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Abstract. We prove the existence, uniqueness and continuous dependence on initial data

of solutions of nonlinear Volterra integrodifferential equations with nonlocal conditions in an

arbitrary Banach space. The results are obtained by using the theory of analytic semigroups

and the contraction mapping principle.

1. Introduction

The notion of ”nonlocal condition” has been introduced to extend the study
of the classical initial value problems, see, for example [2, 3, 6, 9, 13]. It is
more precise for describing nature phenomena than the classical condition
since more information is taken into account, thereby decreasing the negative
effects incurred by a possibly erroneous single measurement taken at the initial
time. The study of abstract nonlocal initial value problem (IVP for short) was
initiated by Byszewski [7]. In [7, 8], Byszewski using the method of semigroups
and the Banach fixed point theorem proved the existence and uniqueness of
mild, strong and classical solution of first order IVP:

u′(t) + Au(t) = f(t, u(t)), t ∈ [t0, t0 + a], (1.1)

u(t0) + g(t1, t2, · · · , tp, u(·)) = u0, (1.2)

0Received January 15, 2009, Revised November 12, 2009.
02000 Mathematics Subject Classification: 34A12, 45N05, 47B38, 47H10.
0Keywords: Volterra-integrodifferential equation, analytic semigroup theory, contraction

mapping principle, nonlocal condition and continuous dependence.



200 H. L. Tidke and M. B. Dhakne

where 0 ≤ t0 < t1 < · · · < tp ≤ t0 + a, (p ∈ N), u0 ∈ X, −A is the infinitesimal
generator of C0 semigroup of T (t), t ≥ 0 in a Banach space X and f : [t0, t0 +
a] × X → X, g(t1, t2, · · · , tp, ·) : X → X are given functions. The symbol
g(t1, t2, · · · , tp, u(·)) is used in the sense that in the place of ′·′ we can substitute
only elements of the set {t1, t2, · · · , tp}. For example g(t1, t2, · · · , tp, u(·)) can
be defined by the formula

g(t1, t2, · · · , tp, u(·)) = C1u(t1) + C2u(t2) + · · ·+ Cpu(tp),

where Ci (i = 1, 2, · · · , p) are given constants.
In this paper, we discuss the existence and uniqueness of local solution for

nonlinear Volterra integrodifferential equation with nonlocal condition of the
type:

x′(t) + Ax(t) = f
(
t, x(t),

∫ t

0
k(t, s, x(s))ds

)
, t ∈ J = [0, b], (1.3)

x(0) + g(t1, t2, · · · , tp, x(·)) = x0. (1.4)

In (1.3), we assume that −A is an infinitesimal generator of analytic semigroup
T (t), t ≥ 0, in a Banach space X. We note that if −A is the infinitesimal gen-
erator of an analytic semigroup then −(A + αI) is invertible and generates a
bounded analytic semigroup for α > 0 large enough, where I is the identity op-
erator. Therefore, we reduce the general case in which −A is the infinitesimal
generator of a bounded analytic semigroup and the generator is invertible. For
convenience, we suppose that ‖T (t)‖ ≤ M , for t ≥ 0 and 0 ∈ ρ(−A), where
ρ(−A) is the resolvent set of −A. For α > 0 we define the fractional power
A−α by

A−α =
1

Γ(α)

∫ ∞

0
t(α−1)T (t)dt,

where Γ(·) is the gamma function. Since A−α is one to one, Aα = (A−α)−1.
For 0 < α ≤ 1, Aα is closed linear operator whose domain with domain
D(Aα) ⊃ D(A) dense in X. The closedness of Aα implies that D(Aα), endowed
with the graph norm of Aα,

‖x‖Aα = ‖x‖+ ‖Aαx‖, x ∈ D(Aα),

is a Banach space. Since 0 ∈ ρ(−A), Aα is invertible, and its graph norm
‖ · ‖Aα is equivalent to the norm

‖x‖α = +‖Aαx‖.
Thus, D(Aα) equipped with the norm ‖ · ‖α, is a Banach space, which we
denote by Xα. From this definition, it is clear that 0 < α < β implies Xα ⊃ Xβ

and that the embedding of Xβ in Xα is continuous. For basic concepts and
applications of this theory, we refer to the reader to A. Pazy [11].
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Throughout this paper, we use the notation J = [0, b]. Let f : J × Xα ×
Xα → X, k : J × J ×X → Xα and g(t1, t2, · · · , tp, ·) : Xα → X be nonlinear
functions.

