APPROXIMATELY QUADRATIC MAPPINGS IN NON-ARCHIMEDEAN FUZZY NORMED SPACES

Gwang Hui Kim ${ }^{1}$ and Hwan-Yong Shin ${ }^{2}$
${ }^{1}$ Department of Mathematics, Kangnam University, Yongin, Gyeonggi, 16979, Republic of Korea
e-mail: ghkim@kangnam.ac.kr
${ }^{2}$ Department of Mathematics, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, Republic of Korea e-mail: hyshin31@cnu.ac.kr

Abstract

In this paper, we present the stability results and alternative stability results concerning the quadratic functional equation in non-Archimedean fuzzy normed spaces. As corollaries, we obtain the stability results of the quadratic functional equation in nonArchimedean normed spaces.

1. Introduction

A classical problem which was raised by Ulam [33] in the theory of functional equations is the following: "When is true that a function, which approximately satisfies a functional equation must be close to an exact solution of the equation?" If the problem accepts a unique solution, we say the equation is stable. In 1941, Hyers [14] considered the case of approximate additive mappings satisfying the Cauchy difference controlled by a positive constant in Banach spaces. Bourgin [5] and Aoki [1] treated this problem for additive mappings controlled by unbounded functions. In [30], Rassias provided a generalization of Hyers' theorem for linear mappings which allows the Cauchy difference to be unbounded. Gǎvruta [10] then generalized these theorems

[^0]for additive mappings controlled by the unbounded Cauchy difference with regular conditions. Subsequently, the stability problem of various functional equations has been studied by a number of authors [12, 20, 21, 23]. Taking into consideration a lot of influence of Ulam and Hyers, the stability of functional equation is called by Hyers-Ulam stability. Hyers-Ulam stability of the quadratic functional equation
\[

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

\]

was first proved by Skof for mapping $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space [32]. In the papers [7, 8], Czerwik proved the Hyers-Ulam stability of the quadratic functional equation (1.1).

In particular, Kannappan [16] introduced the following functional equation

$$
\begin{equation*}
f(x+y)+f(y+z)+f(z+x)=f(x+y+z)+f(x)+f(y)+f(z) \tag{1.2}
\end{equation*}
$$

and proved that a function on a real vector space is a solution of (1.2) if and only if there exist a symmetric biadditive function B and an additive function A such that $f(x)=B(x, x)+A(x)$.

In [2], the authors proved the generalized Hyers-Ulam stability of the functional equation

$$
f(x-y)+f(y-z)+f(z-x)+f(x+y+z)=3[f(x)+f(y)+f(z)]
$$

which is equivalent to the quadratic equation (1.1).
Recently, Kim and Shin [22] proved the general solution of the following quadratic functional equation

$$
\begin{align*}
& f(x+n y)+f(y+n z)+f(z+n x) \tag{1.3}\\
& =n f(x+y+z)+\left(n^{2}-n+1\right)[f(x)+f(y)+f(z)]
\end{align*}
$$

and investigated the Hyers-Ulam stability of the equation (1.3) in some spaces, where $n(\neq 0, \pm 1)$ is an integer.

In 1897, Hensel [13] discovered the p-adic numbers as a number theoretical analogues of power seires in complex analysis. The important examples of nonArchimedean spaces are p-adic numbers which do not satisfy the Archimedean property. During the last three decades the theory of non-Archimedean spaces has gained the interest of physicists for their research, in particular the problems that emerge in quantum physics, p-adic strings and superstrings [19].

Katsaras [17] introduced the concept of a fuzzy norm on a linear space in 1984, in the same year Wu and Fang [35] introduced a notion of fuzzy normed space to give a generalization of the Kolmogoroff normalized theorem for fuzzy topological linear spaces. In 1992, Felbin [9] introduced an alternative definition of a fuzzy norm on a linear space with an associated metric of Kaleva and Seikkala type [15]. Xiao and Zhu [34] found the lonear topological structures of fuzzy normed spaces. In 1994, Cheng and Mordeson introduced a definition
of a fuzzy norm on a linear space in such a way that the corresponding induced fuzzy metric is of Kramosil and Michalek type [28]. In 2003, Bag and Samanta [3] modified the definition of Cheng and Mordeson [6] by removing a regular condition. Recently many various results have been investigated in this topic (see $[24,25,26,27]$ and references therein).

