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Abstract. If p(z) =
∑ n

ν=0aνz
ν is a polynomial of degree n and having no zeros in |z| < 1,

then Aziz [2] proved that for every real α,

max
|z|=1

∣∣p′(z)∣∣ ≤ n

2
(M2

α +M2
α+π)

1
2 ,

where

Mα = max
1≤ρ≤n

∣∣∣p(ei(α+2ρπ)/n)
∣∣∣ .

In this paper, we consider a class of polynomial Pµn and Pn,µ of degree n with restricted

zeros and present certain generalizations of above inequality in terms of polar derivatives of

polynomials.

1. Introduction

Let Pn denote the space of all complex polynomials of degree n, defined as
p(z) =

∑
n
ν=0aνz

ν . Then

max
|z|=1

∣∣p′(z)∣∣ ≤ nmax
|z|=1

|p(z)| . (1.1)
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Inequality (1.1) is well-known result of Bernstein (see [12]) and the equality
in above holds if p(z) = azn.

Frappier, Rahman and Ruscheweyh [5, Theorem 8] was proved that

max
|z|=1

∣∣p′(z)∣∣ ≤ n max
1≤ρ≤2n

∣∣∣p(e iρπn )
∣∣∣. (1.2)

Clearly (1.2) represent the refinement of inequality (1.1) because the maximum
of |p(z)| on |z| = 1 may be larger than the maximum of |p(z)| taken over the
2nth roots of unity, as one can shown by taking an example p(z) = zn+ ia, a >
0.

In this connection, Aziz [2] improved the inequality (1.2) by showing that
if p ∈ Pn, then for every real α,

max
|z|=1

∣∣p′(z)∣∣ ≤ n

2
(Mα +Mα+π), (1.3)

where

Mα = max
1≤ρ≤n

∣∣∣p(ei(α+2ρπ)/n)
∣∣∣ . (1.4)

If we restrict ourselves on the class of polynomial p ∈ Pn having all zeros in
|z| < 1, then

max
|z|=1

|p′(z)| ≥ n

2
max
|z|=1

|p(z)| (1.5)

and if p(z) 6= 0 in |z| ≤ 1, then

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|. (1.6)

Inequality (1.5) proved by Turán [13] and inequality (1.6) was conjectured by
Erdös and proved by Lax [8].

Chan and Malik [4] improved inequalities (1.5) and (1.6) by considering the
class of nth degree polynomials p(z) = a0 +

∑n
ν=µ aνz

ν , 0 ≤ µ ≤ n, denoted as

Pµn , and proved that for p(z) 6= 0 in |z| < k, k ≥ 1,

max
|z|=1

|p′(z)| ≤ n

1 + kµ
max
|z|=1

|p(z)|. (1.7)

Also, for the class of polynomials p(z) = anz
n +

∑n−µ
ν=0 aνz

ν , 0 ≤ µ ≤ n of
degree n, denoted as Pn,µ, and having all its zeros in |z| ≤ k, k ≤ 1,

max
|z|=1

|p′(z)| ≥ n

1 + kµ
max
|z|=1

|p(z)|. (1.8)

Hans, Tripathi and Tyagi [6] proved the following generalization of inequal-
ity (1.3) due to Aziz [2].
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Theorem 1.1. ([2]) If p ∈ Pµn is polynomial and p(z) 6= 0 in |z| < k, k ≥ 1,
then for every real α and m = min|z|=k |p(z)|,

max
|z|=1

|p′(z)| ≤ n√
2(1 + k2µ)

{
M2
α +M2

α+π − 2m2
} 1

2 , (1.9)

where Mα is defined in (1.4)

Let Dδp(z) denote the polar derivative of polynomials p(z) of degree n with
respect to δ with |δ| > 1 and defined as

Dδp(z) = np(z) + (δ − z)p′(z).

The polynomial Dδp(z) is of degree n − 1 and it generalize the ordinary de-
rivative by dividing Dδp(z) to δ and taking δ →∞, that is,

lim
δ→∞

[
Dδp(z)

δ

]
= p′(z).

In 1988, Aziz [1] was first proved the inequalities (1.1), (1.6) and other
related inequality in terms of polar derivative. Latter on, Aziz and Shah [3]
proved inequality (1.5) for the polar derivative of polynomials.