Many authors have studied the problems such as existence, uniqueness,
boundedness and other properties of solutions of these equations (1.3)–(1.4)
or their special forms by using various techniques, see [1, 2, 3, 5, 10, 12]
and the references cited therein. In an interesting paper [4], Balachandran
and Chandrasekaran have studied the existence of local and global solutions
of (1.3)–(1.4) when f = g(t, x(t)) +

∫ t
0 h

(
t, s, x(s),

∫ s
0 k(s, τ, x(τ))dτ

)
ds. We

are motivated by the work of Balachandran and Chandrasekaran in [4] and
influenced by the work of Byszewski [7]. The results obtained in this paper
generalize the some results of [1, 4].

The paper is organized as follows. In section 2, we present the preliminaries
and hypotheses. Section 3 deals with main results. Finally, in section 4, we
discuss an example to illustrate the theory.

2. Preliminaries and Hypotheses

Before proceeding to the main results, we recall some basic definitions and
setforth preliminaries, and hypotheses that can be used in our further discus-
sion.

Definition 2.1. A continuous solution x(t) of the integral equation

x(t) = T (t)x0 − T (t)g(t1, t2, · · · , tp, x(·))

+
∫ t

0
T (t− s)f

(
s, x(s),

∫ s

0
k(s, τ, x(τ))dτ

)
ds, t ∈ J (2.1)

is called a mild solution of (1.3)–(1.4) on J .

Definition 2.2. A classical solution of the equations (1.3)–(1.4) on J is a
function x ∈ C(J ; X)

⋂
C1((0, b]; X) satisfies 1.3–1.4 on J .

Definition 2.3. A function x : J → X is said to be a local solution of (1.3)–
(1.4) if

(a) x : J → X is continuous from J to D(A);
(b) x : J → X is differential and satisfies (1.3)–(1.4). If the closed interval

J replaced by [0,∞) then the local solution of (1.3)–(1.4) is called
global solution.
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Let us list the following hypotheses:
(H1) −A is the infinitesimal generator of a bounded analytic semigroup of

linear operator T (t), t > 0, in X.
(H2) 0 ∈ ρ(−A), the resolvent set of −A.
(H3) For 0 ≤ α < 1, the fractional power Aα satisfies

‖AαT (t)‖ ≤ Cαt−α, for t > 0,

where Cα is a real constant.
(H4) For an open subset E of J×Xα×Xα, f : E → X satisfies the condition,

if for every (t, x, y) ∈ E there is a neighborhood U ⊂ E and constants
L1 ≥ 0, 0 < Θ ≤ 1, such that

‖f(t1, x1, y1, z1)− f(t2, x2, y2, z2)‖ ≤ L1

[
|t1 − t2|Θ + ‖x1 − x2‖α

+ ‖y1 − y2‖α

]
, (2.2)

for all (ti, xi, yi) ∈ U, i = 1, 2.
(H5) For an open subset W of J×J×Xα, k : W → X satisfies the condition,

if for every (t, x, y) ∈ W there is a neighborhood V ⊂ W and constants
L2 ≥ 0, 0 < Θ1, Θ2 ≤ 1, such that

‖k(t1, s1, x1)− k(t2, s2, x2)‖ ≤ L2

[
|t1 − t2|Θ1 + |s1 − s2|Θ2

+ ‖x1 − x2‖α

]
, (2.3)

for all (ti, si, xi) ∈ V, i = 1, 2.
(H6) g : Jp ×Xα → X and there exists constants L3 > 0 and L4 such that

‖Aαg(t1, t2, · · · , tp, x(·))‖ ≤ L3, for 0 ≤ t < b

and

‖g(t1, t2, · · · , tp, x1(·))− g(t1, t2, · · · , tp, x2(·))‖ ≤ L4‖x1 − x2‖α.

3. Existence of solutions

Theorem 3.1. Suppose that the hypotheses (H1)−(H6) hold. Then the initial
value problem (1.3)–(1.4) has a unique solution x ∈ C([0, b);X)

⋂
C1((0, b);X).