In this paper, we study the Hyers-Ulam stability and alternative the HyersUlam stability for the functional equation (1.3) in the setting of non-Archimedean fuzzy normed spaces. As corollaries, we obtain the stability results and alternative stability results of the quadratic functional equation (1.3) in nonArchimedean normed spaces.

2. Preliminaries

In this section we recall some notations and definitions of a non-Archimedean fuzzy normed spaces

Definition 2.1. Let \mathbb{K} be a field. A non-Archimedean absolute value on \mathbb{K} is a functional $|\cdot|: \mathbb{K} \rightarrow[0, \infty)$ such that for any $r, s \in \mathbb{K}$ we have
(1) $|r|=0$ if and only if $r=0$;
(2) $|r s|=|r||s|$;
(3) $|r+s| \leq \max \{|r|,|s|\}$.

The condition (3) is called the strong triangle inequality. Clearly, $|1|=$ $|-1|=1$ and $n \leq 1$ for all $n \in \mathbb{N}$. We always assume in addition that $|\cdot|$ is non trivial, i.e., that there exists an $r_{0} \in \mathbb{K}$ such that $\left|r_{0}\right| \neq 0,1$.

Definition 2.2. Let X be a vector space over a scalar field \mathbb{K} with a nonArchimedean nontrivial valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow \mathbb{R}$ is a nonArchimedean norm (valuation) if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) $\|r x\|=|r|\|x\|$;
(iii) the strong triangle inequality (ultrametric); namely, $\|x+y\| \leq \max \{\|x\|,\|y\|\} \quad(x, y \in X)$.
Then $(X,\|\cdot\|)$ is called a non-Archimedean space.

Example 2.3. Let p be a prime number. For any nonzero rational number x, there exists a unique integer $n_{x} \in \mathbb{Z}$ such that $x=\frac{a}{b} p^{n_{x}}$, where a and b are integers not divisible by p. Then $|x|_{p}:=p^{-n_{x}}$ defines a non-Archimedean norm on \mathbb{Q}. The completion of \mathbb{Q} with respect to the metric $d(x, y)=|x-y|_{p}$ is denoted by \mathbb{Q}_{p} which is called the p-adic number field. In fact, \mathbb{Q}_{p} is the set of all formal series $x=\left.\sum_{k \geq n_{x}}^{\infty} a_{k} p^{k}\right|_{p}=p^{-n_{x}}$, where $\left|a_{k}\right| \leq p-1$ are integers. The addition and multiplication between any two elements of \mathbb{Q}_{p} are defined
naturally. The norm $\left|\sum_{k \geq n_{x}}^{i n f t y} a_{k} p^{k}\right|_{p} \mid=p^{-n_{x}}$ is a non-Archimedean norm on \mathbb{Q}_{p} and it makes \mathbb{Q}_{p} a locally compact field (see [11, 29]).

Definition 2.4. Let X be a linear space over a non-Archimedean field \mathbb{K}. A function $N: X \times \mathbb{R} \rightarrow[0,1]$ is said to be a non-Archimedean funzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$:
(N1) $N(x, c)=0$ for all $c \leq 0$;
(N2) $x=0$ if and only if $N(x, c)=1$ for all $c>0$;
(N3) $N(c x, t)=N\left(x, \frac{t}{\mid c)}\right)$;
(N4) $N(x+y, \max \{s, t\}) \geq \min \{N(x, s), N(y, t)\}$;
(N5) $\lim _{t \rightarrow \infty} N(x, t)=1$.
A non-Archimedean fuzzy normed space is a pair (X, N), where X is a linear space and N is a non-Archimedean fuzzy norm on X. If (N4) holds then so is

$$
N(x+y, t) \geq \min \{N(x, t), N(y, t)\}
$$

for all $x, y \in X, t \in \mathbb{R}$.
Example 2.5. Let $(X,\|\cdot\|)$ be a non-Archimedean normed space. For all $x \in X$, consider

$$
N(x, t)= \begin{cases}\frac{t}{t+\|x\|}, & \text { if } \quad t>0 \\ 0, & \text { if } \quad t \leq 0\end{cases}
$$

