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Abstract. We will investigate a fuzzy version of Hyers-Ulam stability for a class of functional

m

equations of the form, > cif(a“:vl +aioxo+-- -+ainxn) = 0, which includes the quadratic-
i=1

additive functional equations.

1. INTRODUCTION

The stability problem of functional equations was first formulated by Ulam
[10] in 1940. In the following year, Hyers [3] gave a partial answer to the Ulam’s
problem when the related functional equation is the Cauchy additive functional
equation, namely f(z +y) = f(z) + f(y). Since then, the stability problems
of functional equations have been extensively investigated by a number of
mathematicians (see [2, 9]).

In 2008, Mirmostafaee and Moslehian [7, 8] proved a fuzzy version of Hyers-
Ulam stability for the Cauchy additive functional equation and the quadratic
functional equation, f(x +y) + f(x —y) = 2f(x) + 2f(y).
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For (real) vector spaces V and W, a mapping f : V — W is called an addi-
tive mapping (or a quadratic mapping) provided f satisfies the Cauchy addi-
tive functional equation (or the quadratic functional equation) for all z,y € V.
Further, a mapping f : V — W will be called a quadratic-additive mapping if
and only if f is represented by the sum of an additive mapping and a quadratic
mapping. Similarly, a functional equation will be called a quadratic-additive
type functional equation if and only if all of its solutions are quadratic-additive
mappings. For example, the mapping f(z) = az? + bz is a quadratic-additive
mapping.

In the study of fuzzy stability problems for quadratic-additive type func-
tional equations, we routinely follow out a well known procedure (for example,
the direct method) even though we are under different conditions. We can find
a lot of references concerning fuzzy version of the stability of functional equa-
tions (see [4, 5, 6]).

For a given mapping f : V — W, let us define Df : V" — W by

m
Df(x1,22,...,2,) 1= Zcif(ailfUl + appro + -+ amxn)
i=1
for all x1,x2,...,2, € V, where m is a positive integer and ¢; and a;; are real
constants. We remark that D(f + ¢g) = Df + Dg and D(cf) = ¢(Df) for all
mappings f,g:V — W and constants c € R.
In this paper, we prove a general fuzzy stability theorem that can be easily
applied to the (generalized) Hyers-Ulam fuzzy stability of a large class of
functional equations of the form

Df(wla:EQv"'vxn):O? (11)

which includes quadratic-additive type functional equations. Indeed, this
fuzzy stability theorem may allow us to skip some tedious proofs repeatedly
appearing in the fuzzy stability problems for various functional equations in-
cluding the quadratic, the additive, and the quadratic-additive type functional
equations.

2. PRELIMINARIES

We introduce the definition of fuzzy normed spaces to prepare a reasonable
fuzzy version of stability of the quadratic-additive type functional equation
(1.1).

Definition 2.1. ([1]) Let X be a real vector space. A function N : X x R —

[0, 1] is said to be a fuzzy norm on X if for all z,y € X and all s,t € R,

(N1) N(z,c) =0 for all ¢ < 0;
(N2) z =0 if and only if N(z,c) =1 for all ¢ > 0;
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(N3) N(cz,t) = N(z, ﬁ) for all ¢ # 0;
(N4) Nz +y,5+4) > min{N(z, 5), N(3,£)}:
(N5) N(x,-) is a non-decreasing function on R and lim N(z,t) = 1.

t—o00

In this case, the pair (X, N) is called a fuzzy normed space.

Example 2.2. ([7]) Let (X, ||-||) be a real normed space. We can easily verify
that for each k& > 0,

—— (fort > 0),
No(wt) = | T+ K]l

0 (for t <0)

defines a fuzzy norm on X.

Let (X, N) be a fuzzy normed space and let {x,} be a sequence in X. Then

{z,} is said to be convergent if there exists an = € X such that li_}m N(z, —
n—oo

z,t) =1 for all t > 0. In this case, x is called the limit of the sequence {x,}
and we denote it by N — li_>m xn = x. A sequence {z,} in X is called Cauchy
n—oo

if for each € > 0 and each ¢ > 0 there exists an ng such that for all integers
n > ng and all integers p > 0 we have N(2y4p — 2, t) > 1 —c.