2. Lemmas

For the proofs of results, following lemmas are required.

Lemma 2.1. ([4]) If p ∈ Pµn and having no zero in |z| < k, k ≥ 1, then

kµ|p′(z)| ≤ |q′(z)|, (2.1)

where q(z) = znp(1/z).

Lemma 2.2. ([4]) If p ∈ Pn,µ and having all it’s zeros in |z| ≤ k, k ≤ 1, then

|q′(z)| ≤ kµ|p′(z)|, (2.2)

where q(z) = znp(1/z).

Lemma 2.3. ([7]) If p ∈ Pn, then for 1 ≤ s < n and |z| = 1

|ps(z)|+ |qs(z)| ≤ n(n− 1) · · · (n− s+ 1) max
|z|=1

|p(z)|, (2.3)

where q(z) = znp(1/z).

Next lemma is implicit in [2].
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Lemma 2.4. ([2]) If p ∈ Pn, then for |z| = 1 and for real α

|p′(z)|2 + |np(z)− zp′(z)|2 ≤ n2

2
(M2

α +M2
α+π), (2.4)

where Mα is defined same as in (1.4).

Lemma 2.5. ([9]) If p ∈ Pµn and having no zeros in |z| < k, k ≥ 1, then for
|z| = 1,

kµ+1

{
µ|aµ|kµ−1 + n|a0 −m|
n|a0 −m|+ µ|aµ|kµ+1

}
|p′(z)| ≤ |q′(z)| − nm, (2.5)

where m = min|z|=1 |p(z)| and q(z) = znp(1/z).

3. Main results

In this article, we first prove the following results concerning the polar
derivative of a polynomial.

Theorem 3.1. If p ∈ Pµn and having no zeros in |z| < k, k ≥ 1, then for every
real α and |δ| > kµ,

max
|z|=1

|Dδp(z)| (3.1)

≤ n

[
kµ max
|z|=1

|p(z)|+ (|δ| − kµ)√
2(1 + k2µ)

{
M2
α +M2

α+π − 2
m2

k2n

} 1
2

]
,

where Mα is defined in (1.4) and m = min|z|=k |p(z)|.

Proof. Let p(z) ∈ Pµn have no zeros in |z| < k, k ≥ 1 and q(z) = znp(1z ). Since

|Dδp(z)| = |np(z) + (δ − z)p′(z)|
≤ |δ||p′(z)|+ |q′(z)| (3.2)

and since for k ≥ 1, kµ ≥ 1, µ ≥ 0, from (3.1), we have

|Dδp(z)| ≤ |δ||p′(z)|+ kµ|q′(z)|
= (|δ| − kµ) |p′(z)|+ kµ

(
|p′(z)|+ |q′(z)|

)
. (3.3)

Now, using Lemma 2.3 for s = 1 in inequality (3.2), we have

max
|z|=1

|Dδp(z)| ≤ nkµ max
|z|=1

|p(z)|+ (|δ| − kµ) max
|z|=1

|p′(z)|. (3.4)

From inequality (1.9) of Theorem 1.1, inequality (3.4) become

max
|z|=1

|Dδp(z)| ≤ nkµ max
|z|=1

|p(z)|+ n(|δ| − kµ)√
2(1 + k2µ)

{
M2
α +M2

α+π − 2
m2

k2n

} 1
2

.(3.5)

This completes the proof of Theorem 3.1. �
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If we consider k = 1 in above Theorem 3.1, then the following result has
been obtained.

Corollary 3.2. If p ∈ Pn and having no zero in |z| ≤ 1, then for every real α
and |δ| > 1,

max
|z|=1

|Dδp(z)| ≤ n
{

max
|z|=1

|p(z)|+ (|δ| − 1)

2
(M2

α +M2
α+π − 2m2)

1
2

}
, (3.6)

where Mα is defined in (1.4) and m = min|z|=1 |p(z)|.

On taking µ = 1 in inequality (3.1), we have the following result.

