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Abstract. Some integral inequalities of Jensen type for G A-convex functions defined on
intervals of real line are given. Applications in relation to Hermite-Hadamard inequalities and
Jensen discrete inequalities are provided. Inequalities for G A-convex functions of selfadjoint

operators on complex Hilbert spaces are established as well.

1. INTRODUCTION

We recall some facts on the lateral derivatives and subdifferential of a convex
function.

Suppose that I is an interval of real numbers with interior JTand®:1 —R
is a convex function on I. Then ® is continuous on I and has finite left and
right derivatives at each point of I. Moreover, if x,y € I and z < 1y, then
P (z) < ¥ () < P (y) < P, (y) which shows that both & and &/, are
nondecreasing function on I. Tt is also known that a convex function must be
differentiable except for at most countably many points.
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For a convex function ® : I — R, the subdifferential of ® denoted by 09 is
the set of all functions ¢ : I — [—o00, o0] such that ¢ (I) C R and

O (x) >P(a)+ (xr—a)p(a) for any z,a € I.

It is also well known that if ® is convex on I, then 0® is nonempty, &’ ,
P’ € 0P and if ¢ € 0P, then

P’ () < p(x) <P, (z) for any z € I

In particular, ¢ is a nondecreasing function.

If & is differentiable and convex on I, then & = {®'} .

Let I C (0,00) be an interval; a real-valued function h : I — R is said to be
GA-convex (concave) on [ if

P (2 79) < (2) (1= k(@) + M (y) (L.1)
for all z,y € I and X € [0, 1].
Since the condition (1.1) can be written as
hoexp ((1 = AN)Inz + Alny) < (>) (1 — A) hoexp (Inx)+Ahoexp (Iny), (1.2)

then we observe that h : I — R is GA-convex (concave) on [ if and only if
h o exp is convex (concave) on InJ := {Ilnz,z € I}. If I = [a,b] then In] =
[lna,lnb].
It is known that the function h (z) = In (1 4 z) is GA-convex on (0, c0) [3].
For real and positive values of z, the Fuler gamma function I" and its
logarithmic derivative 1, the so-called digamma function, are defined by

I'(x) ::/0th Le=tdt and ¢ () := FF/((x))

It has been shown in [27] that the function h : (0,00) — R defined by

h(z) = o (2) + —

2z
is GA-concave on (0, 00) while the function g : (0,00) — R defined by
1 1

is GA-convex on (0,00).
If [a,b] C (0,00) and the function ¢ : [Ina,Ilnb] — R is convex (concave)
n [Ina,Ind], then the function A : [a,b] — R, h(t) = g(Int) is GA-convex
(concave) on [a, b] .
Indeed, if x,y € [a,b] and X € [0,1], then

h(:vl_)‘yA> = ( ( 1A A)) =g[(1—=NInz+ Alny]
< (2)A=Ng(nz)+Arg(Iny) = (1= A)h(z) + A (y)
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showing that h is GA-convex (concave) on [a,b] .
The identric mean I (a,b) is defined by

1
1 bb b—a
I(a,b) = ; (Cﬂ)

while the logarithmic mean is defined by
b—a
L =
(@) = “Ina

Now, since h o exp is convex on [lna,Inbd] it follows that h has finite lateral
derivatives on (Ina,Inb) and by gradient inequality for convex functions we
have

hoexp(z) —hoexp(y) = (z —y) ¢ (expy)expy (1.3)
where ¢ (expy) € [h_ (expy),l, (expy)] for any z,y € (Ina,Inb).
If s,t € (a,b) and we take in (1.3) x = Int,y = In s, then we get
h(t)—h(s)> (Int—1Ins)p(s)s (1.4)

where ¢ (s) € [hL_(s), W, (s)] .

2. SOME JENSEN’S TYPE INEQUALITIES

Let (€2, .4, 1) be a measurable space consisting of a set €2, a o — algebra A of
parts of £ and a countably additive and positive measure p on A with values
in RU {oo}. For a g-measurable function w : @ — R, with w (z) > 0 for u
—a.e. (almost every) x € Q, consider the Lebesgue space

Ly (Qu) :={f:Q—R, fis p-measurable and / w(x) |f (z)]dp(x) < oo}
Q

For simplicity of notation we write everywhere in the sequel fQ wdp instead
of [qw (x)dp(x).

If f, g: Q — R are p-measurable functions and f, g, fg € Ly, (2, 1), then
we may consider the Cebysev functional

Tw (f,9) = / wfgdp — / wfdu/ wgdj. (2.1)
Q Q Q
The following result is known in the literature as the Griss inequality
1
T (f,9)] < 3 (T =) (A= 3), (22)
provided
—o<y< f(r)<T<o0, —0<di<g(r) <A< (2.3)

for p —a.e. (almost every) x € Q.
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The constant % is sharp in the sense that it cannot be replaced by a smaller
constant.