It is well known that every convergent sequence in a fuzzy normed space is
Cauchy. Conversely, if each Cauchy sequence converges, then the fuzzy norm
is said to be complete and the fuzzy normed space is called a fuzzy Banach
space.

3. Fuzzy STABILITY OF (1.1)

Throughout this section, let V' be a real vector space and (Y, N) be a fuzzy
Banach space. For a given mapping f : V' — Y, we use the following notations

Df(z1,22,...,70) = Zcz'f(ailim + apxy + -+ ainxn)a
i=1
fla) + f(—=
folay = IO
flx) = f(==z
i) = T S)
for all z1,x2,..., 2y, 2,y € V, where a;; and ¢; are fixed real numbers.

Theorem 3.1. Let V' be a real vector space, (Y, N) be a fuzzy Banach space,
(Z,N') be a fuzzy normed space, and let k and a be real constants with |k| > 1
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and 0 < a < |k|. Let M : V — Z and ¢ : V" — Z be mappings satisfying the
inequalities

N'(M(kx), t) > N'(aM(z), t), (3.1)
3.1
N’(cp(k:azl,...,k:xn), t) > N’(agp(azl, cey X)), t)

forall x,x1,x9,..., 2, € V and t > 0. If a mapping f:V — Y with f(0) =0
satisfies

K2+ k k2 —k
e L) R L C B CE)
and
N(Df(z1,22,...,2p), t) > N'(p(x1,22,...,2p), t) (3.3)
for all x,x1,x9,...,2, € V and t > 0, then there exists a unique mapping

F:V =Y such that DF (xy1,22,...,2,) =0 for all x1,z2,...,x, € V\{0},
F,(kz) = kK*F,(z) and F,(kz) = kF,(z) (3.4)
for all x € V, and moreover such that

N(F(z) - f(z),1)
> sup min {N/(M(:E), (|k] — a)t/)7 N’(M(—x), (|k] — a)t’)} (3.5)

<t
for each x € V and t > 0.

Proof. For a given mapping ¢ : V™" — Z satisfying the second condition in
(3.1), we define a mapping J;f : V — Y by

Bty o= LEDEIERD) | ) — k)

for all x € V and all i € Ny, where we set Ny := NU{0}. Then Jyf(z) = f(z)
and moreover

Jif(x) — Jig1f()

Etl 41 ; k2 +k ; k> —k ;
= (10t1) - S i) - S pi )
i+1 ) 2 ) 2 )
+ e (70w = S i) - S )

forallz € V.
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Since |Ic|f+1 = |];:r21ii;| +|2k22+2 Lt together with (N3), (N4), (3.1) and (3.2),

the last equality implies that

N(Jif(m) — Jit1f (), |/<;|i+1)

K41 : 4k, . k* —k ;
> min {N[_ka; <f(k:“‘156) - T—I—f(k;zx) B f(_k;las)> ,

ki—i—l 1
Cutsih}

2 k2i+2

kil —1 , 2+ k 4 Bk
N|:2k;21+2 (f(—kZJrll') _ T_{—f(_kzm) _ 5 f(kzx)> ’
W“—”t] }
Ok 2i+2
~ min {N(f(k”lx) S i) - ), ).

2 2 _ .
N (k) - S peria) - B E ). o }
(
(

> min {N’ <M(a:), O’j) N <M(—a:), O’j) } (3.6)

for all z € V and 7 € Ng.
Further, in view of (N3) and (N4), (3.6) implies that if ¢ 4+ j >4 > 0, then
we have

i+j—1
(Jf( —Jivif Z |k;|l+1>
i+j—-1 Tl
:N( Z (Jif (@) = Jpg1f(x Z \k\l“)

l=t

itj—1 o't
> min U { (Jlf — Ji1f(z), |k|l+1> }

> min {N’(M(m), t), N'(M(~2),1) } (3.7)
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for all x € V and t > 0. By considering (N5), we get

lim min {N’(M(a:),t), N’(M(—a:),t)} =1

t—o0

Hence, for a given real number € > 0, there exists a ¢y > 0 such that
min { V' (M(2), to), N'(M(=2),t0) } = 1 - <.

