ F
(
k

2
[d(x0, x2)]

)
.

Since F is strictly increasing, we have

d(x1, x2) <
k

2
[d(x0, x1) + d(x1, x2)] ,

it implies that

d(x1, x2) <
k

2− k
d(x0, x1).

Thus, for 0 < λ = k
2−k < 1 we have

d(x1, x2) < λd(x0, x1).

Continuing in this process, for x3, x4, · · · , xj , we obtain

d(xj , xj+1) < λjd(x0, x1). (3.6)

Now, using triangle inequality and (3.6), we have

d(x0, xj+1) ≤ d(x0, x1) + d (x1, x2) + · · ·+ d(xj , xj+1)

< d(x0, x1)
[
1 + λ+ λ2 + · · ·+ λj

]
≤ (1− λ)r

(1− λj+1)

1− λ
< r.

This implies that xj+1 ∈ B(x0, r). Hence xn ∈ B(x0, r) for all n ∈ N .
Now, following the proof of the Theorem 2.2, we obtain for m > n ≥ n1,

d(xn, xm) ≤
∞∑
i=n

1

i
1
k

.

The convergence of the series
∑∞

i=n

1

i
1
κ

entails limn,m→∞ d(xn, xm) = 0. Hence

{xn} is a Cauchy sequence in
(
B(x0, r), d

)
. Since

(
B(x0, r), d

)
is a complete

metric space, so there exists x∗ ∈ B(x0, r) such that xn → x∗ as n→∞.



Fixed points of Chatterjea Type multi-valued F-contractions 271

Next, in order to prove that x∗ is a fixed point of T , there are two cases:

Case I: Let T is (α, η)-continuous. Then, since xn → x∗ as n → ∞ and

η(xn−1, xn) ≤ α(xn−1, xn), for all n ∈ N, T (xn)
H→ T (x∗), that is,

lim
n→∞

d(xn, x
∗) = 0

and

α(xn, xn+1) ≥ η(xn, xn+1),

for all n ∈ N. This implies that limn→∞H(T (xn), T (x∗)) = 0. Hence x∗ is a
fixed point of T .

Case II: We assume that d(xn, T (x∗) > 0, otherwise x∗ is a fixed point of T .
From contractive condition (3.1), we obtain

F (d(xn, T (x∗))) ≤ F
(
k

2
[d (xn−1, T (x∗)) + d (x∗, T (xn−1))]

)
− τ(G),

where τ(G) = G(d(xn−1, xn), d(x∗, T (x∗)), d(xn−1, T (x∗)), d(x∗, xn)). Since F
is continuous, we have

F
(

lim
n→∞

d(xn, T (x∗))
)
≤ F

(
k

2

[
lim
n→∞

d (xn−1, T (x∗)) + lim
n→∞

d (x∗, xn)
])

− lim
n→∞

τ(G),

which gives,

d(x∗, T (x∗)) <
k

2
d(x∗, T (x∗)).

That is, (
1− k

2

)
d(x∗, T (x∗)) < 0.

This implies that d(x∗, T (x∗)) = 0. Consequently, x∗ is a fixed point of T in

B(x0, r). This completes the proof. �

Example 3.3. Let X = R+
0 and d be the usual metric on X. Define T : X →

X, α : X×X → [0,+∞), η : X×X → R+, G : (R+
0 )4 → R+ and F : R+ → R

by

T (x) =


[
0, 5x19

]
if x ∈ [0, 1],[

x− 2
3 , x−

1
3

]
if x ∈ (1,∞),

α(x, y) =

{
ex+y if x ∈ [0, 1],
1
3 otherwise,
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η(x, y) = 1
2 for all x, y ∈ X, G(t1, t2, t3, t4) = τ > 0 and F (t) = ln(t) with

t > 0. Set k = 4
5 , x0 = 1

2 , r = 1
2 , then B(x0, r) = [0, 1]. Now

d

(
1

2
, T

(
1

2

))
<

∣∣∣∣12 − 5

38

∣∣∣∣ < r.

For x, y ∈ B(x0, r), we know that α(x, y) = ex+y ≥ 1
2 = η(x, y).

On the other hand, for all x ∈ [0, 1] T (x) ∈ [0, 1], we have α(T (x), T (y)) ≥
η(T (x), T (y)). Moreover, for x 6= y, H(T (x), T (y)) =

∣∣∣5x19 − 5y
19

∣∣∣ > 0. Clearly,

α(0, T (0)) ≥ η(0, T (0)). Hence, we have

H(T (x), T (y)) =

∣∣∣∣5x19
− 5y

19

∣∣∣∣ =
5

19
|x− y| .

For x, y ∈ B(x0, r), the inequality

5

19
|x− y| < k

2

[∣∣∣∣x− 5y

19

∣∣∣∣+

∣∣∣∣y − 5x

19

∣∣∣∣]
holds. Thus, we have

H(T (x), T (y)) <
k

2
[d(x, T (y)) + d(y, T (x)] .

Consequently, we obtain that

2τ + ln (H(T (x), T (y))) ≤ ln

(
k

2
[d(x, T (y)) + d(y, T (x)]

)
,

which implies

2τ + F (H(T (x), T (y))) ≤ F
(
k

2
[d(x, T (y)) + d(y, T (x)]

)
.

If x /∈ B(x0, r) or y /∈ B(x0, r), then α(x, y) = 1
3 �

1
2 = η(x, y). Moreover,

if x = 100, y = 10 ∈ (1,∞) , then

H(T (x), T (y)) =

∣∣∣∣x− 1

3
− y +

1

3

∣∣∣∣ = |x− y|

≥ k

2
[d(x, T (y)) + d(y, T (x)] .

Therefore, the contractive condition (3.1) does not hold on X. Hence, hy-
potheses of Theorem 3.2 hold on closed ball and x = 0 is a fixed point of T in
B(x0, r).

Corollary 3.4. Let (X, d) be a complete metric space. Let T : X → X

be a Chatterjea type (α, η,GF )-contraction mapping on a closed ball B(x0, r)
satisfying the following assertions:

(1) T is an α-admissible mapping with respect to η;
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(2) there exists x0 ∈ X such that α(x0, T (x0)) ≥ η(x0, T (x0));
(3) d(x0, T (x0)) ≤ (1− λ)r, where λ = k

2−k .

Then there exists a unique point x∗ in B(x0, r) such that T (x∗) = x∗.
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