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Abstract. We will investigate a fuzzy version of Hyers-Ulam stability for a class of functional

equations of the form,
m∑
i=1

cif
(
ai1x1 +ai2x2 + · · ·+ainxn

)
= 0, which includes the quadratic-

additive functional equations.

1. Introduction

The stability problem of functional equations was first formulated by Ulam
[10] in 1940. In the following year, Hyers [3] gave a partial answer to the Ulam’s
problem when the related functional equation is the Cauchy additive functional
equation, namely f(x + y) = f(x) + f(y). Since then, the stability problems
of functional equations have been extensively investigated by a number of
mathematicians (see [2, 9]).

In 2008, Mirmostafaee and Moslehian [7, 8] proved a fuzzy version of Hyers-
Ulam stability for the Cauchy additive functional equation and the quadratic
functional equation, f(x+ y) + f(x− y) = 2f(x) + 2f(y).
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For (real) vector spaces V and W , a mapping f : V →W is called an addi-
tive mapping (or a quadratic mapping) provided f satisfies the Cauchy addi-
tive functional equation (or the quadratic functional equation) for all x, y ∈ V .
Further, a mapping f : V →W will be called a quadratic-additive mapping if
and only if f is represented by the sum of an additive mapping and a quadratic
mapping. Similarly, a functional equation will be called a quadratic-additive
type functional equation if and only if all of its solutions are quadratic-additive
mappings. For example, the mapping f(x) = ax2 + bx is a quadratic-additive
mapping.

In the study of fuzzy stability problems for quadratic-additive type func-
tional equations, we routinely follow out a well known procedure (for example,
the direct method) even though we are under different conditions. We can find
a lot of references concerning fuzzy version of the stability of functional equa-
tions (see [4, 5, 6]).

For a given mapping f : V →W , let us define Df : V n →W by

Df(x1, x2, . . . , xn) :=
m∑
i=1

cif
(
ai1x1 + ai2x2 + · · ·+ ainxn

)
for all x1, x2, . . . , xn ∈ V , where m is a positive integer and ci and aij are real
constants. We remark that D(f + g) = Df + Dg and D(cf) = c(Df) for all
mappings f, g : V →W and constants c ∈ R.

In this paper, we prove a general fuzzy stability theorem that can be easily
applied to the (generalized) Hyers-Ulam fuzzy stability of a large class of
functional equations of the form

Df(x1, x2, . . . , xn) = 0, (1.1)

which includes quadratic-additive type functional equations. Indeed, this
fuzzy stability theorem may allow us to skip some tedious proofs repeatedly
appearing in the fuzzy stability problems for various functional equations in-
cluding the quadratic, the additive, and the quadratic-additive type functional
equations.

2. Preliminaries

We introduce the definition of fuzzy normed spaces to prepare a reasonable
fuzzy version of stability of the quadratic-additive type functional equation
(1.1).

Definition 2.1. ([1]) Let X be a real vector space. A function N : X ×R→
[0, 1] is said to be a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, c) = 0 for all c ≤ 0;
(N2) x = 0 if and only if N(x, c) = 1 for all c > 0;
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(N3) N(cx, t) = N
(
x, t
|c|
)

for all c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function on R and lim

t→∞
N(x, t) = 1.

In this case, the pair (X,N) is called a fuzzy normed space.

Example 2.2. ([7]) Let (X, ‖·‖) be a real normed space. We can easily verify
that for each k > 0,

Nk(x, t) =


t

t+ k‖x‖
(for t > 0),

0 (for t ≤ 0)

defines a fuzzy norm on X.

Let (X,N) be a fuzzy normed space and let {xn} be a sequence in X. Then
{xn} is said to be convergent if there exists an x ∈ X such that lim

n→∞
N(xn −

x, t) = 1 for all t > 0. In this case, x is called the limit of the sequence {xn}
and we denote it by N − lim

n→∞
xn = x. A sequence {xn} in X is called Cauchy

if for each ε > 0 and each t > 0 there exists an n0 such that for all integers
n ≥ n0 and all integers p > 0 we have N(xn+p − xn, t) > 1− ε.