Corollary 3.3. If p ∈ Pn and having no zero in |z| < k, k ≥ 1, then for every
real α and |δ| > k,

max
|z|=1

|Dδp(z)| ≤ n

[
kmax
|z|=1

|p(z)|+ (|δ| − k)√
2(1 + k2)

{
M2
α +M2

α+π − 2
m2

k2n

} 1
2

]
,(3.7)

where Mα is defined in (1.4) and m = min|z|=k |p(z)|.

Remark 3.4. On dividing inequality (3.6) and (3.7) by δ and taking δ →∞,
we have some other generalization of inequality (1.9). Which was proved by
Rather and Shah [9].

If we consider some zeros of p ∈ Pµn are on |z| = k, i.e. m = 0, then following
result has been obtained form Theorem 3.1.

Corollary 3.5. If p ∈ Pµn and having no zeros in |z| < k, k ≥ 1, then for
every real α and |δ| > kµ,

max
|z|=1

|Dδp(z)| ≤ n

[
kµ max
|z|=1

|p(z)|+ (|δ| − kµ)√
2(1 + k2µ)

(
M2
α +M2

α+π

) 1
2

]
, (3.8)

where Mα is defined in (1.4).

On dividing inequality (3.8) by δ and taking δ → ∞, we have following
inequality.

Corollary 3.6. If p ∈ Pµn and having no zeros in |z| < k, k ≥ 1, then for
every real α,

max
|z|=1

∣∣p′(z)∣∣ ≤ n√
2(1 + k2µ)

(
M2
α +M2

α+π

) 1
2 , (3.9)

where Mα is defined in (1.4).

Remark 3.7. Corollary 3.6 was proved by Hans, Tripathi and Tyagi [9]. If
we take k = 1 in above inequality (3.9), inequality (1.3) due to Aziz [2] has
been obtained.



316 D. Tripathi, S. Hans and B. Tyagi

Now, we proved a generalization of inequality (3.1) of Theorem 3.1 in fol-
lowing manner.

Theorem 3.8. If p ∈ Pµn and having no zeros in |z| < k, k ≥ 1, then for every
real α and |δ| > kµ,

max
|z|=1

|Dδp(z)| ≤ n

kµ|p(z)|+ (|δ| − kµ)√
2
(
1 +A2

µ

)(M2
α +M2

α+π − 2m2)
1
2

 , (3.10)

where Mα is defined in (1.4), m = min|z|=k |p(z)| and

Aµ = k(µ+1)

{
µ|aµ|kµ−1 + n(|a0| −m)

n(|a0| −m) + µ|aµ|kµ+1

}
.

Proof. Since p ∈ Pµn having no zeros in |z| < k, k ≥ 1, we get from inequality
(3.3) of proof of Theorem 3.1

max
|z|=1

|Dδp(z)| ≤ nkµ max
|z|=1

|p(z)|+ (|δ| − kµ) max
|z|=1

|p′(z)|. (3.11)

On combining inequality (3.11) and (3.13) of Corollary 3.9, we have

max
|z|=1

|Dδp(z)| (3.12)

≤ n

kµ max
|z|=1

|p(z)|+ (|δ| − kµ)√
2(1 +A2

µ)
(M2

α +M2
α+π − 2m2)

1
2

 ,

which follows the Theorem 3.8. �

The following result has been obtained from Theorem 3.8 by dividing in-
equality (3.16) to δ and taking δ →∞, which was proved by Rather, Ahangar
and Shah [11].

Corollary 3.9. If p ∈ Pµn and having no zeros in |z| < k, k ≥ 1, then for
every real α,

max
|z|=1

∣∣p′(z)∣∣ ≤ n√
2
(
1 +A2

µ

) (M2
α +M2

α+π − 2m2
) 1

2 , (3.13)

where Mα is defined in (1.4), m = min|z|=k |p(z)| and Aµ is defined in Theorem
3.8.

Remark 3.10. We also find some other generalization of Theorem 3.8 by
applying same condition as on Theorem 3.1 and their respective corollaries.