If we assume that —co < v < f(x) <T < oo for p —a.e. x € 2, then by the
Griiss inequality for ¢ = f and by the Schwarz’s integral inequality, we have

/Qw’f—/ﬂwfdu‘dué !/Qwﬂdu— (/wadu>2r < =) (24

In order to provide a reverse of the celebrated Jensen’s integral inequality
for convex functions, S. S. Dragomir obtained in 2002 [7] the following result:

Theorem 2.1. Let ® : [m,M] C R — R be a differentiable convex function
on (m, M) and f : Q — [m, M] so that o f, f, ® o f, (D' o f)f € Ly, (Qu),

where w > 0 p-a.e. (almost everywhere) on Q with fQ wdp = 1. Then we have
the inequality:

OS/Q@OJ”)de—‘P(/wadu) (2.5)
< [@ o) sudn= [ (@ f)wdu [ wrd

< [<I>’(M)—‘I>’(m)}/Qw’f—/ﬂfwdu‘du-

If un(Q) <occand o f, f, o f (®of)fe L(Qu), then we have the
inequality:

, 1 , 1
(@ 1) fdn = | (@0 Pz [ o

¥ (1) - ()] - [ |7 - M(lm/gfdu'du.

1 (€2)
The following discrete inequality is of interest as well.

OSML@Of)du—(I’(M(lm/Qfdu) (2.6)
i

Corollary 2.2. Let ® : [m, M] — R be a differentiable convez function on
(m,M). If z; € [m, M| and w; >0 (i=1,...,n) with Wy, := > " jw; =1,
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then one has the counterpart of Jensen’s weighted discrete inequality:

0 S iwﬁb ({L‘Z) —-® (i wixi> (27)
i=1 =1
< i wifbl (l’z) T; — iwz@’ (.%) iwixi
i=1 i=1 i=1
S % [(I)/ (M) — (I)/ (m)] iwi Xr; — zn:wj.%’j .
i=1 Jj=1

Remark 2.3. We notice that the inequality between the first and the second
term in (2.7) was proved in 1994 by Dragomir & Ionescu, see [14].

On making use of the results (2.5) and (2.4), we can state the following
string of reverse inequalities:

Lemma 2.4. Let ® : I — R be a differentiable convex function on the interval
of real numbers I and m, M € R, m < M with [m,M] C I, I is the interior
of I. If f : Q2 — R is u-measurable, satisfies the bounds

—oco<m< f(x) <M< oo for p-ae x € (2.8)

and ®o f, f, ® o f, (®'of)f € Ly (Qpu), where w > 0 p-a.e. on Q with
fQ wdp =1, then

o< [ (@Of)wdu—<1>< / fwdu> (2.9
< [ @ o) swdn= [ (@ f)udu | fuds

< gloron =o' )] [ |r- [ wsauwa
< 5 [# ()~ @ (m) ! | = ( / fwdu) ] 5
< L@ (M)~ (m)] (M —m).

4

Remark 2.5. We notice that the inequality between the first, second and last
term from (2.9) was proved in the general case of positive linear functionals
in 2001 by Dragomir in [6].

If the differentiability condition is removed, then ® can be replaced in the
inequality (2.9) above with a section ¢ of the subdifferential 9®. We omit the
details.
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The following reverse of the Jensen’s inequality holds [10], [11]:

Lemma 2.6. Let ® : I — R be a convex function on the interval of real
numbers I and m,M € R, m < M with [m,M] C LIFf:Q—Rispu-
measurable, satisfies the bounds (2.8) and f,® o f € Ly (2, 1), where w > 0
p-a.e. on Q with [, wdp =1, then

0< [ (@0 f)wdp~ (o) (2.10)
Q — —
< (M - fQ,w) (fQ,w - m) sup Vg (t; m, M)
M —m te(m,M)
- oL (M) — @, (m)

where fou = [qw (z) f (z)dp(z) € [m, M] and ¥y (-;m, M) : (m, M) — R
1s defined by

\chb (t7m7M) =

We also have the inequality
0< [ (@0 udi—9 (fau) < 5 (O =m) Vo (fawim. M) (211
< 3 (M —m) 2 (M) — @, (m)],

provided that fq., € (m, M).

In what follows, we assume that w : Q@ — R, with w(z) > 0 for u —a.e.
x € €, is a p-measurable function with fQ wdp = 1.
We also have:

Lemma 2.7. With the assumptions of Lemma 2.6, we have the inequalities

0< [w(@o ) dn (@) = (fou) (2.12)
ootk ) 5200 o2

< maX{M_f_Q,wyf_Q,w_m} [q)/— (M)_q)ii— (m)] :

N | —
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For a real function g : [m, M] — R and two distinct points «, 5 € [m, M]
we recall that the divided difference of g in these points is defined by

. 9B)—g()
[Oé, Ba g] T /8 —« .
The following result holds [12]:

Lemma 2.8. Let ® : I — R be a convex function on the interval of real
numbers I and m,M € R, m < M with [m,M] C LIFf:Q =R isp-
measurable, satisfying the bounds (2.8) and f, ® o f € Ly (Q, ), then by
denoting

Fow = /Q widy € [m, M]

and assuming that fﬂjw # m, M, we have

[ 1900 =@ (o) som [ = o] wa (2.13)
< [ @ wdn=2 (fa.)
< 5 ([Faw M5 ®] = [m, To.0:@]) D ()
< 5 ([Fauw M30] = [m, T, 2]) Dz (f)
< 3 (o M:®] — [, T 5 ®]) (M —m),
where
Du()i= [ wlf =Faul du
and

D (f) = [ /Q wf2dp — (fg,w)z]

The constant % in the second inequality from (2.10) is best possible.