It is well known that every convergent sequence in a fuzzy normed space is
Cauchy. Conversely, if each Cauchy sequence converges, then the fuzzy norm
is said to be complete and the fuzzy normed space is called a fuzzy Banach
space.

3. Fuzzy stability of (1.1)

Throughout this section, let V be a real vector space and (Y,N) be a fuzzy
Banach space. For a given mapping f : V → Y , we use the following notations

Df(x1, x2, . . . , xn) :=

m∑
i=1

cif
(
ai1x1 + ai2x2 + · · ·+ ainxn

)
,

fe(x) :=
f(x) + f(−x)

2
,

fo(x) :=
f(x)− f(−x)

2

for all x1, x2, . . . , xn, x, y ∈ V , where aij and ci are fixed real numbers.

Theorem 3.1. Let V be a real vector space, (Y,N) be a fuzzy Banach space,
(Z,N ′) be a fuzzy normed space, and let k and α be real constants with |k| > 1
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and 0 < α < |k|. Let M : V → Z and ϕ : V n → Z be mappings satisfying the
inequalities

N ′
(
M(kx), t

)
≥ N ′

(
αM(x), t

)
,

N ′
(
ϕ(kx1, . . . , kxn), t

)
≥ N ′

(
αϕ(x1, . . . , xn), t

) (3.1)

for all x, x1, x2, . . . , xn ∈ V and t > 0. If a mapping f : V → Y with f(0) = 0
satisfies

N

(
f(kx)− k2 + k

2
f(x)− k2 − k

2
f(−x), t

)
≥ N ′

(
M(x), t

)
(3.2)

and

N
(
Df(x1, x2, . . . , xn), t

)
≥ N ′

(
ϕ(x1, x2, . . . , xn), t

)
(3.3)

for all x, x1, x2, . . . , xn ∈ V and t > 0, then there exists a unique mapping
F : V → Y such that DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \{0},

Fe(kx) = k2Fe(x) and Fo(kx) = kFo(x) (3.4)

for all x ∈ V , and moreover such that

N
(
F (x)− f(x), t

)
≥ sup

t′<t
min

{
N ′
(
M(x), (|k| − α)t′

)
, N ′

(
M(−x), (|k| − α)t′

)}
(3.5)

for each x ∈ V and t > 0.

Proof. For a given mapping ϕ : V n → Z satisfying the second condition in
(3.1), we define a mapping Jif : V → Y by

Jif(x) :=
f(kix) + f(−kix)

2k2i
+
f(kix)− f(−kix)

2ki

for all x ∈ V and all i ∈ N0, where we set N0 := N∪ {0}. Then J0f(x) = f(x)
and moreover

Jif(x)− Ji+1f(x)

= −k
i+1 + 1

2k2i+2

(
f(ki+1x)− k2 + k

2
f(kix)− k2 − k

2
f(−kix)

)
+
ki+1 − 1

2k2i+2

(
f(−ki+1x)− k2 + k

2
f(−kix)− k2 − k

2
f(kix)

)
for all x ∈ V .
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Since t
|k|i+1 = |ki+1+1|

2k2i+2 t+
|ki+1−1|
2k2i+2 t, together with (N3), (N4), (3.1) and (3.2),

the last equality implies that

N

(
Jif(x)− Ji+1f(x),

t

|k|i+1

)
≥ min

{
N

[
−k

i+1 + 1

2k2i+2

(
f(ki+1x)− k2 + k

2
f(kix)− k2 − k

2
f(−kix)

)
,

|ki+1 + 1|
2k2i+2

t

]
,

N

[
ki+1 − 1

2k2i+2

(
f(−ki+1x)− k2 + k

2
f(−kix)− k2 − k

2
f(kix)