Proof. Choose t∗ > 0 and δ > 0 such that estimates (2.2) and (2.3) hold on
the sets

U = {(t, x, y) : 0 ≤ t ≤ t∗, ‖x− x0‖α ≤ δ, ‖y − x0‖α ≤ δ},
and

V = {(t, s, x) : 0 ≤ t, s ≤ t∗, ‖x− x0‖α ≤ δ},
respectively.
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Let

M = max
0≤t≤t∗

‖f
(
t, x0,

∫ t

0
k(t, s, x0)ds

)
‖.

Choose b such that for 0 ≤ t < b

‖T (t)Aαx0 −Aαx0‖ < δ/4,

‖T (t)Aαg(t1, t2, · · · , tp.x(·))−Aαg(t1, t2, · · · , tp.x(·))‖ < δ/4

and

0 < b < min
{

t∗,
[ δ(1− α)

2Cα

(
L4δ + L1δ + L1L3 + L1L2(δ + L3)b + M

)
] 1

(1−α)
}

.

(3.1)

Let B = C(J ; X) be the Banach space with usual supremum norm which we
denote by ‖ · ‖B. Define a mapping F : B → B by

(Fy)(t) = T (t)Aαx0 − T (t)Aαg(t1, t2, · · · , tp, A
−αy(·))

+
∫ t

0
T (t− s)Aαf

(
s, A−αy(s),

∫ s

0
k(s, τ, A−αy(τ))dτ

)
ds. (3.2)

Obviously, (Fy)(0) = Aαx0−Aαg. Let S be the nonempty closed and bounded
subset of B defined by

S = {y ∈ B : y(0) = Aαx0 −Aαg, ‖y(t)− (Aαx0 −Aαg)‖ ≤ δ}.
For y ∈ S, we have

‖(Fy)(t)− (Aαx0 −Aαg)‖
≤ ‖T (t)Aαx0 −Aαx0‖

+ ‖T (t)Aαg(t1, t2, · · · , tp, A
−αy(·))−Aαg(t1, t2, · · · , tp, A

−αy(·))‖

+
∫ t

0
‖AαT (t− s)‖‖f

(
s,A−αy(s),

∫ s

0
k(s, τ, A−αy(τ))dτ

)
‖ds

≤ δ/4 + δ/4 +
∫ t

0
‖AαT (t− s)‖

[
‖f

(
s,A−αy(s),

∫ s

0
k(s, τ, A−αy(τ))dτ

)

− f
(
s, x0,

∫ s

0
k(s, τ, x0)dτ

)
‖
]
ds

+
∫ t

0
‖AαT (t− s)‖‖f

(
s, x0,

∫ s

0
k(s, τ, x0)dτ

)
‖ds

≤ δ/2 +
∫ t

0
‖AαT (t− s)‖L1

[
‖A−αy(s)− (x0 − g)− g‖α

+
∫ s

0
L2‖A−αy(τ)− (x0 − g)− g‖αdτ

]
ds +

∫ t

0
MCα(t− s)−αds
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≤ δ/2 +
∫ t

0
‖AαT (t− s)‖L1

[
δ + L3 + L2(δ + L3)b

]
ds

+ MCαb(1−α)(1− α)−1

≤ δ/2 + Cα(t− s)(1−α)(1− α)−1L1

[
δ + L3 + L2(δ + L3)b

]

+ MCαb(1−α)(1− α)−1

≤ δ/2 + Cα

[
L1δ + L1L3 + L1L2(δ + L3)b + M

]
b(1−α)(1− α)−1

< δ/2 + Cα

[
L4δ + L1δ + L1L3 + L1L2(δ + L3)b + M

]
b(1−α)(1− α)−1

< δ/2 + δ/2

= δ. (3.3)

Therefore, F maps S into itself. Moreover, if y1, y2 ∈ S, then

‖(Fy1)(t)− (Fy2)(t)‖
≤ ‖T (t)

[
Aαg(t1, t2, · · · , tp, A

−αy1(·))−Aαg(t1, t2, · · · , tp, A
−αy2(·))

]
‖

+
∫ t

0
‖AαT (t− s)‖

[
‖f

(
s, A−αy1(s),

∫ s

0
k(s, τ, A−αy1(τ))dτ

)

− f
(
s,A−αy2(s),

∫ s

0
k(s, τ, A−αy2(s))dτ

)
‖
]
ds

≤ ‖T (t)Aα‖
[
‖g(t1, t2, · · · , tp, A

−αy1(·))− g(t1, t2, · · · , tp, A
−αy2(·))‖

]