For recent results related to Jensen’s inequality, see [1]-]9], [15]-[26] and the
references therein.

Motivated by the above results, in this paper we establish some Jensen type
inequalities for the class of GA-convez (concave) functions. Some applications
for power and logarithmic functions are provided as well. Some inequalities
for functions of selfadjoint operators in Hilbert spaces are also established.

We have the following result concerning Jensen’s type inequalities for GA-
convex functions.
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Theorem 2.9. Let h: I C (0,00) — R be a GA-convex function and [k, K| C
I Assume also that x : 2 — R is u-measurable, satisfying the bounds

0<k<z(t) <K <oo forp-ae. teld (2.14)
and w >0 p-a.e. on Q with [ wdp = 1.

(i) If ¢ € Oh, the subdifferential of h and hox, nz, (Inz)?, (pox )zlnx
and (pox)x € Ly (Q, 1), then

OS/(hox)wdu—hoeXp (/wlnxdu) (2.15)
Q Q

g/((pox)wxlnxd,u—/(gooa;)xwd,u/wlna:d,u
Q Q Q

<;[h’_(K)K—h’+(k)k]/Q

Inx — / wlnxdu’ wdp
Q

"

g % W (KK — I, (1) K [/Qw(lnx)2du— </lenxdu>2]2

< 3 [V (K) K ~ By (k) K] (K — k).

(ii) Consider Wy, (-;k, K) : (k, K) — R defined by
, _h(E)—h@) h(t) - h(k)
UGk K) = K e -k

Ifhox,Inx € Ly (Q, ), then
0< / (hoz)wdu — hoexp (/ wlnxd,u,) (2.16)
Q Q

(an— wilnxdu) (fﬂwlnxdu—lnk:)
< .
K —Ink Sup Un (R K)

' (K)K —hl (k)k
< _ _
< (an /ﬂwlnxdu) </lenxd,u lnk) ik —Ink
1
4

< (K —Ink) [W_(K)K — h, (k) k] ,
and
OS/Q(hox)wd,u—hoeXp </lenxdu> (2.17)
g%(an—lnk)\Ilh (/wlnacd,u;k:,K)
Q
< 3 (nK — k) [B () K — 1 ()R],
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(iii) If hox, Inx € Ly, (Q, 1), then

Og/(ho:v)wdu—hoexp (/wlnmd,u) (2.18)
Q Q

< 2 max an—wiln:cd,u’wilna:d,u—lnk
InK —Ink InK —Ink

< [MOERE) g (vir)|

2

1 {an—wilnxd,u wilnxdu—lnk}
ax
nk

=M mK —Ink  InK—1

x [W_ (K)K — I, (k)K].

In particular, we have

OS/(hox)wd,u—hoexp </wlnxd,u> (2.19)
Q Q
K
o [HEERE )
2
(iv) If hox, Inx € Ly, (Q, ), then
hox— </wlnxdu> sgn [lnx—/wlnxdu} wd,u' (2.20)
Q

g/(hox)wdu hoexp(/wlnxdu)
Q
1
2

h(K)—hoexp ([qwlnazdy) hoexp ([owlnzdu) — h(k)
InK — [qwlnzdu Jownzdy —Ink

Inz — / wlnxd,u’ wdp
Q Q

1 (h(K)—hoexp ([qwlnzdy) hoexp ([owlnadu) — h (k)
2 InK — [,wlnaduy Jownzdy —Ink

X [ Qw(ln:n)2d,u— </lenxd,u>2]

[T

<1 h(K)—hoexp (Jqwlnazdu) hoexp ([qwlnadu) — h (k)
— 4 InK — [wlnzdy Jownzdy —Ink
X (InK —Ink).

Proof. (i) Since h is a GA-convex function on I, then the function ® : I — R,
® (s) = hoexp is convex on [Ink,In K]. If we take the function f : Q — R,
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f(t)=Inz(t), t € Q, then f is y-measurable and satisfying the bounds
—oco<Ink<f(t) <InK <oo for p—ae. tef

We also have
0P (s) = {p (¢*) ¢® with ¢ € & (h)} for s € 1.

Now, using the inequality (2.9) from Lemma 2.4 we have

o</ (hoexp) (nz) di — (h o exp) (/lenxd,u>

/wgo lnz 1n‘”ln:ﬂd,u—/go(eln‘l”) lmwdu/wlnxdu

Q Q

. ( an> emE ! (elnk> elnk}/ lnx—/wlnxd,u‘wdu
L Q Q

1
2
< % -h’, ( an) In K — R, (elnk) elnk}

- 1
272

/w(lnx)Qdu— </ wlnxdu) ]

|/ Q

:hl_ (ean) e i R, (elnk> elnk} (InK —Ink)

and the inequality (2.15) is obtained.
(ii) Using Lemma 2.6 we have

0§/Qw(hoexp)(lnm)d,u—(hoexp) </lenafd,u>

(an— wilnxdu) (wilnz:d,u—lnk:) .
K —Ink Sup Un(t R K)

B (K)K —h (k)k
In K — /wlnxd,u /wlnazdu—lnk - (K) + ()
0 Q InK —Ink

(In K —Ink) [0 (K) K — I, (k) k],

IN

X

<

=

»M»—

which proves the inequality (2.16).
The inequality (2.17) follows by (2.11).
(iii). Follows by Lemma 2.7.
(iv). Follows by Lemma 2.8. O