)
,

|ki+1 − 1|
2k2i+2

t

]}

= min

{
N

(
f(ki+1x)− k2 + k

2
f(kix)− k2 − k

2
f(−kix), t

)
,

N

(
f(−ki+1x)− k2 + k

2
f(−kix)− k2 − k

2
f(kix), t

)}
≥ min

{
N ′
(
M(kix), t

)
, N ′

(
M(−kix), t

)}
≥ min

{
N ′
(
αiM(x), t

)
, N ′

(
αiM(−x), t

)}
≥ min

{
N ′
(
M(x),

t

αi

)
, N ′

(
M(−x),

t

αi

)}
(3.6)

for all x ∈ V and i ∈ N0.
Further, in view of (N3) and (N4), (3.6) implies that if i+ j > i ≥ 0, then

we have

N

(
Jif(x)− Ji+jf(x),

i+j−1∑
l=i

αlt

|k|l+1

)

= N

(
i+j−1∑
l=i

(
Jlf(x)− Jl+1f(x)

)
,

i+j−1∑
l=i

αlt

|k|l+1

)

≥ min

i+j−1⋃
l=i

{
N

(
Jlf(x)− Jl+1f(x),

αlt

|k|l+1

)}
≥ min

{
N ′
(
M(x), t

)
, N ′

(
M(−x), t

)}
(3.7)
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for all x ∈ V and t > 0. By considering (N5), we get

lim
t→∞

min
{
N ′
(
M(x), t

)
, N ′

(
M(−x), t

)}
= 1.

Hence, for a given real number ε > 0, there exists a t0 > 0 such that

min
{
N ′
(
M(x), t0

)
, N ′

(
M(−x), t0

)}
≥ 1− ε.

Obviously, the series
∞∑
l=0

αl t̃
|k|l+1 converges for all t̃ > t0. It guarantees that,

for an arbitrary δ > 0, there exists an i0 ≥ 0 such that

i+j−1∑
l=i

αl t̃

|k|l+1
< δ (3.8)

for all integers i ≥ i0 and j ∈ N.
By (N5), (3.7) and (3.8), we have

N
(
Jif(x)− Ji+jf(x), δ

)
≥ N

(
Jif(x)− Ji+jf(x),

i+j−1∑
l=i

αl t̃

|k|l+1

)
≥ min

{
N ′
(
M(x), t̃

)
, N ′

(
M(−x), t̃

)}
≥ min

{
N ′
(
M(x), t0

)
, N ′

(
M(−x), t0

)}
≥ 1− ε

for all x ∈ V and all integers i ≥ i0 and j ∈ N. Hence, {Jif(x)} is a Cauchy
sequence in the fuzzy Banach space (Y,N), and we can define a mapping
F : V → Y by

F (x) := N − lim
i→∞

Jif(x)

for all x ∈ V . Moreover, putting i = 0 in (3.7) and using (N5), we have

N
(
f(x)− Jjf(x), t

)
≥ min

{
N ′
(
M(x), (|k| − α)t

)
, N ′

(
M(−x), (|k| − α)t

)}
(3.9)

for all x ∈ V and j ∈ N.
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We will now prove that F satisfies the functional equationDF (x1, x2, . . . , xn)
= 0 for all x1, x2, . . . , xn ∈ V . Using (N4), we obtain

N
(
DF (x1, x2, . . . , xn), t

)
≥ min

{
N

(
D(F − Jjf)(x1, x2, . . . , xn),

t

2

)
,

N

(
DJjf(x1, x2, . . . , xn),

t

2

)}

≥ min
m⋃
i=1

{
N

(
ci(F − Jjf)

(
ai1x1 + · · ·+ ainxn

)
,
t

2m

)
,

N

(
DJjf(x1, x2, . . . , xn),

t

2

)}
(3.10)

for all x1, x2, . . . , xn ∈ V , t > 0 and j ∈ N. The first terms on the right hand
side of (3.10) tend to 1 as j →∞ by the definition of F and (N2).