Then (X, N) is a non-Archimedean fuzzy normed space.
Example 2.6. Let $(X,\|\cdot\|)$ be a non-Archimedean normed space. For all $x \in X$, consider

$$
N(x, t)=\left\{\begin{array}{lll}
0, & \text { if } \quad t \leq\|x\|, \\
1, & \text { if } \quad t>\|x\| .
\end{array}\right.
$$

Then (X, N) is a non-Archimedean fuzzy normed space.
Definition 2.7. Let (X, N) be a non-Archimedean fuzzy normed space. Let $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ is said to be convergent if there exists $x \in X$, such that $\lim _{n \rightarrow \infty} N\left(x_{n}-x, t\right)=1$ for all $t>0$. In that case, x is called the limit of the sequence $\left\{x_{n}\right\}$ and we denote it by $\lim _{n \rightarrow \infty} x_{n}=x$.

A sequence $\left\{x_{n}\right\}$ in X is said to be a Cauchy sequence if $\lim _{n \rightarrow \infty} N\left(x_{n+p}-\right.$ $\left.x_{n}, t\right)=1$ for all $t>0$ and $p=1,2,3, \cdots$. Due to the fact

$$
N\left(x_{n+p}-x_{n}, t\right) \geq \min \left\{N\left(x_{n+p}-x_{n+p-1}, t\right), \cdots, N\left(x_{n+1}-x_{n}, t\right)\right\}
$$

the sequence $\left\{x_{n}\right\}$ is Cauchy if for each $\varepsilon>0$ and each $t>0$ there exists n_{0} such that for all $n \geq n_{0}$ we have $N\left(x_{n+1}-x_{n}, t\right)>1-\varepsilon$. We will frequently use this criterion in this paper. It is easy to show that every convergent sequence in a (non-Archimedean) fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the (non-Archimedean) fuzzy normed space is caled a (non-Archimedean) fuzzy Banach space.

3. Hyers-Ulam stability of (1.3)

in non-Archimedean fuzzy normed spaces

In this section, we investigate the Hyers-Ulam stability for functional equation (1.3) in non-Archimedean fuzzy normed spaces. Throughout this paper, we will assume that \mathbb{K} is a non-Archimedean field, X is a vector space over $\mathbb{K},(Y, N)$ is a non-Archimedean fuzzy Banach space over \mathbb{K} and $\left(Z, N^{\prime}\right)$ is a fuzzy normed space.

For the sake of convenience, given mapping $f: X \rightarrow Y$, we introduce a difference operator $D f$ as follows :

$$
\begin{aligned}
D f(x, y, z)= & f(x+n y)+f(y+n z)+f(z+n x) \\
& -n f(x+y+z)-\left(n^{2}-n+1\right)[f(x)+f(y)+f(z)]
\end{aligned}
$$

for all $x, y, z \in X$, where $n(\neq 0, \pm 1)$ is a fixed integer.
We introduce the following lemma which was proved in [22].
Lemma 3.1. Let V and W be real vector spaces. If a mapping $f: V \rightarrow$ W satisfies the functional equation (1.3), then f is a quadratic functional equation.