Obviously, the series Z | k\ll+1 converges for all £ > to. It guarantees that,

for an arbitrary § > 0, there exists an 79 > 0 such that

i+j—1 ~

Z ‘k|l+1 (3.8)

for all integers 7 > ig and j € N.
By (IN5), (3.7) and (3.8), we have

i+7—1 ~
(Jf( )_ H-jf( ) 5) > N<sz( - H-Jf Z ]k|l+1>

> min {N'(M(2),1), N’(M ~a).0)}
> min {N’(M(x),to), N’(M(—x),to)}
> 1—c¢

for all z € V and all integers ¢ > ip and j € N. Hence, {J;f(z)} is a Cauchy
sequence in the fuzzy Banach space (Y,N), and we can define a mapping
F:V =Y by

F(z):= N — lim J;f(x)

1—00

for all € V. Moreover, putting ¢ = 0 in (3.7) and using (N5), we have

N(f(@) = Jjf(x).1)
> min {N'(M(2), (k| - a)t), N'(M(~a), (K| = e)t)}  (3.9)

forallz € V and j € N.
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We will now prove that F satisfies the functional equation DF (1, z2, ..., Ty)
=0 for all z1,x9,...,z, € V. Using (N4), we obtain

N(DF(xl,xg, . ,:vn),t)

> min {N(D(F —Jif) (@1, 22,...,20), ;) ,
N(Djjf(:(}l,xg, ey xn), ;) }
e t
> mlni:LJl {N(CZ(F — ij)(ailxl 4+ .4 amﬂfn), 2771) ,

N(Dij(xl,xg,...,xn), ;) } (3.10)

for all x1,x2,...,2, € V,t >0 and j € N. The first terms on the right hand
side of (3.10) tend to 1 as j — oo by the definition of F' and (IN2).
By a somewhat tedious calculation, we get

Df(kizy,....Kz,) Df(=Kz,...,—Kx,
Dij(iL’l,ZL‘Q, .. .,.%'n) = ( 2k2] ) + 2k2] )
n Df(Kzy,... Kxy) B Df(=kwxy,...,—Kz,)
2kI 2kJ

for any 7 € N. Hence, for the last term on the right hand side of (3.10), we
obtain

t
N(Dij(:vl,xg, cee ,xn), )

2
J J —J _kJ
> mind N Df(k:vl,..'.,k:vn)’é N Df( kxl,..‘., kxn),f ,
2k% 8 2k2 8
N Df(k:jacl,.j.,kj:vn)vf N Df(—kjwl,.‘..,—ijnxf
2k) 8 2kJ 8

for all x1,x9,...,2p, € V,t>0and j € N.
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By (IV3), (3.1) and (3.3), we have
N<Df(:|:ij1, o ERI2y) t)

2k2 '8

, i P L
>min¢ N'| (K zq,..., K xy), 1 t),

/ j j |k[*7
N'( (=K x1,...,—k xn),Tt

> min ¢ N’ o(x Tn) ’L‘%t N'( p(—= —Tn) |L’2jt
> ITREEE n7404.] 5 Tyevvy n74aj

N<Df(ik;jx1,...,iijn) t)

and

2ki '8

> min N'( p(x1,...,2,) ’k—‘j.t N'(p(=x1,...,—xy) Mt
- b ) ,40{] b ) ) ’4&]

for all z1,z9,...,2, € V and j € N. Since 0 < «a < [|k|, by (N5), we can
deduce that the last term of (3.10) also tends to 1 as j — oo. It follows from
(3.10) that

N(DF(xl,xg,.. . ,wn),t) =1

for all z1,x9,...,2, € V and t > 0. By making use of (N2), this implies that
DF(xy,x9,...,2,) =0 for all z1,29,...,2, € V.