By a somewhat tedious calculation, we get

DJjf(x1, x2, . . . , xn) =
Df(kjx1, . . . , k

jxn)

2k2j
+
Df(−kjx1, . . . ,−kjxn)

2k2j

+
Df(kjx1, . . . , k

jxn)

2kj
− Df(−kjx1, . . . ,−kjxn)

2kj

for any j ∈ N. Hence, for the last term on the right hand side of (3.10), we
obtain

N

(
DJjf(x1, x2, . . . , xn),

t

2

)
≥ min

{
N

(
Df(kjx1, . . . , k

jxn)

2k2j
,
t

8

)
, N

(
Df(−kjx1, . . . ,−kjxn)

2k2j
,
t

8

)
,

N

(
Df(kjx1, . . . , k

jxn)

2kj
,
t

8

)
, N

(
Df(−kjx1, . . . ,−kjxn)

2kj
,
t

8

)}

for all x1, x2, . . . , xn ∈ V , t > 0 and j ∈ N.
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By (N3), (3.1) and (3.3), we have

N

(
Df(±kjx1, . . . ,±kjxn)

2k2j
,
t

8

)
≥ min

{
N ′
(
ϕ(kjx1, . . . , k

jxn),
|k|2j

4
t

)
,

N ′
(
ϕ(−kjx1, . . . ,−kjxn),

|k|2j

4
t

)}

≥ min

{
N ′
(
ϕ(x1, . . . , xn),

|k|2j

4αj
t

)
, N ′

(
ϕ(−x1, . . . ,−xn),

|k|2j

4αj
t

)}
and

N

(
Df(±kjx1, . . . ,±kjxn)

2kj
,
t

8

)
≥ min

{
N ′
(
ϕ(x1, . . . , xn),

|k|j

4αj
t

)
, N ′

(
ϕ(−x1, . . . ,−xn),

|k|j

4αj
t

)}
for all x1, x2, . . . , xn ∈ V and j ∈ N. Since 0 < α < |k|, by (N5), we can
deduce that the last term of (3.10) also tends to 1 as j →∞. It follows from
(3.10) that

N
(
DF (x1, x2, . . . , xn), t

)
= 1

for all x1, x2, . . . , xn ∈ V and t > 0. By making use of (N2), this implies that
DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V .

We will now estimate the difference between f and F in a fuzzy sense. For
any given x ∈ V and t > 0, choose 0 < ε < 1 and 0 < t′ < t. Since F (x) is the
limit of {Jif(x)}, there is a positive integer i such that

N
(
F (x)− Jif(x), t− t′

)
≥ 1− ε.

By (N4), (N5) and (3.9), we have

N
(
F (x)− f(x), t

)
≥ min

{
N
(
F (x)− Jif(x), t− t′

)
, N
(
Jif(x)− f(x), t′

)}
≥ min

{
1− ε, N ′

(
M(x), (|k| − α)t′

)
, N ′

(
M(−x), (|k| − α)t′

)}
for any x ∈ V and t > 0. Since 0 < ε < 1 is arbitrary, inequality (3.5) is true.

Finally, we will prove the uniqueness of F . Let F ′ : V → Y be another
mapping satisfying DF ′(x1, x2, . . . , xn) = 0 and equalities in (3.4) as well as
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inequality (3.5). Then by (3.4), we get

JiF
′(x) =

F ′(kix) + F ′(−kix)

2k2i
+
F ′(kix)− F ′(−kix)

2ki

=
1

k2i
F ′e(k

ix) +
1

ki
F ′o(k

ix)

= F ′e(x) + F ′o(x)

= F ′(x) (3.11)

for all x ∈ V and i ∈ N. Together with (N3), (N4), (3.1), (3.5), and (3.11), it
holds that