The following result also holds:

Theorem 2.10. Leth : I C (0,00) — R be a GA-convez function and [k, K] C
I. Assume also that x : Q — R is p-measurable, satisfying the condition (2.14)
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and w > 0 p-a.e. on Q with fQ wdp = 1. Then

InK — [, wlnzdu Jownzdy —Ink
h dp < & 0 . (221
/Q( cw)wdn S —— e Tk ) K —Ink ). (2:21)
Proof. Observe that for s € [k, K] we have
| ~ (InK —Ins)lnk+ (Ins —Ink)In K
nee MK —Ink ‘
By the convexity of h o exp on [In,In K] we have
h(s) = (hoexp) (Ins)
B (InK —Ins)lnk+ (Ins —Ink)In K
= (h o exp) < R Ik (2.22)
InK —Ins Ins—Ink
_m(hoexp)(lnk)—i-m(hoexp)(lnf()
InK —Ins Ins—Ink
bl il NG e
InK —1Ink ()+an—lnkh< )
for any s € [k, K].
Using (2.22) we have
InK —Inz(t) Inz(t) —Ink
<= ") S ,
MeO) < R e "W e (2:23)
for any t € Q2.

If we multiply (2.23) by w (¢) > 0 for almost every ¢ € 2 and then integrate
on € to get

/Q(hoa;) wdp

< wid,uan—wilnzd,uh( ) wilnxd,u—wid,ulnk:h K)
InK —-1Ink InK —1Ink

and since [, wdp = 1, the inequality (2.21) is proved. O

3. SOME WEIGHTED HERMITE-HADAMARD TYPE INEQUALITIES

Let h: I C (0,00) — R be a GA-convex function and [a,b] C I. Assume

also that w () > 0 a.e. on [a, b] with fab w (t) dt > 0. Using the results from the
previous section, we can state the following weighted inequalities for functions
of a single real variable.
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If ¢ € Oh then by (2.15) we have

: ffw(s)ds " p( f (s)ds > (3:-1)
_ Lo ®w®tntdt [V (@) tw () dt [} w(t)Intdt
S w(s)ds Jaw <>ds Jaw <>ds
LK Ob=Fy (@a ] fw()nsds|
5 Puwas L™ a0

=

IN

bw n 2 bw 0 2
é[h’_ (b)b — b, (a) a] [fa (t) (Int)*dt (j(}b (t)1 tdt) ]

f; w(s)ds w(s)ds

o [W- )b~ W, (a)a] (mb—Ina).

IA

If h is differentiable on (a,b), then ¢ from the inequality (3.1) can be re-
placed by A/'.

If h: 1 C(0,00) = R is a differentiable GA-convex function and [a,b] C I,
then by taking w (s) =1, s € [a,b] in (3.1) we get

b
0< bia/ h(t)dt — h (I (a,b)) (3.2)

b
b—a J,
!/
<}h_(b)b
-2 b—a

b 1
B’ (t)tIntdt — -

IN

lnI(a,b) /b B’ (t) tdt

/ Int—InT (a,b)| dt

1
2

IN

b
%[h’, (b)b— 1, (a)a] [bia / (lnt)th—(lnI(a,b))z]

L [W_ ()b~ W, (a)a] (mb—Ina).

IN

If we take in (3.1) w (s) = 1, s € [a,b], then we get

b
h(t
- lnb lna/a dt_ ab) (3:3)
b
h(b) — h(a)
, _——
*lnb lna/a W) Intdt Inb—Ina ln<\/a>b)
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< lh'(b)b—hﬁr(a)a/b
-2 Inb—1Ina a

< 41{ W (b)b— I, (a)a] (Inb — Ina).

Int —1In (\/%) ’ %dt

Some of the integrals involved in (3.2) and (3.3) maybe calculated even further,
however we do not present the details here.
Consider ¥y, (;a,b) : (a,b) — R defined by

o _h®)—h(®) h(t)-h(a)
\I/h(t,a,b)— Inb—Int B Int—Ina

Then by (2.16) we get

b
fh— h o exp (W) (3.4)

b
b — t)In tdt> ( fafv;u(t() lildtdt I a)
- sup ¥y (t;a,b)

Inb—1Ina te(a,b)
< lntdt> (ffw(t) In tdt —lna>
(s)ds [Pw(s)ds
b—h’ (a)a

lnb—lna

(Inb—Ina) [h" (b)b— 1/, (a)a]

va—l X

and

b b
SAICUIOL <W> 5)

f:w(s) ds f:w(s) ds

b w (t) Intdt
(Inb—1na) ¥y, <W;a,b>

(Inb—1Ina) [h (b)b— k!, (a)a] .

N R
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If we take w(s) =1,s € [a,b] in (3.4) and (3.5), then we get

</ (I (a,b))

c(nb-lnl(@b)(nl(@b)=lna) 0\
Inb—Ina te(a,b)

R (b)b—h, (a)a

<(lnb—1InI(a,b))(In!(a,b) —Ina)

Inb—Ina
%(mb Ina) [h" (b)b— K, (a)a]

and

o</ £ dt — 1 (I (a,))

< —(Inb—1Ina) ¥, (In!(a,b);a,b)

»M»—wM)—*G“

< —(Inb—Ina) [K_(b)b— 1, (a)a].

