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Abstract. For a € C, let D, P(z) denote the polar derivative of a polynomial P(z) of degree
n. If P(z) #01in |z| < k,k > 1, then it is known for |o| > 1 and p > 1,

|| + k&
Dy Pl < - Pl .

In this paper, we present a refinement of the above inequality valid for 0 < p < oo and obtain
a bound that depends on some of the coefficients of the polynomial as well. Analogous result

for the class of polynomials having no zero in |z| > k,k < 1 is also obtained.

1. INTRODUCTION AND PRELIMINARIES

Let P,, denote the space of all complex polynomials P(z) = Z?:o a;jz) of
degree n. For P € P,, define

1 27 )
1Pl i=exp {5 [ tog|pte] s
™Jo
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1/p

27
12h= {5 [P 0} p >0 and 1Pl = e PG
If P € P,, then
1P| <nlIPllo (1.1)
and
1Pl < nll Pl (12)

Inequality (1.1) is due to Bernstein (see [13] or [19]) whereas inequality
(1.2) is due to Zygmund [20]. Arestov [1] showed that the inequality (1.2)
remains valid for 0 < p < 1 as well. Equality in (1.1) and (1.2) holds for
P(z) = az",a #0. If we let p — oo in (1.2), we get inequality (1.1).

For the class of polynomials P € P, having no zero in |z| < 1, both the
inequalities (1.1) and (1.2) can be sharpened. In fact, if P € P,, and P(z) # 0
for |z| < 1, then the inequalities (1.1) and (1.2) can be, respectively, replaced
by

1P| < 5 1Pl (1.3)

0o S 2
and

1Pl < I1Pll,, p>1. (1.4)

P Hl +2],

Inequality (1.3) was conjectured by Erdés and later verified by Lax [10]
whereas the inequality (1.4) was found out by Bruijn [7]. Rahman and Schmei-
sser [15] proved the inequality (1.4) remains true for 0 < p < 1 as well.
Both the estimates are sharp and equality in (1.3) and (1.4) holds for P(z) =
az" +b,|a|l = |b| # 0.

Malik [11] generalized inequality (1.3) and proved that if P € P, does not
vanish in |z| < k where k > 1, then

P < 1.5
1Pl < 75 (1.5)

Whereas under the same hypothesis, Govil and Rahman [8] extended in-
equality (1.5) to Ly-norm by Showing that

1P, < 1P|, p> 1. (1.6)

Pk + 2,
As a refinement of inequality (1.6), it was shown by Rather [16] that if
P e Py and P(z) =31_ga;2) #0 for |z| <k, k> 1, then

n

/ e —
120 = 5,

1P, p>0, (1.7)
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where 6y 1 is defined by

5. _ Mool B+ Jar| K2
LT T ao] + Jar k2

(1.8)

Let D, P(z) denote the polar differentiation of a polynomial P(z) of degree
n with respect to a complex number «. Then

Dy P(2) :=nP(z) + (o — 2)P'(2)

(see [12]). Note that D, P(z) is of degree at most n — 1 and it generalizes the
ordinary derivative P’(z) of P(z) in the sense that

D.P
Lim 2ol ()

a—o0 o

= P'(2)

uniformly with respect to z for |z| < R, R > 0.
A. Aziz [2] extended inequalities (1.1) and (1.3) to the polar derivative of a
polynomial and proved that if P € P,,, then for o € C with |a| > 1,

[1DaPllo < nlaf [Pl (1.9)
and if P € P, and P(z) # 0 for |z| < 1, then for a € C with |a| > 1,
n
1DaPlloe < 5l + 1) [ Pllo (1.10)

Both the inequalities (1.9) and (1.10) are best possible. If we divide the two
sides (1.9) and (1.10) by |a| and make |a| — oo, we get inequalities (1.1) and
(1.3) respectively.

A. Aziz [2] also considered the class of polynomials P € P, having no zero
in |2| < k and proved that if P € P, and P(z) # 0 for |z| < k where k > 1,
then for a € C with |a| > 1,

ol +k
DaPl <0 (SEEE) 1P (111)
The result is best possible and equality in (1.11) holds for P(z) = (z + k)",
where « is any real number with o > 1.