+
∫ t

0
‖AαT (t− s)‖L1

[
‖A−αy1(s)−A−αy2(s)‖α

+
∫ s

0
‖k(s, τ, A−αy1(τ))− k(s, τ, A−αy2(τ))‖αdτ

]
ds

≤ Cαb(1−α)(1− α)−1L4‖A−αy1(· · · )−A−αy2(· · · )‖α

+
∫ t

0
‖AαT (t− s)‖L1

[
‖y1(s)− y2(s)‖+

∫ s

0
L2‖y1(τ)− y2(τ)‖dτ

]
ds

≤ Cαb(1−α)(1− α)−1L4‖y1 − y2‖B

+
∫ t

0
‖AαT (t− s)‖L1

[
‖y1 − y2‖B +

∫ s

0
L2‖y1 − y2‖Bdτ

]
ds

≤ Cαb(1−α)(1− α)−1L4‖y1 − y2‖B

+ Cαb(1−α)(1− α)−1L1

[
‖y1 − y2‖B + L2b‖y1 − y2‖B

]

≤ Cα

[
L4 + L1 + L1L2b

]
b(1−α)(1− α)−1‖y1 − y2‖B, (3.4)
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and using (3.1), the equation (3.4) implies that

‖(Fy1)− (Fy2)‖B ≤ 1
2
‖y1 − y2‖B.

Hence, by the contraction mapping theorem, the mapping F has a unique
fixed point y ∈ S. This fixed point satisfies the integral equation

y(t) = T (t)Aαx0 − T (t)Aαg(t1, t2, · · · , tp, A
−αy(·))

+
∫ t

0
AαT (t− s)f

(
s,A−αy(s),

∫ s

0
k(s, τ, A−αy(τ))dτ

)
ds. (3.5)

From (2.2), (2.3) and the continuity of y it follows that

t → f
(
t, A−αy(t),

∫ t

0
k(t, s, A−αy(s))ds

)

and t → k(t, s, A−αy(s)) are continuous on J and therefore, there exist con-
stants N and K such that

‖f
(
t, A−αy(t),

∫ t

0
k(t, s, A−αy(s))ds

)
‖ ≤ N, (3.6)

and

‖k(t, s, A−αy(s))‖ ≤ K. (3.7)

Note that for every β satisfying 0 < β < 1 − α and every 0 < h < 1, we
have by Theorem 2.6.13 in Pazy [11] that

‖[T (h)− I]AαT (t− s)‖ ≤ Cβhβ‖Aα+βT (t− s)‖ ≤ rhβ(t− s)−(α+β), (3.8)

for some r > 0. If 0 < t < t + h ≤ b, then we have

‖y(t + h)− y(t)‖
≤ ‖[T (h)− I]AαT (t)x0‖+ ‖[T (h)− I]AαT (t)g(t1, t2, · · · , tp, A

−αy(·))‖

+
∫ t

0
‖[T (h)− I]AαT (t− s)‖‖f

(
s,A−αy(s),

∫ s

0
k(s, τ, A−αy(τ))dτ

)
‖ds

+
∫ t+h

t
‖AαT (t + h− s)‖‖f

(
s,A−αy(s),

∫ s

0
k(s, τ, A−αy(τ))dτ

)
‖ds

= I1 + I2 + I3 + I4. (3.9)

Using (H6) and (3.6), we find that

I1 ≤ rt−(α+β)hβ ≤ M1h
β,

I2 ≤ rL3t
−(α+β)hβ ≤ M2h

β,

I3 ≤ rNhβ

∫ t

0
(t− s)−(α+β)ds ≤ M3h

β,
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I4 ≤ CαN

∫ t+h

t
(t + h− s)−αds ≤ M4h

β.