If we take w (s) = 1,5 € [a,b] in (3.4) and (3.5), then we get

1 b h(t)
< —
0 —lna/a t dt h(\/%)
i (Inb—1Ina) sup ¥y (t;a,b)
te(a,b)
(Inb—1Ina) [h (b)b—h!_ (a)a]

and

1 b h(t) —
< —
0_lnb—lna/a t dt h< ab)

(Inb— lna)\I/h< Vab;a b)

IN

e i

(Inb—1Ina) [h (b)b— k!, (a)a] .

(3.7)

(3.8)
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We have from (2.18) that

b
0< Lo h@w@)dt

If we take in (3.10) and (3.11) w (s) = 1,s € [a, b], then we have

and

< 2max

<

1
2

f;w(s

) ds

Inb —

[Pw(t)Intdt  [Pw(t)Intdt

o (fabw(t) In tdt
f; w(s)ds

ff w(s)ds

f; w(s)ds

)

Ina

h(a) + h(b)

Inb—1Ina

2

Inb—

max

Inb—1Ina

b—h(\/@)}

() Intdt [ w(t)Intdt

f; w(s)ds

f; w(s)ds

Ina

Inb—Ina

Inb—Ina

x [W_(b)b—h! (a)a].

In particular, we have

o< [Ph () w (t)dt
B fabw(s)ds

0

b
t)Intdt
hoexp (fw)n

<o [HOERO) (7).

<

1

=2

b
b_a/a h(t)dt — h(I (a,b))

Inb—1InT(a,b) InI(a,b) —lna}

Inb—1Ina

y {h(a) + h(b)

2

Inb—1Ina

—h(@)}

)

Inb—1nT1(a,b) InI(a,b) —lna}

Inb—Ina

b

Inb—1Ina

h(t)dt —h(Inl (a,b))

(b)—h(\@)].

289

(3.10)

(3.11)

(3.12)

(3.13)
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We also have from (2.20)

% w(s) In sds w(s)Insds
fab h(t)—h <fafbiu23)ds> sgn [lnt - fafbguzs)ds } w (t) dt
‘ b - (3.14)
S, w(s)ds
- JPh () w(t) dt . [Pw (¢) Intdt
ST o, T heexpl T g
Jw(s)ds [ w(s)ds
_ f:w(s) In sds ff (s)lnsds )
3 1 h(b) — h oexp <ffw(s)ds ) ) h o exp <fa w(e)ds > h(a)
-2 _ f:w(s)lnsds f:w(s) Insds
b J2w(s)ds [P w(s)ds na
b
2 mt — % w (t) dt
X fb :
L w(s)ds
b b
h(b) _hoexp (fa f(s)lnsds) h o exp <fa w(s )lnsds> ~h(a)
< 1 [, w(s)ds _ fa
-2 _ f:w(s)lnsds f: (s) In sds
b S, w(s)ds [P w(s)ds —Ina
_ 1
[Pwt)ym)2dt [ [Pwd)ntdt) |
X J—
ff w (s)ds f; w(s)ds
_ f: w(s) In sds f; w(s)Insds |
3 1 h (b) — h oexp (fb w(o)ds ) ) h o exp <ff w(o)ds > h(a)
- _ f w(s)In sds f:w(s)lnsds _
Inb f w(s)ds ffw(s)ds Ina
X (Inb—1Ina).
If we take in (3.14) w(s) = 1, then we get
h(lnI (a,b))|sgn|lnt —InI (a,b)]dt
b—a
1 b
<Y [ hwdi—h(1(a) (3.15)

“b—a

a
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1<h(b)—h(I(a,b))_h I(a,b)) —h(a )>
2\ Inb—InI(a,b) Inf(a,b) —Ina

JP It — 11 (a,b)|dt
b—a

<

1 (h(b)—h(I(a,b)) h(I(ab))—h(a)
S2( Inb—InI(a,b)  InI(a,b)—1Ina >
b 3
X [b_a/a (lnt)2dt—(lnl(a,b))2}
1 (h(b) —h(I(a,b)) h(I(a,b))—h(a)
§4< nb—Inl(a,b)  Inl(a,b)—Ina )aﬂh_lna)‘

If we take in (3.14) w (s) = 1, then we get

fab h(t)—h(ln@)’syn <lnt—ln\/%) 1dt T 10
Inb—1Ina (3.16)
b
h(t
<
" Inb-— lna/ ab)
h(b)=h(a) 1 / ‘
Inb — lna Inb—Ina In V/ab| 3dt
1
Sfﬁ[h(b)—h(a)](lnb—lna).
We also have from (2.21) that
fb w(s) In sds fb w(s)In sds
b Inp — e ——— """ _Ina
h(t t)dt b w(s)ds b w(s)ds
Joh®w(t)dt Jlwtds ooy 4 J2wd ). (3.17)
fbw(s)ds Inb—1Ina Inb—1Ina

If we take in (3.17) w(s) =1, s € [a, b] then we get

1 b Inb—1InT (a,b) In/(a,b) —Ina
< — = . .
b_a/ h () dt pla)+ LD ) (3)