We present a main theorem, which concerns the Hyers-Ulam stability of a quadratic functional equation in non-Archimedean fuzzy normed spaces.
Theorem 3.2. Let $\alpha>|n|^{2}$ be fixed real number and $\phi: X^{3} \rightarrow Z$ be a mapping

$$
\begin{equation*}
N^{\prime}\left(\phi\left(n^{-1} x, n^{-1} y, n^{-1} z\right), t\right) \geq N^{\prime}(\phi(x, y, z), \alpha t) \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in X$ and all $t>0$. If $f: X \rightarrow Y$ with $f(0)=0$ is a mapping satisfying

$$
\begin{equation*}
N(D f(x, y, z), t) \geq N^{\prime}(\phi(x, y, z), t) \tag{3.2}
\end{equation*}
$$

for all $x, y, z \in X$ and $t>0$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$, such that

$$
\begin{equation*}
N(f(x)-Q(x), t) \geq N^{\prime}(\phi(x, 0,0), \alpha t) \tag{3.3}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Letting y, z by 0 in (3.2), respectively, we get

$$
\begin{equation*}
N\left(f(n x)-n^{2} f(x), t\right) \geq N^{\prime}(\phi(x, 0,0), t) \tag{3.4}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Replacing x by $n^{-(m+1)} x$ in (3.4) and using inequality (3.1), we obtain

$$
\begin{aligned}
N\left(f\left(n^{-m} x\right)-n^{2} f\left(n^{-m-1} x\right), t\right) & \geq N^{\prime}\left(\phi\left(n^{-m-1} x, 0,0\right), t\right) \\
& \geq N^{\prime}\left(\phi(x, 0,0), \alpha^{m+1} t\right)
\end{aligned}
$$

for all $x \in X$ and $t>0, m \in \mathbb{N}$. Thus it follows that

$$
\begin{aligned}
& N\left(n^{2 m} f\left(n^{-m} x\right)-n^{2 m+2} f\left(n^{-m-1} x\right), t\right) \\
& =N\left(f\left(n^{-m} x\right)-n^{2} f\left(n^{-m-1} x\right), \frac{1}{|n|^{2 m}} t\right) \\
& \geq N^{\prime}\left(\phi(x, 0,0), \frac{\alpha^{m+1} t}{|n|^{2 m}}\right)
\end{aligned}
$$

According to the fact $\lim _{m \rightarrow \infty} N^{\prime}\left(\phi(x, 0,0), \frac{\alpha^{m+1}}{|n|^{2 m}}\right)=1$, above inequality shows that $\left\{n^{2 m} f\left(n^{-m} x\right)\right\}$ is a Cauchy sequence in the non-Archimedean fuzzy Banach space (Y, N). Thus, we may define a mapping $Q: X \rightarrow Y$ as

$$
Q(x):=\lim _{m \rightarrow \infty} n^{2 m} f\left(n^{-m} x\right),
$$

that is, $\lim _{m \rightarrow \infty} N\left(n^{2 m} f\left(n^{-m} x\right)-Q(x), t\right)=1 \quad(x \in X)$. For each $m \geq 1$, $x \in X$ and $t>0$,

$$
\begin{aligned}
N\left(f(x)-n^{2 m} f\left(n^{-m} x\right), t\right) & =N\left(\sum_{k=0}^{m-1} m^{2 k} f\left(m^{-k} x\right)-m^{2 k+2} f\left(m^{-k-1} x\right), t\right) \\
& \geq \min \bigcup_{k=0}^{m-1}\left\{N\left(n^{2 k} f\left(n^{-k} x\right)-n^{2 k+2} f\left(n^{-k-1} x\right), t\right)\right\} \\
& =N^{\prime}(\phi(x, 0,0), \alpha t)
\end{aligned}
$$