We will now estimate the difference between f and F in a fuzzy sense. For
any given x € V and ¢t > 0, choose 0 < e <1 and 0 < ' < t. Since F(z) is the
limit of {J; f(x)}, there is a positive integer i such that

N(F(z) = Jif(z),t —t') > 1—e.
By (N4), (N5) and (3.9), we have
N(F(z) - f(z),t)
> min { N (F(x) = Jif (2),¢ = '), N(Jif (2) = f(2),¥) }
> min {1 -, N'(M(2), (k| - a)t'), N'(M(~a), (K - a)t') }

for any x € V and ¢t > 0. Since 0 < € < 1 is arbitrary, inequality (3.5) is true.
Finally, we will prove the uniqueness of F. Let I’ : V — Y be another
mapping satisfying DF'(z1,xz2,...,2,) = 0 and equalities in (3.4) as well as
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inequality (3.5). Then by (3.4), we get
F'(k'z) + F'(=kiz) F'(k'z) — F'(—k'z)
2k * 2k
= LF’(k’av) + iF’(k‘Z:L‘)
k2 € ki e
= Fi(z) + Fy(x)
= F'(2) (3.11)

for all x € V and i € N. Together with (N3), (N4), (3.1), (3.5), and (3.11), it
holds that

N(F'(z) — Jif(z),1)
= N(JiF'(z) — Jif(2),t)

me{N<<F'—f><kix> t>7N((F’—f)(—k"’w) t)j

JZF/(m') =

2k "4 2k "4

(). ()

- {N, (3060, LD | (g, (L) }

vt 20 2a

for all x € V and i € N. Observe that, for 0 < a < |k|, the last term
of the above inequality tends to 1 as ¢ — oo by (N5). This implies that
lim N(F'(z) — J;f(z),t) = 1 and so, we get

1—00

F'(z) = N — lim J; f(z)
1—00
for all x € V by (IN2). This completes the proof. O

In the following theorem, we assume that k, S and = are nonzero real
constants with 1 < |k| < 8 < v < |k|%.

Theorem 3.2. Let V' be a real vector space, (Y, N) be a fuzzy Banach space,
(Z,N'") be a fuzzy normed space, and let k, 3, and v be nonzero real numbers
such that 1 < |k| < B <~y < |k|?>. Let M : V — Z and ¢ : V" — Z be
mappings satisfying the conditions
N'(M(kz),~t) > N'(M(z),t) > N'(M(kz), 5t),
(3.12)

N’(g@(k::zl, A kxn),’yt) > N’(gp(xl, . ,xn),t) > N’(go(kxl, oo k), ﬁt)
for all x,x1,x9,...,20n € V and t > 0. If a mapping f : V — Y satisfies
f(0) = 0 and if inequalities (3.2) and (3.3) hold for all x,x1,2z9,...,2, €
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V and t > 0, then there exists a unique mapping F' : 'V — Y such that

DF(z1,x2,...,2n) =0 for all x1,z2,...,2, € V\{0}, equalities in (3.4) hold
for all x € V, and such that

N(F(x) = f(x),t) (3.13)

t/ 4
2 Supmln{N’ <M(IE), 11) 5 N/ (M(—Jf), 11) }
<t k2—’Y + ﬂ—'k" k2_,y + —‘k)‘

for each x € V and t > 0.

Proof. Let ¢ satisfy the second condition in (3.12) and let J;f : V — Y be a
mapping defined by

o) = DL By (22

for all x € V and i € Ny. Then, we have Jyf(z) = f(x) and by (N3), (3.2)
and (3.12), we get

it k|t
N<Jif(x) — Jis1f(x), # + ‘52|+1>

: -1 ; +k, k? —k ; vt
Zmln{N[W(f(k+le)—2f(k$)— 5 f(—kif))azkzm],

1 i+1 K+ k ; K2~k , ., it
N2k;2i+2<f(_k ) - 9 f(=k'z) - B f(k'z) ' 5p2it3 |

[k x k? +k x -k [ —x \k[it
N_E (f(kl> 2 f(k:iH) 9 f(ki+1)> , 25i+1] ,

[ K (—a\ Ktk —a\ K-k, K|t
N__2<f<ki> 2 f<ki+1> 2 f(ki+l)> ’ 261'4-1] }
2 min {N’ (M(K'z),~'t), N'(M(—k'z),~t),