— Inb—Ina
Now, we observe that

Inb—InI (a,b) - lnb_%_i_l

Inb—1Ina Inb—1Ina
(b—a)lnb—blnb+alna+b—a

(b—a)(Inb—1na)
b—a—a(lnb—1Ina) L(a,b)—a
(b—a)(Inb—1Ina)  b-a
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and, similarly we have

InI(a,b) —Ina b— L(a,b)

Inb—1Ina b—a

Therefore (3.18) becomes

! /bh(t) gr < Lo L@, gy Llab may g

b—a b—a b—a

that has been obtained in a different way in ([27]).
If we take in (3.17) w (s) = 1, s € [a,b] then we get (see also [21])

b a
lnbilna/a hit)dtgh( );h(b) (3:20)

We observe that, for » # 0, the function g, : R — R defined by g, ()
exp (raz) = (expx)” is convex on R. Then the function h, (t) = ¢", ¢t > 0 is
GA-convex on (0,00) .

We observe that one can apply the above Hermite-Hadamard type inequali-
ties (3.2), (3.3), (3.6), (3.7), (3.9) etc. to obtain various inequalities for special
means as in [13].

If we use, for instance, the inequality (3.13) for the GA-convex function
hy (t) =t", t >0, r # 0 then we get

0< L7 (a,) — (In1 (a,b))" < 2[A(a", V") — G (a,b)], (3.21)
where
1 br+1 o a'r—l—l b—a
LT = _1 L = = —1

and G (a,b) := Vab.

If we use the inequality between the first and last term in (3.2) then we
have for r # 0 that
1 2 L::% (a> b)

0 < L (a,b) = (In1 (a,0))" < o7 Tlab) (b—a)*. (3.22)

4. DISCRETE INEQUALITIES

Let p = (p1,- -, pn) be a probability distribution, i.e. p; > 0,7 € {1,--- ,n}
and Y, p; = 1. If we write the inequalities from Theorem 2.9 for the discrete
measure we can get the following discrete inequalities.

Let z; € [k, K] C (0,00) for i € {1,---,n} and p = (p1, - ,pn) be a
probability distribution. If h : [k, K] — R is GA-convex and differentiable,
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then by (2.15) we get

n

Hﬂffl> > pilt ()

=1

< sz (w5) i Inaw; —

0< Zpl ;) (H xpl> (4.1)
d

IN

i=1

5 [ () K — B, (1) ] {Zm (Inai)’ — (1n (.H w§)> ]

LWL ) K — Iy (k)] (K — k).

5 [0 () K~ (1)) S i — (H) 2

IN

IN

Consider ¥y, (1 k, K) : (k, K) — R defined by

e h(E)=h(t)  h(t)—h(k)
\I’h(tvk7K)_ InK —Int N Int —Ink

If we use the inequalities (2.16) and (2.17), then we have

(an —1In (ﬁ CL‘?J)) (ln (ﬁ m?”) — lnk‘)
< ! = sup Wy, (t; 4, K)

- In K — lnk tE(k’,K)

| LR W(K)K — K. (k) k
)) (m (]Hl% ) lnk) an—1n+k:

AN
*M“/?
=}
=
|
=3
<
=t
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and

0<szxl Oﬁﬁ>

=1

»MH

»MH

By the inequalities (2.18) and (2.19) we get

0< zn:pih(.m) —h <ﬁmfl>
i=1 i=1

< 2max

(InK —Ink) ¥ ( (f[f)- )

(InK —Ink) [W_ (K)K — 1/, (k)k].

InK —1In (Hmf’) In (wa’) —Ink
Jj=1 J=1

« [ ML) (vir)|

j=1

InK —Ink ’ InK —

Ink

InK —1In (H :E?j In (H x?) —Ink
j=1

x [W_ (K)K — I, (k) K]

and

O<z)2xz Oﬁﬁ)

=1

Szvﬂdzhﬁg—h@@Kﬂ.

1
2 InK —Ink ’ InK —

Ink

(4.3)

(4.4)

(4.5)
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Also, by the use of the inequality (2.20) we have

zn:pi h(z;)—h (ﬁ a:?) sgn |Inz; —In (ﬁ l‘?j (4.6)
i=1 i=1 j=1
< zn:pz'h(%‘) —h (ﬁ wf)

i=1 i=1

IN

DN | =

E

=

|

E
<
Py ==

S|l
X >

<1 i=1 i=1
— 4 n n
InK —1In foj In waj —Ink
j=1 j=1
X (InK —Ink).

Finally, by the use of the inequality (2.21) we have

InK —In (ﬁl‘f’) In (ﬁxfj) —Ink
S pih (@) < AN ! h(K).
i=1

- InK —Ink InK —Ink

_|_

(4.7)
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We consider the GA-convex function h, (t) =", ¢ > 0, r # 0. Then by (4.1)
we have

0< Zpiﬂfg - <H xf) (4.8)
<r [szx Inz; —In <Hzpz) Zpi ]

=1

AN
!
=
:
w
-
S~—
ing
=3
8
|
=3
=
=3
S

IA
=
J
il
5
8
!
5
—

IA
[

ir (K" — k") (In K — Ink),

where z; € [k, K] C (0,00) for i € {1,...,n}.
Consider \I/ (K, K): (k, K) = R defined by