We conclude the estimation (3.3) of f by Q holds for all $x \in X$ and $t>0$.
Now we claim that the mapping Q is quadratic mapping. Setting (x, y, z) $:=\left(n^{-m} x, n^{-m} y, n^{-m} z\right)$ in (3.1), we see that

$$
\begin{aligned}
N\left(n^{2 m} D f\left(n^{-m} x, n^{-m} y, n^{-m} z\right), t\right) & =N\left(D f\left(n^{-m} x, n^{-m} y, n^{-m} z\right), \frac{1}{|n|^{2 m}} t\right) \\
& \geq N^{\prime}\left(\phi\left(n^{-m} x, n^{-m} y, n^{-m} z\right), \frac{1}{|n|^{2 m}} t\right) \\
& \geq N^{\prime}\left(\phi(x, y, z), \frac{\alpha^{m+1}}{|n|^{2 m}} t\right)
\end{aligned}
$$

for all $x, y, z \in X$ and $t>0, m \in \mathbb{N}$. Thus it follows that

$$
\begin{aligned}
N(D Q(x, y, z), t) \geq & \min \left\{N\left(Q(x+n y)-n^{2 m} f\left(n^{-m}(x+n y)\right), t\right),\right. \\
& N\left(Q(y+n z)-n^{2 m} f\left(n^{-m}(y+n z)\right), t\right), \\
& N\left(Q(z+n x)-n^{2 m} f\left(n^{-m}(z+n x)\right), t\right), \\
& N\left(n Q(x+y+z)-n^{2 m+1} f\left(n^{m}(x+y+z)\right), t\right), \\
& N\left(\left(n^{2}-n+1\right) Q(x)-\left(n^{2}-n+1\right) n^{2 m} f\left(n^{-m} x\right), t\right), \\
& N\left(\left(n^{2}-n+1\right) Q(y)-\left(n^{2}-n+1\right) n^{2 m} f\left(n^{-m} y\right), t\right), \\
& N\left(\left(n^{2}-n+1\right) Q(z)-\left(n^{2}-n+1\right) n^{2 m} f\left(n^{-m} z\right), t\right), \\
& \left.N\left(n^{2 m} D f\left(n^{-m} x, n^{-m} y, n^{-m} z\right), t\right)\right\} \\
\geq & \min \left\{N\left(Q(x+n y)-n^{2 m} f\left(n^{-m}(x+n y)\right), t\right),\right. \\
& N\left(Q(y+n z)-n^{2 m} f\left(n^{-m}(y+n z)\right), t\right), \\
& N\left(Q(z+n x)-n^{2 m} f\left(n^{-m}(z+n x)\right), t\right), \\
& N\left(Q(x+y+z)-n^{2 m} f\left(n^{m}(x+y+z)\right), \frac{1}{n} t\right), \\
& N\left(Q(x)-n^{2 m} f\left(n^{-m} x\right), \frac{1}{n^{2}-n+1} t\right), \\
& N\left(Q(y)-n^{2 m} f\left(n^{-m} y\right), \frac{1}{n^{2}-n+1} t\right), \\
& N\left(Q(z)-n^{2 m} f\left(n^{-m} z\right), \frac{1}{n^{2}-n+1} t\right), \\
& \left.N^{\prime}\left(\phi(x, y, z), \frac{\alpha^{m+1}}{|n|^{2 m}} t\right)\right\}
\end{aligned}
$$

for all $x, y, z \in X$ and all positive integers m. Taking the limit as $m \rightarrow \infty$, one see that Q satisfies (1.3). By Lemma 3.1, Q is quadratic.

To show the uniqueness of Q, we assume that there exists a quadratic mapping $Q^{\prime}: X \rightarrow Y$ which satisfies the inequality

$$
N\left(f(x)-Q^{\prime}(x), t\right) \geq N^{\prime}(\phi(x, 0,0), \alpha t)
$$

for all $x \in X$ and $t>0$. Then, since Q and Q^{\prime} are quadratic mappings, we see from the equality $Q\left(n^{-m} x\right)=n^{-2 m} Q(x)$ and $Q^{\prime}\left(n^{-m} x\right)=n^{-2 m} Q^{\prime}(x)$ that