, x t , - t
v () ) (15 ) |

> min {N’(M(x),t), N’(M(—:c),t)} (3.14)
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forall z € V, t > 0 and i € Ny. Together with (N4), inequality (3.14) implies
that if ¢« +7 >4 > 0 then

=t

i+j—1 i+j—1 ’Ylt ’k’lt
= N( Z (Jlf(x) - ']H-lf(x))v Z <k2l+2 + Bl—‘rl))

=t l=t

R L]
N<sz($) - Ji—l—jf(m)’ Z <k_21+2 + ﬁl-ﬁ-l)t>

i+j—1
> min U { <Jlf — Jip1f(x), k‘21+2 + gﬂj) }
> min {N/(M(x),t),N/(M(—x),t)} (3.15)

for all z € V, ¢ € Ny and t > 0. By a similar argument presented after
(3.6), we can define the limit F'(x) := N — lim J; f(x) of the Cauchy sequence
1—00

{Jif(x)} in the fuzzy Banach space Y. Moreover, putting ¢ = 0 in (3.15), we
have

t
> min{ N’ [ M(z), — T ,
>iso (ik;m + W)
t
N'| M(—z), — T
Zg:o <k2l+2 + 51+1>

- min {N, <M(x)7 (k* = 9)(8 - k\)t) |

By +f- [k
/ (k* =) (B — |k])
N <M(—:n), i Tk t) } (3.16)

for each z € V and j € N.
In order to prove that F satisfies DF (z1, 29, ..., x,) = 0, it suffices to show
that the last term of (3.10) in Theorem 3.1 tends to 1 as j — oco. By (N3),
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(N4), (3.3) and (3.12), we get

t
N(‘D']jf(xlva, o 7‘TTL)7 2>

J J
> mind N Df(k:z:l,..‘.,k:z:n),f ’
2k2i 8

2k2 "8

v(5or(@ 2. ).

Df(—Kuxy,...,—kz,) t)

> min{ N’ o(x Tn) ’k—‘%t
= 1y---54n), 4/}/] )
k[

/
N <(10(_x1’ ccy _xn)a 4,7] t) 9

51‘
(1, ..., Ty), 4|k|jt ,

J
N’(gp(—xl, ey —Tn), 4|ﬂk’jt> }

for all x1,x9,...,2p, € V,j€Nandt > 0.

Observe that each term on the right hand side of the above inequality tend
to 1 as j — oo, since |k| < B < v < |k|?. Hence, together with the similar
argument after (3.11), we can say that

DF(ﬂj‘l,IEQ,...,ZL‘n) =0

for all z1,z9,...,2, € V. Recall that the inequality (3.5) in Theorem 3.1
follows from (3.9). By the same argument, the validity of inequality (3.13)
follows from (3.16).

Let us prove the uniqueness of F'. We assume that F’ is another mapping
satisfying DF'(x1,x2,...,2,) = 0, (3.4) and (3.13). Then by (3.4), we get
(3.11) for all x € V and i € N. Together with the definition of J;, (N3), (N4)
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and (3.13), we further have
N(F'(z) — Jif(z),t)
= N(JZF/(.%’) — Jlf(l‘),t)

- min {N<<F'—f>,<kix> t>7 N((F’—f)(,—k"w) t)’

2k2 "4 2k% "4
N W(F—f)(x) AN i(F’—f) A
2 )4 ) 2 ki )74
tl
> min ¢ supmin { N[ M (z —5 |
<t 52— +5—7\k\
i Y
k2= " B—[K]
t/
sup min M(x — |,
<t ’k‘ +5%|k|
M (- -
2
|"” P T

forallz € V, i€ Nand t > 0. Since

(N (B
lim | — | =lim (| — | = o0,
i—oo \ 7Y i—oo \ |kl
both terms on the right hand side of the above inequality tend to 1 as ¢ — oo

by (N5). This implies that lim N(F'(z) — J;f(z),t) = 1 and so F'(z) =
1—00
N — lim J;f(z) for all z € V by (N2). O
1—00

In the following theorem, let & and d be nonzero real constants with 1 <
|k| < |k|?> < 6. Under appropriate conditions, we will prove the generalized
Hyers-Ulam fuzzy stability of the functional equation (1.1).