K" —t" B tr— k"
InK —Int Int—Ink

U, (tk, K) =

By the inequalities (4.2) and (4.3) we have

0< ipix; - <ﬁ fo) (4.9)
i=1

i=1
n n
InK —In H x?j In H x?j —Ink
Jj=1 J=1
< v, (t;k, K
= K —Ink selh.K) r (& F, K)
n n
) ) K™ — k"
D D
§7“ InK —In r[]-$]] In | 133]-] —Ink m
j= j=

< ir (InK —Ink) (K" — k")
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n n . r 1 n .
0<> piaf — (Hﬂ) < (nK —Ink) ¥, |In =7 ]k K
, . i
(4.10)
1
< —
!
where z; € [k, K] C (0,00) for i € {1,...,n}.
Finally, if we use the inequalities (4.4) and (4.5) we get

n n r
0< szx: — (H :c?) (4.11)
i=1

i=1

r(lnK —Ink) (K" — k"),

n

n
InK —1In Ha:?j In Hm?j —Ink

j:l j:l 2
< r/2 _ 1.r/2
= max mK—Ink ' InK_—Ink <K k )

\ 7

InK —1In Hw?j In Hx?j —Ink
Jj=1 J=1

T max

(K" — k")

N | =

InK —Ink ’ InK —Ink

and

0< zn:piwl-" - (ﬁxf) < (K’“/2 - k’“/2)2 (4.12)
=1 =1

where z; € [k, K] C (0,00) for i € {1,...,n}.
The interested reader may obtain other similar results by employing the
inequalities (4.6) and (4.7). The details are omitted.

5. INEQUALITIES FOR SELFADJOINT OPERATORS

Let A be a selfadjoint operator on the complex Hilbert space (H, (.,.)) with
the spectrum Sp (A) included in the interval [m, M] for some real numbers
m < M and let {E\}, be its spectral family. Then for any continuous func-
tion ¢ : [m, M] — [a,b], it is well known that we have the following spectral
representation in terms of the Riemann-Stieltjes integral (see for instance [15,
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p. 257)):
M

ey = [ e (B (5.1

and
2 M 2 2

I (A) ]| =/ . e (VP d | Exe]l”, (5.2)

for any z,y € H.
The function g, , (A) := (E\x,y) is of bounded variation on the interval

[m, M| and
Gz,y (m —0) =0 while g, (M) = (z,y)

for any =,y € H. It is also well known that g, (\) := (E\x,z) is monotonic
nondecreasing and right continuous on [m, M| for any = € H.

Now, assume that ® : [k, K] C I — (0, 00) is continuous GA-convex function
on the interval of real numbers I, f : [m, M| — [k, K], p : [m, M] — (0,00)
are continuous functions on [m, M| and ¢ : [m, M] — R is monotonic nonde-
creasing on [m, M].

Using the first inequality in (2.15) and the inequality (2.21) written for
the Riemann-Stieltjes integral of monotonic nondecreasing integrators we can
state that

é( (f plt mf > <>>> (53)
f p(t

f p(t ))dg()
< f o
JM ln(f( ))dg(t) LM p(t) In(f£(t))dg(t)
InK — m —Ink
f p(t)dg(t) [l p(t)dg(t)
< m @ m @ K .
- InK —Ink (k)+ InK —-Ink (K)

Assume that Sp(A) is included in the interval [m, M] C (0,00). Now, if we
apply the inequalities (5.3) for the monotonic nondecreasing function g, () :=
(Exx,x), x € H, where {E\}, is the spectral family of A, then we get

(p(A)Inf(A)z, x>>>

D | ex 5.4

(e (" iren (54
_ A2/ (4)2.2)
B (p(A)z,x)

nK — (p(A) In(f(A))z,x) (p(A) In(f(A)z,a) Ink

(p(A)w,z) (p(A)w,x)

<
- InK —Ink ® (k) + InK —Ink ® (K)

for any x € H, x # 0.
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In particular, if p is taken to be the constant 1, then for any = € H, ||z| = 1,
we have

® (exp ((In f (A) z, 7)) (5.5)
<(®(f(4)z, )
<an—(ln(f(A))x,m) (In(f(A)z,x) —Ink
- InK —-1Ink InK —1Ink

Moreover, if in (5.5) we take [m, M| = [k, K] and f (t) = t, then we have

o (K).

(k) +

® (exp (In Az, z)) < (P (A) z, x) (5.6)
In M — (1nAx,;1:>(I) (m) +

— InM-—-Ilnm
for any x € H, ||z|| = 1, provided ® : [m,M] C J — (0,00) is continuous
GA-convex function on the interval of real numbers J.

Making use of the inequalities from Theorem 2.9 written for Riemann-
Stieltjes integral of monotonic nondecreasing integrators, we have the following
inequalities.

Assume that Sp(A) is included in the interval [m, M| C (0,00) and @ :
[k, K] € I — (0,00) is continuous differentiable GA-convex function on the
interval of real numbers I. Then for any z € H we have the inequalities

P A)ea) [ (pA)nf(A)r.a)
O W) q>< p( (), ) )) (5.7)
_ A (F(A) (DS (A)aa)

(In Az, x) —Ilnm
InM —1Inm

® (M),

- (p(A)z,z)
A (f(A) f(A)z,z) (p(A)Inf(A)z,)
(p(A)z,x) (p(A)z,x)
< % (@' (K)K — @' (k) k|
(o 8- B .0
i (p (4)2,7)
< % @ (K) K — &, (k)
X

L (et ch >>]
(p(A)x,x)

< i @ (K)K — &, (k) k] (InK — k).