For polynomials P € P,, having all their zeros in disk, Aziz and Rather [4]
proved that if P € P, has all its zeros in |z| < k where k < 1, then for a € C
with |a| > k,

o —k
IDaPlle =0 (SL25) 1P (112)

The result is sharp and equality in (1.12) holds for P(z) = (z — k)™ with real
a>k.
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As an extension of inequality (1.10) to the L,-norm, Aziz and Rather [5]
proved that if P € P,, and P(z) does not vanish in |z| < 1, then for o € C
with |a| > 1 and p > 1,

la] +1
HDaPHpSn<H1+ )17, (113

Aziz et al. [6] also extended inequality (1.11) to the L,- norm and proved
that if P € P,, and P(z) # 0 for |2| < k where k > 1, then for, o € C with

la| > T and p > 1,
la] + k
HDaPHp§”<Hk =N 1Pl - (1.14)

Rather [17,18] showed that inequalities (1.13) and (1.14) remain valid for
0<p<1as well

The bound in inequality (1.14) depends upon the zero of smallest modulus.
It is interesting to obtain a bound which depends upon some or all the coef-
ficients of the polynomial P € P,, in addition to the zero of smallest modulus
as well.

We need the following lemmas.
Lemma 1.1. If P(2) = ap+)_i_, ajz? #0,1 < p<mninl|z| <k wherek > 1
and Q(z) = z"P(1/Z), then for |z| = 1,

Okt ‘P’(z) < ‘Q'(z)‘
where nlag| k¥ + play| K
and
Ha—“k’“‘gl, 1< u<n.
n|agp

Lemma 1.1 follows easily on using argument similar to that used in [14,
Lemma 1].

Lemma 1.2. If a, b are any two positive real numbers such that a > bt where
t>1, then for any x > 1,p >0 and 0 < 8 < 2,

2 27
(a—I—b:U)p/ pdﬁg(tJrfB)p/
0 0

Proof. By hypothesis t > 1 and x > 1, it can be easily seen that

1 1 1
Re . > > .
t4+ef) " t+1  t4z

. 1P
t+ et a+ be| dp.
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Now using the fact that a > 0,b > 0 and a > bt, we get

a + be'? a + be's a— bt
— | > Re| ———— | = Re | b+ ———
t+eB | = e<t+elﬂ> e( +t+ezﬁ>
1

> b —bt) [ ——

- +(a )<t+x>

_a+bx

ottt

This implies that for each p > 0,

: P
(a + bx)? ‘t + et

! < (t—i—x)p)a—i-be’ﬂ

which on integration leads to the desired result. U

Next two lemmas are due to Aziz and Rather [3].

Lemma 1.3. If P € P, and Q(z) = 2" P(1/Z), then for every p > 0 and real
B with 0 < 8 < 2,

/27r /27r
0 0

Lemma 1.4. If P(2) = apz" + 377, an—;2"7 (1 < p < n) has all zeros in
|z| <k where k <1 and Q(z) = z"P(1/%z), then for |z| =1,

tou | P'(2)] > |Q(2)]

2w
P'(e") + Q' () pd@dﬂ < 27Tnp/
0

P(ew)‘pd&

where ty , 1s given by

k,p n ‘an’ En—1 4 L |an_M’ . .

We also need the following lemma due to Aziz [2].

Lemma 1.5. If P € P, and Q(z) = 2" P(1/Z), then for every non-zero com-
plex number v and 0 < 6 < 2m,

D,Q(™)| = Il [DyP(Ee”)|.
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2. MAIN RESULTS

Theorem 2.1. If P € P, and P(z) does not vanish in |z| < k where k > 1,
then for a € C with |a| > 1 and 0 < p < o0,

’Ct’ +5k,1
[DaP|, <n < 1P, (2.1)
p

where i1 is given by (1.8). In the limiting case, when p — oo, the result is
sharp and equality in (2.1) holds for P(z) = (z + k)™ with real o > 1.

Remark 2.2. Since §;1 > k > 1, setting a = 0y 1,0 =1,t =k and = || in
Lemma 1.2, we get
2w

27 p p
(Ok,1 + Ia!)p/ k+e? dp < (k+ !a\)?/ Spa + €| dp.
0 0
Equivalently,
Okatla)? (k4 ]a])”
Sy 8k + PP B = [T [k + e P g’
that is,

k1 +lea) _ (k+]a])
16k + 2l p — 1k + 2],
which shows that Theorem 2.1 sharpens the inequality (1.14).

Instead of proving Theorem 2.1, we prove a more general result for the class
of lacunary type polynomials

n
Py = PEPH:P(Z):aO—{—Zajzj, 1<pu<ny,
J=H
which also extends an L,- inequality due Rather [15] to the polar derivatives
of a polynomial valid for 0 < p < co. More precisely, we prove:

Theorem 2.3. If P € P, and P(z) does not vanish in |z| < k where k > 1,
then for a € C with |a| > 1 and 0 < p < oo,

|| + 0,
|DaP|, <n (W 1P, (2.2)
’ p

where Oy, is given by (1.15). In the limiting case, when p — oo, the result is
sharp and equality in (2.2) holds for P(z) = (z*+kM)**, where n is a multiple
of w and real o > 1.
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Proof. By hypothesis, P € P, does not vanish in |z| < k where £ > 1 and
Q(z) = 2"P(1/Z), therefore, by Lemma 1.1, we have