N
(
F ′(x)− Jif(x), t

)
= N

(
JiF

′(x)− Jif(x), t
)

≥ min

{
N

(
(F ′ − f)(kix)

2k2i
,
t

4

)
, N

(
(F ′ − f)(−kix)

2k2i
,
t

4

)
,

N

(
(F ′ − f)(kix)

2ki
,
t

4

)
, N

(
(F ′ − f)(−kix)

2ki
,
t

4

)}

≥ sup
t′<t

min

{
N ′
(
M(x),

(|k| − α)|k|it′

2αi

)
, N ′

(
M(−x),

(|k| − α)|k|it′

2αi

)}
for all x ∈ V and i ∈ N. Observe that, for 0 < α < |k|, the last term
of the above inequality tends to 1 as i → ∞ by (N5). This implies that
lim
i→∞

N
(
F ′(x)− Jif(x), t

)
= 1 and so, we get

F ′(x) = N − lim
i→∞

Jif(x)

for all x ∈ V by (N2). This completes the proof. �

In the following theorem, we assume that k, β and γ are nonzero real
constants with 1 < |k| < β ≤ γ < |k|2.

Theorem 3.2. Let V be a real vector space, (Y,N) be a fuzzy Banach space,
(Z,N ′) be a fuzzy normed space, and let k, β, and γ be nonzero real numbers
such that 1 < |k| < β ≤ γ < |k|2. Let M : V → Z and ϕ : V n → Z be
mappings satisfying the conditions

N ′
(
M(kx), γt

)
≥ N ′

(
M(x), t

)
≥ N ′

(
M(kx), βt

)
,

N ′
(
ϕ(kx1, . . . , kxn), γt

)
≥ N ′

(
ϕ(x1, . . . , xn), t

)
≥ N ′

(
ϕ(kx1, . . . , kxn), βt

)(3.12)

for all x, x1, x2, . . . , xn ∈ V and t > 0. If a mapping f : V → Y satisfies
f(0) = 0 and if inequalities (3.2) and (3.3) hold for all x, x1, x2, . . . , xn ∈
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V and t > 0, then there exists a unique mapping F : V → Y such that
DF (x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ V \{0}, equalities in (3.4) hold
for all x ∈ V , and such that

N
(
F (x)− f(x), t

)
(3.13)

≥ sup
t′<t

min

{
N ′

(
M(x),

t′

1
k2−γ + 1

β−|k|

)
, N ′

(
M(−x),

t′

1
k2−γ + 1

β−|k|

)}

for each x ∈ V and t > 0.

Proof. Let ϕ satisfy the second condition in (3.12) and let Jif : V → Y be a
mapping defined by

Jif(x) :=
f(kix) + f(−kix)

2k2i
+
ki

2

(
f
( x
ki

)
− f

(
−x
ki

))
for all x ∈ V and i ∈ N0. Then, we have J0f(x) = f(x) and by (N3), (3.2)
and (3.12), we get

N

(
Jif(x)− Ji+1f(x),

γit

k2i+2
+
|k|it
βi+1

)
≥ min

{
N

[
−1

2k2i+2

(
f(ki+1x)− k2 + k

2
f(kix)− k2 − k

2
f(−kix)

)
,

γit

2k2i+2

]
,

N

[
−1

2k2i+2

(
f(−ki+1x)− k2 + k

2
f(−kix)− k2 − k

2
f(kix)