$$
\begin{array}{r}
N\left(Q(x)-Q^{\prime}(x), t\right) \geq \min \left\{N\left(Q(x)-n^{2 m} f\left(n^{-m} x\right), t\right),\right. \\
\left.N\left(n^{2 m} f\left(n^{-m} x\right)-Q^{\prime}(x), t\right)\right\}
\end{array}
$$

$$
\begin{aligned}
& \geq \quad \min \left(N\left(Q\left(n^{-m} x\right)-f\left(n^{-2 m} x\right), \frac{t}{|n|^{2 m}}\right),\right. \\
& \left.\quad N\left(f\left(n^{-m} x\right)-Q^{\prime}\left(n^{-m} x\right), \frac{t}{|n|^{m}}\right)\right) \\
& \geq N^{\prime}\left(\phi(x, 0,0), \frac{\alpha^{m+1}}{|n|^{2 m}} t\right)
\end{aligned}
$$

for all $x \in X, t>0, m \in \mathbb{N}$. By taking $m \rightarrow \infty$, we complete the proof.
Corollary 3.3. Let X be a linear space and $(Y,\|\cdot\|)$ be a non-Archimedean normed space. Suppose $f: X \rightarrow Y$ with $f(0)=0$ satisfies the condition

$$
\|D f(x, y, z)\| \leq \phi(x, y, z) \quad(x, y, z \in X)
$$

and $\phi: X^{3} \rightarrow[0, \infty)$ is a mapping such that

$$
\phi\left(n^{-1} x, n^{-1} y, n^{-1} z\right) \leq \alpha^{-1} \phi(x, y, z) \quad(x, y \in X)
$$

where α is a positive real number with $\alpha>|n|^{2}$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \frac{1}{\alpha} \phi(x, 0,0)
$$

for all $x \in X$.
Proof. Let $Z=\mathbb{R}$ with the following fuzzy norm

$$
N^{\prime}(z, t)= \begin{cases}\frac{t}{t+\|z\|}, & \text { if } \quad t>0, z \in Z, \\ 0, & \text { if } t \leq 0, z \in Z,\end{cases}
$$

and also define the following fuzzy norm

$$
N(y, t)= \begin{cases}\frac{t}{t+\|y\|}, & \text { if } \quad t>0, y \in Y, \\ 0, & \text { if } \quad t \leq 0, y \in Y .\end{cases}
$$

By the Example 2.5, N^{\prime} is a fuzzy norm of \mathbb{R} and N is a non-Archimedean fuzzy norm on Y. We can easily check that all conditions of Theorem 3.2 are equipped. Using Theorem 3.2, we arrive at the desired conclusion.
Corollary 3.4. Let X be a linear space and $(Y,\|\cdot\|)$ be a non-Archimedean normed space. Suppose $f: X \rightarrow Y$ with $f(0)=0$ satisfies the condition

$$
\|D f(x, y, z)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \quad(x, y, z \in X)
$$

where $p \in(0,2)$ and $\theta>0$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \frac{\theta}{|n|^{p}}\|x\|^{p}
$$

for all $x \in X$.
Proof. The proof follows immediately by taking $\phi: X^{3} \rightarrow[0, \infty)$ is defined by

$$
\phi(x, y, z):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
$$

for all $x, y, z \in X$ and choosing $\alpha=|n|^{2 p}$ in Corollary 3.3.
Next, we are going to prove an alternative stability theorem of the functional equation (1.3) in non-Archimedean fuzzy normed spaces.
Theorem 3.5. Let $\alpha>|n|^{2}$ be fixed real number and $\phi: X \times X \rightarrow Z$ be a mapping with,

$$
\begin{equation*}
N^{\prime}(\phi(n x, n y, n z), t) \geq N^{\prime}\left(\phi(x, y, z), \alpha^{-1} t\right) \tag{3.5}
\end{equation*}
$$

for all $x, y, z \in X$ and all $t>0$. If $f: X \rightarrow Y$ with $f(0)=0$ is a mapping satisfying

$$
\begin{equation*}
N(D f(x, y, z), t) \geq N^{\prime}(\phi(x, y, z), t) \tag{3.6}
\end{equation*}
$$