Theorem 3.3. Let V be a real vector space, (Y,N) a fuzzy Banach space,
(Z,N") a fuzzy normed space, and let k and § be nonzero real numbers such
that |k| > 1 and |k|> < 6. Let M : V. — Z and ¢ : V™ — Z be mappings
satisfying the inequalities

N'(6M(z),t) > N'(M(kz),t),

(3.17)
N’(&p(l‘l,xg, cey X)), t) > N’(go(kxl, kxo, ..., k::z:n),t)
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forall z,x1,29,...,2, € V and t > 0. If a mapping f : V — Y with f(0) =0
satisfies inequalities (3.2) and (3.3) for all x,x1,29,...,2 € V and t > 0,
then there is a unique mapping F : V — Y such that DF (x1,x2,...,2,) =0

for all x1,xa,...,x, € V\{0}, such that equalities in (3.4) hold for allx € V,
and such that

N(F(x) — f(=), t)
> supmin {N’(M(w), (6 — K3)), N'(M(~z), (0 — k:2)t’)} (3.18)

for each x € V and t > 0.

Proof. Assume that ¢ satisfies the second condition in (3.17) and define J; f :
V =Y by

1= () 41 (2)) A (1) -1 (32))

for all z € V and ¢ € Ng. Then, by (N3), (3.2) and (3.17), we have Jyf(z) =
f(x) and

k?i
N(Jif(a:) — Jip1f(), (51+§>

zmm{N[kz";’“ (7(5) - S () - 5525 (22)

(K% + k')t
5'L+1

[kzl Z<f( :n) k2+kf<kl+1>_k22_kf<ki1>>’
(kzlsz)t:| }
207+1

) , T t , —T t

> min { N'(M(2),1), N'(M(~2).1) } (3.19)

forallx € V, i€ Ngand t > 0.
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Similarly as the previous theorems, we define the mapping F' : V — Y by
F(z):= N — lim J;f(x) and obtain the inequality
1—00

N(f(z) = J;f(@),¢)

. t t
> mln{N/<M( ) =T ) ; N/<M(_':U)7j1k2l> } (3:20)
21— 3T 1=0 17T

for all z € V, j € N and ¢t > 0. Notice that by (3.3) and (3.17), we have

N(DJif(xl,xg,...,xn), ;)

Zmin{N<k2i;kin(2,...,:ZZ), i)
N(k%;kil)f(_]:;ly---a —]:;’n> ’ i) }

2min{N’<<p(x1,...,xn),Zw€§im>y

N/<(p(_x1,...,—$n)74(k:§ikfi)) }

for all x1,x9,...,2, € V and t > 0. Since § > k2, each term on the right
hand side tends to 1 as ¢ — oo, which implies that the last term tends to 1 as
i — 00. Therefore, we can say that DF(z1,...,x,) = 0. Moreover, using the
similar argument after (3.9) in Theorem 3.1, we obtain inequality (3.18) from
(3.20). It now remains to prove the uniqueness of F. Assume that F’ : V — Y
is another mapping satisfying DF’(z1,x2,...,2,) = 0, (3.4) and (3.18). Then
by (3.4), (3.11) holds for all x € V and i € N. By (3.18), we get

N( () = Jif (x),1)
N(LF (z) - Jif(z),1)

i (k% g),D,N(gﬂFf_f)(;),;),
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forall z € V, i € N and t > 0. Observe that, for § > k2, the last term tends
to 1 as ¢ — oo by (N5). This implies that lim N(F'(x) — J;f(z),t) = 1 and
1— 00

so F'(x) = N — lim J;f(x) for all x € V by (N2). O
1—00

4. CONCLUSIONS

We prove a general fuzzy stability theorem that can be easily applied to the
(generalized) Hyers-Ulam fuzzy stability of a large class of functional equations
of the form (1.1) which includes quadratic-additive type functional equations.
This fuzzy stability theorem allows us to skip some tedious proofs repeatedly
appearing in the fuzzy stability problems for various functional equations in-
cluding the quadratic, the additive, and the quadratic-additive type functional
equations.
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