)
,

γit

2k2i+2

]
,

N

[
ki

2

(
f
( x
ki

)
− k2 + k

2
f
( x

ki+1

)
− k2 − k

2
f

(
−x
ki+1

))
,
|k|it

2βi+1

]
,

N

[
−k

i

2

(
f

(
−x
ki

)
− k2 + k

2
f

(
−x
ki+1

)
− k2 − k

2
f
( x

ki+1

))
,
|k|it

2βi+1

]}

≥ min

{
N ′
(
M(kix), γit

)
, N ′

(
M(−kix), γit

)
,

N ′
(
M
( x

ki+1

)
,

t

βi+1

)
, N ′

(
M

(
−x
ki+1

)
,

t

βi+1

)}
≥ min

{
N ′
(
M(x), t

)
, N ′

(
M(−x), t

)}
(3.14)
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for all x ∈ V , t > 0 and i ∈ N0. Together with (N4), inequality (3.14) implies
that if i+ j > i ≥ 0 then

N

(
Jif(x)− Ji+jf(x),

i+j−1∑
l=i

(
γl

k2l+2
+
|k|l

βl+1

)
t

)

= N

(
i+j−1∑
l=i

(
Jlf(x)− Jl+1f(x)

)
,

i+j−1∑
l=i

(
γlt

k2l+2
+
|k|lt
βl+1

))

≥ min

i+j−1⋃
l=i

{
N

(
Jlf(x)− Jl+1f(x),

γlt

k2l+2
+
|k|lt
βl+1

)}
≥ min

{
N ′
(
M(x), t

)
, N ′

(
M(−x), t

)}
(3.15)

for all x ∈ V , i ∈ N0 and t > 0. By a similar argument presented after
(3.6), we can define the limit F (x) := N − lim

i→∞
Jif(x) of the Cauchy sequence

{Jif(x)} in the fuzzy Banach space Y . Moreover, putting i = 0 in (3.15), we
have

N
(
f(x)− Jjf(x), t

)
≥ min

N ′
M(x),

t∑j−1
l=0

(
γl

k2l+2 + |k|l
βl+1

)
 ,

N ′

M(−x),
t∑j−1

l=0

(
γl

k2l+2 + |k|l
βl+1

)


≥ min

{
N ′
(
M(x),

(k2 − γ)(β − |k|)
k2 − γ + β − |k|

t

)
,

N ′
(
M(−x),

(k2 − γ)(β − |k|)
k2 − γ + β − |k|

t

)}
(3.16)

for each x ∈ V and j ∈ N.
In order to prove that F satisfies DF (x1, x2, . . . , xn) = 0, it suffices to show

that the last term of (3.10) in Theorem 3.1 tends to 1 as j → ∞. By (N3),
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(N4), (3.3) and (3.12), we get

N

(
DJjf(x1, x2, . . . , xn),

t

2

)
≥ min

{
N

(
Df(kjx1, . . . , k

jxn)

2k2j
,
t

8

)
,

N

(
Df(−kjx1, . . . ,−kjxn)

2k2j
,
t

8

)
,

N

(
kj

2
Df
(x1
kj
, . . . ,

xn
kj

)
,
t

8

)
,

N

(
−kj

2
Df

(
−x1
kj

, . . . ,
−xn
kj

)
,
t

8

)}

≥ min

{
N ′
(
ϕ(x1, . . . , xn),

|k|2j

4γj
t

)
,

N ′
(
ϕ(−x1, . . . ,−xn),

|k|2j

4γj
t

)
,

N ′
(
ϕ(x1, . . . , xn),

βj

4|k|j
t

)
,

N ′
(
ϕ(−x1, . . . ,−xn),

βj

4|k|j
t

)}

for all x1, x2, . . . , xn ∈ V , j ∈ N and t > 0.
Observe that each term on the right hand side of the above inequality tend

to 1 as j → ∞, since |k| < β ≤ γ < |k|2. Hence, together with the similar
argument after (3.11), we can say that

DF (x1, x2, . . . , xn) = 0

for all x1, x2, . . . , xn ∈ V . Recall that the inequality (3.5) in Theorem 3.1
follows from (3.9). By the same argument, the validity of inequality (3.13)
follows from (3.16).