Here, M1 and M2 depends on t and vanish at t → 0, but M3 and M4 can be
selected to be independent of t ∈ J . Combining (3.9) with these estimates it
follows that for every t

′
there is a constant C1 such that

‖y(t)− y(s)‖ ≤ C1|t− s|β for 0 ≤ t
′ ≤ t, s ≤ b

and therefore, this implies that y is locally Hölder continuous on (0, b]. The lo-
cal Hölder continuity of t → f

(
t, A−αy(t),

∫ t
0 k(t, s, A−αy(s))ds

)
follows from

‖f
(
t, A−αy(t),

∫ t

0
k(t, τ, A−αy(τ))dτ

)
− f

(
s, A−αy(s),

∫ s

0
k(s, τ, A−αy(τ))dτ

)
‖

≤ L1

[
|t− s|Θ + ‖A−αy(t)−A−αy(s)‖α

+ ‖
∫ t

0
k(t, τ, A−αy(τ))dτ −

∫ s

0
k(s, τ, A−αy(τ))dτ‖

]

≤ L1

[
|t− s|Θ + ‖y(t)− y(s)‖+

∫ s

0
‖k(t, τ, A−αy(τ))− k(s, τ, A−αy(τ))‖αdτ

+
∫ t

s
‖k(t, τ, A−αy(τ))‖αdτ

]

≤ L1

[
|t− s|Θ + C1|t− s|β

+
∫ s

0
L2

(
|t− s|Θ1 + |τ − τ |Θ2 + ‖A−αy(τ)−A−αy(τ)‖α

)
dτ +

∫ t

s
Kdτ

]

≤ L1

[
|t− s|Θ + C1|t− s|β + L2|t− s|Θ1b + K(t− s)

]

≤ L1

[
|t− s|Θ + C1|t− s|β + L2|t− s|Θ1b + K(t− s)(1−β)(t− s)β

]

≤ L1

[
1 + C1 + L2b + Kb(1−β)

]
|t− s|γ

≤ C2|t− s|γ ,

where C2 = L1

[
1 + C1 + L2b + Kb(1−β)

]
and 0 < γ < 1. Let y be a solution

of (3.5). Consider the inhomogeneous initial value problem

x′(t) + Ax(t) = f
(
t, A−αy(t),

∫ t

0
k(t, s, A−αy(s))ds

)
, t ∈ J = [0, b], (3.10)

x(0) + g(t1, t2, · · · , tp, A
−αy(·)) = x0. (3.11)

This problem has a unique solution x ∈ C1((0, b]; X), which is given by

x(t) = T (t)x0 − T (t)g(t1, t2, · · · , tp, A
−αy(·))
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+
∫ t

0
T (t− s)f

(
s,A−αy(s),

∫ s

0
k(s, τ, A−αy(τ))dτ

)
ds. (3.12)

For t > 0, each term of (3.12) is in D(A) and a fortiori in D(Aα). Operating
on both sides of (3.12) with Aα we find that

Aαx(t) = T (t)Aαx0 − T (t)Aαg(t1, t2, · · · , tp, A
−αy(·))

+
∫ t

0
T (t− s)Aαf

(
s,A−αy(s),

∫ s

0
k(s, τ, A−αy(τ))dτ

)
ds. (3.13)

From (3.5), the right side of (3.13) equals y(t) and therefore, x(t) = A−αy(t)
and by (3.12), x ∈ C1((0, b]; X) is a solution of (1.3)–(1.4). The uniqueness
of x follows from the uniqueness of the solutions of (3.5) and (3.10)–(3.11).
Thus, the Theorem 3.1 is proved. ¤

In order to establish the global existence of classical solutions to (1.3), we
need the following lemma.

Lemma 3.2 ([1],p.185). Let φ(t, s) ≥ 0 be continuous on 0 ≤ s ≤ t ≤ T < ∞.
If there are positive constants A, B and α such that

φ(t, s) ≤ A + B

∫ t

s
(t− σ)α−1φ(σ, s)dσ,

for 0 ≤ s ≤ t ≤ T , then there is a constant C such that

φ(t, s) ≤ C.

The following theorem establishes the existence of global solutions of (1.3)-
(1.4).

Theorem 3.3. Suppose that −A is the infinitesimal generator of an analytic
semigroup T (t) satisfying ‖T (t)‖ ≤ M , for t ≥ 0 and 0 ∈ ρ(−A). Let the
hypotheses (H4) and (H5) be satisfied with J = [0,∞). Moreover, if there are
continuous nondecreasing functions p1, p2 : [0,∞) → R+ such that

‖f(t, x, y)‖ ≤ p1(t)[‖x‖α + ‖y‖α]

and

‖k(t, s, x)‖ ≤ p2(t)‖x‖α

for t ≥ 0, x, y ∈ Xα, then the initial value problem (1.3)–(1.4) has a unique
solution x which exists for all t ≥ 0.