for all $x, y, z \in X$ and $t>0$, then there exists a unique quadratic mapping $Q: X \rightarrow Y$, such that

$$
\begin{equation*}
N(f(x)-Q(x), t) \geq N^{\prime}\left(\phi(x, 0,0),|n|^{2} t\right) \tag{3.7}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. As the similar pattern of the proof of Theorem 3.2, we obtain the following inequality

$$
N\left(\frac{1}{n^{2 m+2}} f\left(n^{m+1} x\right)-\frac{1}{n^{2 m}} f\left(n^{m} x\right), t\right) \geq N^{\prime}\left(\phi(x, 0,0), \frac{|n|^{2 m}}{\alpha^{m}} t\right)
$$

for all $x \in X$ and $t>0$. Since $\lim _{m \rightarrow \infty} N^{\prime}\left(\phi(x, 0,0), \frac{|n|^{2 m}}{\alpha^{m}} t\right)=1$, above inequality shows that $\left\{n^{-2 m} f\left(n^{m} x\right)\right\}$ is a Cauchy sequence in a non-Archimedean fuzzy Banach space (Y, N). Therefore, we may define a mapping $Q: X \rightarrow Y$ as

$$
Q(x):=\lim _{m \rightarrow \infty} n^{-2 m} f\left(n^{m} x\right)
$$

that is, $\lim _{m \rightarrow \infty} N\left(n^{-2 m} f\left(n^{m} x\right)-Q(x), t\right)=1$ for all $x \in X, t>0$. For each $n \geq 1, x \in X$ and $t>0$,

$$
\begin{aligned}
N\left(f(x)-n^{-2 m} f\left(n^{m} x\right), t\right) & =N\left(\sum_{i=0}^{m-1} n^{-2 i} f\left(n^{i} x\right)-n^{-2 i-2} f\left(n^{i+1} x\right), t\right) \\
& \geq \min \bigcup_{i=0}^{m-1}\left\{N\left(n^{-2 i} f\left(n^{i} x\right)-n^{-2 i-2} f\left(n^{i+1} x\right), t\right)\right\} \\
& =N\left(\phi(x, 0,0),|n|^{2} t\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
N(f(x)-T(x), t) & \geq \min \left\{N\left(f(x)-n^{-2 m} f\left(n^{m} x\right), t\right),\right. \\
& \left.N\left(n^{-2 m} f\left(n^{m} x\right)-Q(x), t\right)\right\} \\
& \geq N\left(\phi(x, 0,0),|n|^{2} t\right)
\end{aligned}
$$

Thus the estimation (3.7) of f by Q holds for all $x \in X$ and $t>0$. The rest of the proof is similar to the that of Theorem 3.2.
Corollary 3.6. Let X be a linear space and $(Y,\|\cdot\|)$ be a non-Archimedean normed space. Suppose $f: X \rightarrow Y$ with $f(0)=0$ satisfies the condition

$$
\|D f(x, y, z)\| \leq \phi(x, y, z) \quad(x, y, z \in X)
$$

and $\phi: X^{3} \rightarrow[0, \infty)$ is a mapping such that

$$
\phi(n x, n y, n z) \leq \alpha \phi(x, y, z) \quad(x, y, z \in X)
$$

where α is a positive real number with $\alpha>|n|^{2}$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \frac{1}{|n|^{2}} \phi(x, 0,0)
$$

for all $x \in X$.
Corollary 3.7. Let X be a linear space and $(Y,\|\cdot\|)$ be a non-Archimedean normed space. Suppose $f: X \rightarrow Y$ with $f(0)=0$ satisfies the condition

$$
\|D f(x, y, z)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \quad(x, y, z \in X)
$$

where $p \in(2, \infty)$ and $\theta>0$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \frac{\theta}{|n|^{2}}\|x\|^{p}
$$