Let us prove the uniqueness of F . We assume that F ′ is another mapping
satisfying DF ′(x1, x2, . . . , xn) = 0, (3.4) and (3.13). Then by (3.4), we get
(3.11) for all x ∈ V and i ∈ N. Together with the definition of Ji, (N3), (N4)
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and (3.13), we further have

N
(
F ′(x)− Jif(x), t

)
= N

(
JiF

′(x)− Jif(x), t
)

≥ min

{
N

(
(F ′ − f)(kix)

2k2i
,
t

4

)
, N

(
(F ′ − f)(−kix)

2k2i
,
t

4

)
,

N

(
ki

2
(F ′ − f)

( x
ki

)
,
t

4

)
, N

(
ki

2
(F ′ − f)

(
−x
ki

)
,
t

4

)}

≥ min

{
sup
t′<t

min

{
N ′

(
M(x),

(
k2

γ

)i
t′

2
k2−γ + 2

β−|k|

)
,

N ′

(
M(−x),

(
k2

γ

)i
t′

2
k2−γ + 2

β−|k|

)}
,

sup
t′<t

min

{
N ′

(
M(x),

(
β

|k|

)i t′

2
k2−γ + 2

β−|k|

)
,

N ′

(
M(−x),

(
β

|k|

)i t′

2
k2−γ + 2

β−|k|

)}}
for all x ∈ V , i ∈ N and t > 0. Since

lim
i→∞

(
k2

γ

)i
= lim

i→∞

(
β

|k|

)i
=∞,

both terms on the right hand side of the above inequality tend to 1 as i→∞
by (N5). This implies that lim

i→∞
N
(
F ′(x) − Jif(x), t

)
= 1 and so F ′(x) =

N − lim
i→∞

Jif(x) for all x ∈ V by (N2). �

In the following theorem, let k and δ be nonzero real constants with 1 <
|k| < |k|2 < δ. Under appropriate conditions, we will prove the generalized
Hyers-Ulam fuzzy stability of the functional equation (1.1).

Theorem 3.3. Let V be a real vector space, (Y,N) a fuzzy Banach space,
(Z,N ′) a fuzzy normed space, and let k and δ be nonzero real numbers such
that |k| > 1 and |k|2 < δ. Let M : V → Z and ϕ : V n → Z be mappings
satisfying the inequalities

N ′
(
δM(x), t

)
≥ N ′

(
M(kx), t

)
,

N ′
(
δϕ(x1, x2, . . . , xn), t

)
≥ N ′

(
ϕ(kx1, kx2, . . . , kxn), t

) (3.17)



366 Y.-H. Lee and S.-M. Jung

for all x, x1, x2, . . . , xn ∈ V and t > 0. If a mapping f : V → Y with f(0) = 0
satisfies inequalities (3.2) and (3.3) for all x, x1, x2, . . . , xn ∈ V and t > 0,
then there is a unique mapping F : V → Y such that DF (x1, x2, . . . , xn) = 0
for all x1, x2, . . . , xn ∈ V \{0}, such that equalities in (3.4) hold for all x ∈ V ,
and such that

N
(
F (x)− f(x), t

)
≥ sup

t′<t
min

{
N ′
(
M(x), (δ − k2)t′

)
, N ′

(
M(−x), (δ − k2)t′

)}
(3.18)

for each x ∈ V and t > 0.

Proof. Assume that ϕ satisfies the second condition in (3.17) and define Jif :
V → Y by

Jif(x) :=
k2i

2

(
f
( x
ki

)
+ f

(
−x
ki

))
+
ki

2

(
f
( x
ki

)
− f

(
−x
ki

))
for all x ∈ V and i ∈ N0. Then, by (N3), (3.2) and (3.17), we have J0f(x) =
f(x) and