Proof. Applying Theorem 3.1 we can continue the solution of (1.3)–(1.4) as
long as ‖x‖α is bounded. It is therefore sufficient to show that if x exist on
[0, b) then ‖x(t)‖α is bounded t ↑ b. Since

Aαx(t) = T (t)Aαx0 − T (t)Aαg(t1, t2, · · · , tp, x(·))
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+
∫ t

0
AαT (t− s)f

(
s, x(s),

∫ s

0
k(s, τ, x(τ))dτ

)
ds. (3.14)

Taking norm on both sides of equation (3.14) and using the properties of
T (t) and A that they commute, T (t) ≤ M , AαT (t) ≤ Cαt−α, for t ≥ 0 and
hypotheses (H4) and (H5), we get

‖Aαx(t)‖ ≤ ‖T (t)Aαx0‖+ ‖T (t)‖‖Aαg(t1, t2, · · · , tp, x(·))‖

+
∫ t

0
‖AαT (t− s)‖‖f

(
s, x(s),

∫ s

0
k(s, τ, x(τ))dτ

)
‖ds

≤ M‖Aαx0‖+ M‖Aαg(t1, t2, · · · , tp, x(·))‖

+
∫ t

0
Cα(t− s)−αp1(s)

[
‖x(s)‖α +

∫ s

0
‖k(s, τ, x(τ))‖dτ

]
ds

≤ M‖Aαx0‖+ M‖Aαg(t1, t2, · · · , tp, x(·))‖

+
∫ t

0
Cα(t− s)−αp1(s)

[
‖x(s)‖α +

∫ s

0
p2(s)‖x(τ)‖αdτ

]
ds

≤ M‖Aαx0‖+ M‖Aαg(t1, t2, · · · , tp, x(·))‖

+ Cα

∫ t

0
(t− s)−αP (s)

[
‖x(s)‖α +

∫ s

0
‖x(τ)‖αdτ

]
ds

≤ M‖Aαx0‖+ M‖Aαg(t1, t2, · · · , tp, x(·))‖

+ CαP

∫ t

0
(t− s)−α

[
‖x(s)‖α +

∫ s

0
‖x(τ)‖αdτ

]
ds

that is,

‖x(t)‖α ≤ C3 + C4

∫ t

0
(t− s)−α

[
‖x(s)‖α +

∫ s

0
‖x(τ)‖αdτ

]
ds, (3.15)

where C3 = M‖Aαx0‖ + M‖Aαg(t1, t2, · · · , tp, x(·))‖, C4 = CαP and P =
sup{p1(t), p2(t)}. Integrating (3.15) over (0, t) and changing the order of inte-
gration, we get

∫ t

0
‖x(ξ)‖αdξ

≤ C3b + C4

∫ t

0

∫ t

s
(ξ − s)−α

[
‖x(s)‖α +

∫ s

0
‖x(τ)‖αdτ

]
dξds

≤ C3b + C4

∫ t

0
(t− s)(1−α)(1− α)−1

[
‖x(s)‖α +

∫ s

0
‖x(τ)‖αdτ

]
ds

≤ C3b +
C4b

(1− α)

∫ t

0
(t− s)−α

[
‖x(s)‖α +

∫ s

0
‖x(τ)‖αdτ

]
ds
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≤ C5 + C6

∫ t

0
(t− s)−α

[
‖x(s)‖α +

∫ s

0
‖x(τ)‖αdτ

]
ds, (3.16)

for some positive constants C5 and C6, depending on α and b. Adding (3.15)
and (3.16), we have

‖x(t)‖α +
∫ t

0
‖x(ξ)‖αdξ

≤ C7 + C8

∫ t

0
(t− s)−α

[
‖x(s)‖α +

∫ s

0
‖x(τ)‖αdτ

]
ds, (3.17)

for some positive constants C7 and C8, depending on α and b. Define

z(t) = ‖x(t)‖α +
∫ t

0
‖x(ξ)‖αdξ. (3.18)

Using (3.18), the equation (3.17) becomes

z(t) ≤ C7 + C8

∫ t

0
(t− s)−αz(s)ds. (3.19)

Applying the Lemma 3.2 to (3.19), we obtain

z(t) ≤ C on [0, b).