300 S. S. Dragomir

In particular, we have the simpler inequality

0< ((A)z,2) — & (exp (In Az, z)) (5.8)
< (& (4) Aln Az, z) — (¥ (4) Az, ) (In Az, z)
< % @' (M) M — &, (m)m] (InA — (In Az, z) 17| 2, z)
< % [® (M) M — &, (m)m] <(lnA)2:z:,3:> — (In A:g,xff
< % [@' (M) M — @, (m)m] (In M — Inm),

for any x € H, ||z|| = 1 and provided that ® : [m,M] C J — (0,00) is
continuous differentiable GA-convex function on the interval of real numbers
J.

For @ : [k,K] C I — (0,00) a continuous GA-convex function on the
interval of real numbers I, consider ¥4 (-;k, K) : (k, K) — R defined by

) -—()  2(t) -2 (k)

Vot K) = = o Tnt Int—Ink
If Sp (A) is included in the interval [m, M] C (0,00), then
(p(A)@(f(A)z, ) (p(A)In f (A)z,z)
o< P e e (e (M e ) 59
(I — )infisn ) (GL)lnfan) )
W A)w,a) W(A)w,a) '
= MK —Ink e lh ) Vo (6K, K)
(p(A)Inf(A)z,z)\ ((p(A)Inf(4)z, )
§<mK‘ v (4) 2, ) >< v (), 2) ‘h“>
LK) K~ @, (k)
InK —Ink
< i (K —Ink) [8 (K)K — &, (k) K]

and

(p(A)@(f(A)z, ) (p(A)Inf(A)z,x)
0< ) <exp ( (A7) >) (5.10)

1 (p(A)In f(A)z,z)
=1 (P e )
< %(an —Ink) [®_ (K)K — ', (k) k]
for any z € H.
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In particular, if ® : [m, M| C J — (0,00) is continuous GA-convex function
on the interval of real numbers J, then we have
0<(®(A)z,z) — D (exp (In Az, z)) (5.11)
< (InM — (In Az, z)) ({In Az, x) — Inm) sup  Wa (t:m, M)
InM —Inm te(m, M)
P (M)M — ' (m)m
InM —Inm

<(InM — (In Az, z)) ((In Az, x) — Inm)

< % (InM — Inm) [® (M) M — , (m)m]
and

0<(®(A)z,z) — P (exp (In Az, x)) (5.12)

VAN

(
%(InM —Inm) Ve ((In Az, z) ;m, M)
< i(lnM “um) [ (M) M — &, (m)m]

for any z € H, ||z|| = 1.
With the above assumptions for p, f and ®, we also have

WO A)ra) [ ((pA)nf(A4)ra)

O e W) q’<p( v (A) ) )) (5:13)
{m K DA fAer) A f(Aea) }

< 2max

(p(A)z,z) (p(A)z,x)
InK —Ilnk ’ InK —Ilnk

[Py (i)

I K — eI f(A)ee)  (pA)n f(Aze)
max

(p(A)z,x) (p(A)z,x)
InK —Ilnk ’ InK —Ink

<

N

x [@ (K)K — @' (k) k|

for any z € H.
In particular, we have

< BABYN)es) _y (o, (DT W)Y

(p(A)z,) (p(A)z,)
o (k) + & (K)
<2| 2R -0 (WTK)]

for any z € H.
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If ® : [m,M] C J — (0,00) is continuous GA-convex function on the
interval of real numbers J, then we have
0<(®(A)z,z) — P (exp (In Az, x)) (5.15)
< 9ma InM — (InAz,z) (IlnAz,z) —Ilnm
X
- InM—-—Inm ~ InM-—Inm
P o (M
y [<m>+<> _ <,/7mM)]
2
. InM — (lnAz,z) (InAz,z) —Inm
max InM—Inm ~ InM—Ilnm
(@ (M)M — @', (m)m)]

<

1
2
X

and

0<(®(A)z,z) — D (exp(In Az, z)) (5.16)

o[ 200y ()

for any z € H, ||z|| = 1.
If we consider the GA-convex function h, (t) = t", t > 0, r # 0, then

for any selfadjoint operator A such that Sp(A) is included in the interval
[m, M] C (0,00), we have

exp(InA"z,x) < (A"z, x) (5.17)
InM — (InAz,z) , (nAz,z)—Inm
M —lnm InM —1Inm ’
0<(A"z,z) —exp(InA"z,z) (5.18)
<r[(A"InAz,z) — (A"z,x) (In Az, x)]
< %7" (M"—m"){(|lnA — (In Az, x) 1| x, z)
1 2 2] 2
< - T _ T _
< 27“(M m") [<(1nA) :L‘,:c> (In Az, x) }
< %T (M™—=m")(InM — Inm)
and
2
0<(A"z,z) —exp(ln A"z, z) < <MT/2 — m’"/2> (5.19)

for any x € H, ||z|| = 1.
The interested reader may apply the above inequalities for @ (z) = In (1 + )
which is GA-convex on (0,00). We omit the details.
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