N

(
Jif(x)− Ji+1f(x),

k2it

δi+1

)
≥ min

{
N

[
k2i + ki

2

(
f
( x
ki

)
− k2 + k

2
f
( x

ki+1

)
− k2 − k

2
f

(
−x
ki+1

))
,

(k2i + ki)t

2δi+1

]
,

N

[
k2i − ki

2

(
f

(
−x
ki

)
− k2 + k

2
f

(
−x
ki+1

)
− k2 − k

2
f
( x

ki+1

))
,

(k2i − ki)t
2δi+1

]}

≥ min

{
N ′
(
M
( x

ki+1

)
,
t

δi+1

)
, N ′

(
M

(
−x
ki+1

)
,
t

δi+1

)}
≥ min

{
N ′
(
M(x), t

)
, N ′

(
M(−x), t

)}
(3.19)

for all x ∈ V , i ∈ N0 and t > 0.
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Similarly as the previous theorems, we define the mapping F : V → Y by
F (x) := N − lim

i→∞
Jif(x) and obtain the inequality

N
(
f(x)− Jjf(x), t

)
≥ min

{
N ′

(
M(x),

t∑j−1
l=0

k2l

δl+1

)
, N ′

(
M(−x),

t∑j−1
l=0

k2l

δl+1

)}
(3.20)

for all x ∈ V , j ∈ N and t > 0. Notice that by (3.3) and (3.17), we have

N

(
DJif(x1, x2, . . . , xn),

t

2

)
≥ min

{
N

(
k2i + ki

2
Df
(x1
ki
, . . . ,

xn
ki

)
,
t

4

)
,

N

(
k2i − ki

2
Df

(
−x1
ki

, . . . ,
−xn
ki

)
,
t

4

)}

≥ min

{
N ′
(
ϕ(x1, . . . , xn),

δit

4(k2i + ki)

)
,

N ′
(
ϕ(−x1, . . . ,−xn),

δit

4(k2i − ki)

)}
for all x1, x2, . . . , xn ∈ V and t > 0. Since δ > k2, each term on the right
hand side tends to 1 as i→∞, which implies that the last term tends to 1 as
i→∞. Therefore, we can say that DF (x1, . . . , xn) = 0. Moreover, using the
similar argument after (3.9) in Theorem 3.1, we obtain inequality (3.18) from
(3.20). It now remains to prove the uniqueness of F . Assume that F ′ : V → Y
is another mapping satisfying DF ′(x1, x2, . . . , xn) = 0, (3.4) and (3.18). Then
by (3.4), (3.11) holds for all x ∈ V and i ∈ N. By (3.18), we get

N
(
F ′(x)− Jif(x), t

)
= N

(
JiF

′(x)− Jif(x), t
)

≥ min

{
N

(
k2i

2
(F ′ − f)

( x
ki

)
,
t

4

)
, N

(
k2i

2
(F ′ − f)

(
−x
ki

)
,
t

4

)
,

N

(
ki

2
(F ′ − f)

( x
ki

)
,
t

4

)
, N

(
ki

2
(F ′ − f)

(
−x
ki

)
,
t

4

)}

≥ sup
t′<t

min

{
N ′
(
M(x),

δi

2k2i
(δ − k2)t′

)
, N ′

(
M(−x),

δi

2k2i
(δ − k2)t′

)}
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for all x ∈ V , i ∈ N and t > 0. Observe that, for δ > k2, the last term tends
to 1 as i → ∞ by (N5). This implies that lim

i→∞
N(F ′(x) − Jif(x), t) = 1 and

so F ′(x) = N − lim
i→∞

Jif(x) for all x ∈ V by (N2). �

4. Conclusions

We prove a general fuzzy stability theorem that can be easily applied to the
(generalized) Hyers-Ulam fuzzy stability of a large class of functional equations
of the form (1.1) which includes quadratic-additive type functional equations.
This fuzzy stability theorem allows us to skip some tedious proofs repeatedly
appearing in the fuzzy stability problems for various functional equations in-
cluding the quadratic, the additive, and the quadratic-additive type functional
equations.
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