Therefore,

‖x(t)‖α +
∫ t

0
‖x(ξ)‖αdξ = z(t) ≤ C,

which yields

‖x(t)‖α ≤ C.

This completes the proof of the Theorem 3.3. ¤

Theorem 3.4. Suppose that −A is the infinitesimal generator of an analytic
semigroup T (t) satisfying ‖T (t)‖ ≤ M , for t ≥ 0 and 0 ∈ ρ(−A). Let the
hypotheses (H3) − (H6) be satisfied and x0 ∈ Xα. Suppose that the functions
x1(t) and x2(t) satisfy the equation (1.3) for 0 ≤ t ≤ b < ∞ with

x1(0) = g(t1, t2, · · · , tp, x1(·)) = x0
∗

and

x2(0) = g(t1, t2, · · · , tp, x2(·)) = x0
∗∗,

respectively and x1(t), x2(t) ∈ Xα. Then, we have

‖x1(t)− x2(t)‖α ≤ C.
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Proof. Let the functions x1(t) and x2(t) satisfy the equation (1.3) for 0 ≤ t ≤
b < ∞ with

x1(0) = g(t1, t2, · · · , tp, x1(·)) = x0
∗

and

x2(0) = g(t1, t2, · · · , tp, x2(·)) = x0
∗∗,

respectively and x1(t), x2(t) ∈ Xα. Then by Theorem 3.3, we obtain

Aαx1(t) = T (t)Aαx0
∗ − T (t)Aαg(t1, t2, · · · , tp, x1(·))

+
∫ t

0
AαT (t− s)f

(
s, x1(s),

∫ s

0
k(s, τ, x1(τ))dτ

)
ds (3.20)

and

Aαx2(t) = T (t)Aαx0
∗∗ − T (t)Aαg(t1, t2, · · · , tp, x2(·))

+
∫ t

0
AαT (t− s)f

(
s, x2(s),

∫ s

0
k(s, τ, x2(τ))dτ

)
ds. (3.21)

Using hypotheses and properties of T (t) and A, we have

‖Aαx1(t)−Aαx2(t)‖
≤ ‖T (t)Aαx0

∗ − T (t)Aαx0
∗∗‖

+ ‖T (t)Aαg(t1, t2, · · · , tp, x1(·))− T (t)Aαg(t1, t2, · · · , tp, x2(·))

+
∫ t

0
‖AαT (t− s)‖

[
‖f

(
s, x1(s),

∫ s

0
k(s, τ, x1(τ))dτ

)

− f
(
s, x2(s),

∫ s

0
k(s, τ, x2(τ))dτ

)
‖
]
ds

≤ M‖x0∗ − x0
∗∗‖α + MCαb(1−α)(1− α)−1L4‖x1(t)− x2(t)‖α

+ Cα

∫ t

0
(t− s)−αL1

[
‖x1(s)− x2(s)‖α + L2

∫ s

0
‖x1(τ)− x2(τ)‖αdτ

]
ds.

Therefore,

‖x1(t)− x2(t)‖α

≤ M

C
‖x0∗ − x0

∗∗‖α +
CαL1

C

∫ t

0
(t− s)−α

×
[
‖x1(s)− x2(s)‖α + L2

∫ s

0
‖x1(τ)− x2(τ)‖αdτ

]
ds, (3.22)
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where C =
[
1−MCαb(1−α)(1−α)−1L4

]
, MCαb(1−α)(1−α)−1L4 < 1. Define

m(t) = ‖x1(t)− x2(t)‖α. Then from equation (3.22), we get

m(t) ≤ M

C
‖x0∗ − x0

∗∗‖α

+
CαL1

C

∫ t

0
(t− s)−α

[
m(s) + L2

∫ s

0
m(τ)dτ

]
ds. (3.23)

Integrating (3.23) over (0, t) and changing the order of integration, we obtain
∫ t

0
m(ξ)dξ ≤ Mb

C
‖x0∗ − x0

∗∗‖α

+
CαL1

C

∫ t

0

∫ t

s
(ξ − s)−α

[
m(s) + L2

∫ s

0
m(τ)dτ

]
dξds

≤ Mb

C
‖x0∗ − x0

∗∗‖α

+
CαL1b

C(1− α)