Next, we prove following result by considering the class of polynomial Pn,µ
and all of its zeros lies in |z| ≤ k, k ≤ 1.
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Theorem 3.11. If p ∈ Pn,µ and having all its zeros in |z| ≤ k, k ≤ 1, then
for every real α and |δ| > 1,

max
|z|=1

|Dδp(z)| (3.14)

≥ n(|δ| − kµ)

[
max
|z|=1

|p(z)| − kµ√
2(1 + k2µ)

{
M2
α +M2

α+π − 2
m2

k2n

} 1
2

]
,

where Mα is define in (1.4) and m = min|z|=k |p(z)|.

Proof. Since p(z) ∈ Pn,µ having all its zero in |z| ≤ k ≤ 1, q(z) = znp(1z ) ∈ Pµn
having no zeros in |z| < 1

k . Now, we know that

m∗ = min
|z|= 1

k

|q′(z)| = min
|z|=1/k

|znp(1/z)|

= min
|z|=1

∣∣∣∣znkn p(k/z)
∣∣∣∣ =

1

kn
min
|z|=1
|p(kz)|

=
1

kn
min
|z|=k

|p(z)| = 1

kn
m, (3.15)

hence, for q(z) inequality (1.9) of Theorem 1.1 becomes

|q′(z)| ≤ nkµ√
2(1 + k2µ)

{
1

2
(M2

α +M2
α+π)−m(∗2)

} 1
2

. (3.16)

Also it is simple to obtain that |q′(z)| = |np(z)− p′(z)| ≥ n|p(z)| − |p′(z)| for
|z| = 1, then inequality (3.16) follows for |z| = 1,

|p′(z)| ≥ n|p(z)| − nkµ√
2(1 + k2µ)

{
M2
α +M2

α+π −
2m2

k2n

} 1
2

. (3.17)

Since

|Dδp(z)| = |np(z) + (δ − z)p′(z)|
≥ |δ||p′(z)| − |q′(z)|, (3.18)

from Lemma 2.2 for p ∈ Pn,µ in inequality (3.18), we have for |z| = 1

|Dδp(z)| ≥ (|δ| − kµ) |p′(z)|. (3.19)

On combining (3.17) and (3.19), we get

|Dδp(z)| (3.20)

≥ n (|δ| − kµ)

[
|p(z)| − kµ√

2(1 + k2µ)

{
M2
α +M2

α+π −
2m2

k2n

} 1
2

]
.

Theorem 3.11 is completed. �
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By taking k = 1 in inequality (3.14) of Theorem 3.11, we get the following
result.

Corollary 3.12. If p ∈ Pn and having all its zeros in |z| ≤ 1, then for every
real α and |δ| > 1,

max
|z|=1

|Dδp(z)| ≥ n(|δ| − 1)

[
max
|z|=1

|p(z)| − 1

2

{
M2
α +M2

α+π − 2m2
} 1

2

]
, (3.21)

where Mα is define in (1.4) and m = min|z|=1 |p(z)|.

By considering µ = 1 in inequality (3.14) of Theorem 3.11, following result
has been obtained.

Corollary 3.13. If p ∈ Pn and having all its zeros in |z| ≤ k, k ≤ 1, then for
every real α and |δ| > 1,

max
|z|=1

|Dδp(z)| (3.22)

≥ n(|δ| − k)

[
max
|z|=1

|p(z)| − k√
2(1 + k2)

{
M2
α +M2

α+π − 2
m2

k2n

} 1
2

]
,

where Mα is defined in (1.4) and m = min|z|=k |p(z)|.

By assuming some zeros of the polynomial p(z) ∈ Pn,µ are on |z| = k, i.e.
m = 0, then from inequality (3.14) following result has been obtained.

Corollary 3.14. If p ∈ Pn,µ and having all its zeros in |z| ≤ k, k ≤ 1, then
for every real α and |δ| > 1,

max
|z|=1

|Dδp(z)| (3.23)

≥ n(|δ| − kµ)

[
max
|z|=1

|p(z)| − kµ√
2(1 + k2µ)

(
M2
α +M2

α+π

) 1
2

]
,

where Mα is defined in (1.4).

If we divide inequality (3.14) by δ and taking δ → ∞, we get following
result.