for all $x \in X$.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 222-224.
[2] J-H. Bae and I-S. Chang, On the Ulam stability problem of a quadratic functional equation, Korean J. Comput, Appl. Math.(Series A), Vol. 8(2) (2001), 561-567.
[3] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (2003), 687-705.
[4] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Vol 1, American Mathmatical Society Colloquium Publications, 48, Amer. Mathe. Soc., Providence, RI, 2000.
[5] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223-237.
[6] S.C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), 429-436.
[7] S. Czerwik, On the stability of the quadratic mapping in normed space, Bull. Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
[8] S. Czerwik, The stability of the quadratic functional equation, in: Th.M. Rassias J.Tabor(Eds.), Stability of Mappings of Hyers-Ulam Type, Hadronic Press, Florida, (1994), 81-91.
[9] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst., 48 (1992), 239-248.
[10] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[11] F.Q. Gouvêa, p-adic Numbers, Springer-Verlag, Berlin, 1997.
[12] G.H. Kim, Superstability of pexiderized functional equations arising from distance measures, J. Nonlinear Sci. Appl., 9 (2016), 413-423.
[13] K. Hensel, Über eine neue Begrndüng der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein, 6 (1987), 83-88.
[14] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224.
[15] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12 (1984), 215-229.
[16] Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372
[17] A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst., 12 (1984), 143-154.
[18] H. Khodaei and T.M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl., 1 (2010), 22-41.
[19] A. Khrennikov, Non-Archimedean Analysis:Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht, 1997.
[20] H.-M. Kim and H.-Y. Shin, Approximation of almost SahooRiedels points by SahooRiedels points, Aequat. Math., 90 (2016), 809-815.
[21] H.-M. Kim and H.-Y. Shin, Refined stability of additive and quadratic functional equations in modular spaces, J. Inequal Appl., (2017), DOI 10.1186/s13660-017-1422-z
[22] H.-M. Kim and H.-Y. Shin, Generalized Hyers-Ulam stability of refined quadratic functional equations, Inter. J. Pure and Applied Math., 98 (2015), 65-79.
[23] Y.W. Lee and G.H. Kim Superstability of the functional equation related to distance measures, J. Inequal Appl., (2015), DOI 10.1186/s13660-015-0880-4
[24] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst., 159 (2008), 720-729.
[25] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy approximately cubic mappings, Inf. Sci., 178 (2008), 3791-3798.
[26] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst., 159 (2008), 730-738.
[27] A.K. Mirmostafaee and M.S. Moslehian, Stability of additive mappings in nonArchimedean fuzzy normed spaces, Fuzzy Sets Syst., 160 (2009), 1643-1652.
[28] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 326-334.
[29] A.M. Robert, A Course in p-adic Analysis, Springer-Verlag, New-York, 2000.
[30] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[31] S. Rolewicz, Metric linear spaces, Second edition. PWN-Polish Scientific Publishers, Warsaw:D. Reidel Publishing Co. Dordrecht, (1984).
[32] F. Skof, Local properties and approximations of operators, Rend. Sem. Math. Fis. Milano, 53 (1983), 113-129.
[33] S.M. Ulam, Problems in Modern Mathematics, Chapter 6, Wiley Interscience, New York, 1964.
[34] J.-Z. Xiao and X.-H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst., 133 (2003), 389-399.
[35] C. Wu and J. Fang, Fuzzy generalization of Kolmogoroff's theorem, J. Harbin Inst. Technol., 1 (1984), 1-7 (in Chinese, English abstract).

[^0]: ${ }^{0}$ Received November 10, 2017. Revised January 18, 2018.
 ${ }^{0} 2010$ Mathematics Subject Classification: 54C30, 39B22, 39B82.
 ${ }^{0}$ Keywords: Non-Archimedean fuzzy normed spaces, non-Archimedean normed spaces, Hyers-Ulam stability, quadratic functional equation.
 ${ }^{0}$ Corresponding author: H.-Y. Shin(hyshin31@cnu.ac.kr).