∫ t

0
(t− s)−α

[
m(s) + L2

∫ s

0
m(τ)dτ

]
ds. (3.24)

Adding the corresponding sides of of equations (3.23) and (3.24), we have

m(t) +
∫ t

0
m(ξ)dξ

≤ M

C
(1 + b)‖x0∗ − x0

∗∗‖α

+
CαL1

C
[1 +

b

(1− α)
]
∫ t

0
(t− s)−α

[
m(s) + L2

∫ s

0
m(τ)dτ

]
ds

≤ d1 + d2

∫ t

0
(t− s)−α

[
m(s) +

∫ s

0
m(τ)dτ

]
ds, (3.25)

where d1 = M
C

(1 + b)‖x0∗ − x0
∗∗‖α and

d2 = max{CαL1

C
[1 +

b

(1− α)
],

CαL1L2

C
[1 +

b

(1− α)
]},

depending on α and difference estimation of initial data. Let

w(t) = m(t) +
∫ t

0
m(ξ)dξ.

Then equation (3.25) takes the form

w(t) ≤ d1 + d2

∫ t

0
(t− s)−αw(s)ds. (3.26)
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Applying the Lemma 3.2 to (3.26), which yields w(t) ≤ C and consequently,
we have

‖x1(t)− x2(t)‖α = m(t) ≤ C,

where C depends upon the initial data of solutions of the equation (1.3). This
proves the Theorem 3.4. ¤

4. Application

Now, we give an example to illustrate the application of our results estab-
lished in previous section. We consider the following boundary value problem

∂w(t, ξ)
∂t

− ∂2w(t, ξ)
∂ξ2

= µ
(
t, w(t, ξ),

∫ t

0
a(t, s, w(s, ξ))ds

)
, t > 0, ξ ∈ I = [0, π], (4.1)

w(t, 0) = w(t, π) = 0, t > 0, (4.2)

w(0, ξ) = x0(ξ) +
n∑

i=1

αiw(ti, ξ), ξ ∈ I, (4.3)

where µ : J × R × R → R, a : J × J × R → R are continuous and ti > 0,
αi ∈ R are prefixed numbers. Let us take X = L2([0, π]). We define the
operator A : D(A) ⊂ X → X by Aw = −wξξ, where D(A) = {w(·) ∈ X :
w(0) = w(π) = 0}. Furthermore, A has discrete spectrum, the eigenvalues
are n2, n ∈ N, with corresponding normalized characteristics vectors wn(ξ) :=√

2
π sin(nξ), n = 1, 2, 3, · · · , and the following conditions hold :

(i) {wn : n ∈ N} is an orthonormal basis of X.
(ii) If w ∈ D(A) then Aw =

∑∞
n=1 n2 < w, wn > wn.

Hence, A is infinitesimal generator of an analytic semigroup T (t), t ≥ 0 on X
and is given by

T (t)w =
∞∑

n=1

e−n2t < w, wn > wn, w ∈ X.

Define the functions f : [0,∞) × X × X → X, a : J × J × X → X, and
g : C(J,X) → X as follows

f(t, x, y)ξ = µ(t, x(t, ξ), y(t, ξ)),

a(t, s, x(t, ξ)) = k(t, s, x)ξ,
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g(t1, t2, · · · , tk, x(·))ξ = −
k∑

i=1

βix(ti, ξ),

for ti > 0 and 0 ≤ ξ ≤ π. From the above choices of the functions and
generator A, the equations (4.1)–(4.3) can be formulated as an abstract non-
linear Volterra integrodifferential equations (1.3)–(1.4) in a Banach space X.
Further, for every x ∈ X,

A−
1
2 w =

∞∑

n=1

1/n < w,wn > wn,

with ‖A− 1
2 ‖ = 1 and the operator A

1
2 is given by

A
1
2 w =

∞∑

n=1

n < w, wn > wn,

on the space D(A
1
2 ) = {w ∈ X :

∑∞
n=1 n < w, wn > wn ∈ X}. Let Xα denote

the space D(Aα) with α = 1/2. Under the assumptions that hypotheses (H4)
and (H5) are satisfied then by Theorems 3.1 and 3.3 there exits a unique global
classical solution of the equations (1.3)-(1.4) which guarantees the existence
of a unique global classical solution of IVP (4.1)-(4.3).
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