Corollary 3.15. If p ∈ Pn,µ and having all its zeros in |z| ≤ k, k ≤ 1, then
for every real α,

max
|z|=1

|p′(z)| ≥ n

[
max
|z|=1

|p(z)| − kµ√
2(1 + k2µ)

{
M2
α +M2

α+π − 2
m2

k2n

} 1
2

]
, (3.24)

where Mα is define in (1.4) and m = min|z|=k |p(z)|.
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Remark 3.16. We also have some other generalizations of inequalities (1.18),
(1.19) and (1.20) by dividing it to δ and making δ →∞.

In accordance with Theorem 3.8, we also generalized Theorem 3.11 by prov-
ing the following result.

Theorem 3.17. If p ∈ Pn,µ and having all its zeros in |z| ≤ k, k ≤ 1, then
for every real α and |δ| > 1,

max
|z|=1

|Dδp(z)| (3.25)

≥ n (|δ| − kµ)

|p(z)| − n√
2(1 +B2

µ)
(M2

α +M2
α+π − 2

m2

k2n
)1/2

 ,

where Mα is defined in (1.4), m = min|z|=k |p(z)| and

Bµ =
µ|aµ|kn−µ+1 + n|knan −m|
nkµ+1|knan −m|+ µ|aµ|kn

.

Proof. If p ∈ Pn,µ and having all its zero in |z| ≤ k, k ≤ 1, then no zeros of
q(z) ∈ Pµn lies in |z| < 1

k . Therefore from inequality (2.5) of Lemma 2.5 for
q(z), we have

1

kµ+1

{
µ|an−µ|k1−µ + n|an −m∗|
n|an −m∗|+ µ|an−µ|k−(µ+1)

}
|q′(z)| ≤ |p′(z)| − nm∗, (3.26)

where m∗ is defined in (3.15).
Equivalently,

(Bµ|q′(z)|+ nm∗)2 ≤ |p′(z)|2,
that is, for |z| = 1

B2
µ|q′(z)|2 + n2m∗2 ≤ |p′(z)|2

or

(B2
µ + 1)|q′(z)|2 + n2m∗2 ≤ |p′(z)|2 + |q′(z)|2, (3.27)

where Bµ = 1
kµ+1

{
µ|an−µ|k1−µ+n|an−m∗|

n|an−m∗|+µ|an−µ|k−(µ+1)

}
.

Using Lemma 2.4 in inequality (3.27), we get for |z| = 1

(B2
µ + 1)|q′(z)|2 + n2m∗2 ≤ n2

2
(M2

α +M2
α+π),

that is,

|q′(z)| ≤ n√
2(1 +B2

µ)
(M2

α +M2
α+π − 2m∗2)1/2. (3.28)
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Since |q′(z)| = |np(z)− zp′(z)| ≥ n|p(z)| − |p′(z)| for |z| = 1, inequality (3.28)
follows for |z| = 1,

|p′(z)| ≥ n|p(z)| − n√
2(1 +B2

µ)
(M2

α +M2
α+π − 2m∗2)1/2. (3.29)

Now, on combining inequality (3.19) with above inequality (3.29) and using
(3.15), we have for |z| = 1,

|Dδp(z)| (3.30)

≥ n (|δ| − kµ)

|p(z)| − n√
2(1 +B2

µ)
(M2

α +M2
α+π − 2

m2

k2n
)1/2

 ,

where

Bµ =
1

kµ+1

{
µ|aµ|k1−µ + n|an −m∗|
n|an −m∗|+ µ|aµ|k−(µ+1)

}
=

µ|aµ|kn−µ+1 + n|knan −m|
nkµ+1|knan −m|+ µ|aµ|kn

.

This completes the proof. �

By dividing inequality (3.25) to δ and letting δ → ∞, we have following
generalization of Corollary 3.15.

Corollary 3.18. If p ∈ Pn,µ and having all its zeros in |z| ≤ k, k ≤ 1, then
for every real α,

max
|z|=1

|p′(z)| ≥ n

|p(z)| − n√
2(1 +B2

µ)
(M2

α +M2
α+π − 2

m2

k2n
)1/2

 , (3.31)

where Mα is defined in (1.4), m = min|z|=k |p(z)| and Bµ is defined in Theorem
3.17.

Remark 3.19. By applying same conditions as on Theorem 3.11 and their
respective corollaries, we have been obtained some other generalization of The-
orem 3.17.
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