Ok [P'(2)] < [Q'(2)

where 6y ,, is given by (1.15). Further, since d, > k* > 1,1 < u < n, by
Lemma 1.2 with a = |Q'(e)|, b = |P'(¢"?)|, t = 6, and = = ||, we get for
every a € C with |o| > 1,

)

(1] + lallPe)P) [ oy + s
0
2
< (jo + b / Q) + PP () Pdp
0

27
= (|a| + 6k )P /0 |P'(e) 4 Q! (e)|Pdp. (2.3)

Now for every p > 0, we have

/027r p dﬁ /0271'

Sop+ €] ’DaP(ew) ‘p dBdo

Ok + e Do P(e)| d

‘ p

T
5k,u + ezﬁ ’

nP(e?) — e P' () 4+ aP' (") ‘p dpdo

Sop+ €[ {‘nP(ew) - ewP’(ew)‘ + ol ‘P'(e”)‘}p dBdo

Sop+ €] {‘Q’(ew)‘ +|al ‘P'(ei")‘}p dBdo. (2.4)

Using (2.3) in (2.4) and the property of definite integrals, we obtain for each

p>0and |a] > 1,
P 2m
dﬁ/
0

2
/
2 21
< (la] + 6" / /
0 0
27 21
= (la| + 6,0)" / /
0 0

This gives with the help of Lemma 1.3 for @ € C with |«| > 1 and p > 0,

Oty + € D, P(e?)|" do

‘ p

P’(eie)‘ + e

Q'(¢")||" abas

P'(e®) + Q' () ‘p d6dp.
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/027r p dﬂ /027r

which immediately leads to (2.2) and this completes the proof of Theorem 2.3
for p > 0. To obtain this result for p = 0, we simply make p — 0+. O

) 2m
Oryu + €

DaP(eie)‘p 6 < 27n? (ja| + 5,%)1’/
0

P(ew)’p do,

The following result, which extends a result due to Qazi [14] to the polar
derivatives of a polynomial, immediately follows from Theorem 2.3 by letting
p — oo in (2.2).

Corollary 2.4. If P € Py, and P(z) does not vanish in |z| < k where k >
1, then for a € C with |a| > 1,

ol + b,
I1DaPl < (15505 ) 25)
M

where Oy, is given by (1.15). The result is best possible and equality in (2.5)
holds for P(z) = (2 + k*)™* where n is a multiple of p and o > 1.

For p = 1, Corollary 2.4 sharpens the inequality (1.11).

Using Lemma 1.2 and the fact that d;, > k* > 1, 1 < p < n, the follwing
result which is a generalization of inequality (1.14) also follows from Theorem
2.3.

Corollary 2.5. If P € Py, does not vanish in |z| < k where k > 1, then for
a € C with |a| > 1 and 0 < p < 0,

|| + K
Do P, <m (M 1P, (2.6)

where Oy, is given by (1.15). In the limiting case, when p — oo, the result is
sharp and equality in (2.6) holds for P(z) = (z*+k*)™* where n is a multiple
of u and real o > 1.

For the class of polynomials

n
P;,u = PeP,:P(z)=ap2" + Zan_jz"_j, 1<pu<ny,
J=p

we also establish the following result:
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Theorem 2.6. If P € P, ,and P(z) has all its zeros in 0 < [z| < k where
k <1, then for a € C with |a| <1 and 0 < p < 0,

|| + t
|DaP|, <n ( = P, (2.7)

[tk + 21,
where ty, ,, is defined by (1.16).

Proof. Let Q(z) = z"P(1/z). Since all the zeros of polynomial P(z) = ag +
a1z + -+ an—p2"H + an2™ of degree n lie in 0 < |z| < k, therefore, Q(z) =
Ay + Qp_p2t 4+ -+ a12" ' + @pz" is a polynomial of degree n which does
not vanish in |z| < (1/k) where (1/k) > 1. Applying Theorem 2.3 to the
polynomial Q(z) and using the fact that |Q(e)| = |P(e)| for 0 < 6 < 27
and ||z + 1/t ull, = ﬁ |2+ th,ull, » we get for v € C with |7[ > 1 and p > 0,

27 Cp 1/p tn v +1 2
D N d <np| - {/
L ] )< EETNAY

This gives by using Lemma 1.5 for |y| > 1, and p > 0,

27 1/p o
. t 1
{/ 7] ’Dl/ﬁP(ele)‘p d@} <n| K v+ {/
0 12+ trull, 0

Replacing 1/ by «, we obtain from (2.8),

27 1/p 2m
) t
{/ DaP(ew)‘pdG} < Lot s {/
0 12 + tull, 0

for |a] <1 and p > 0. This proves Theorem 2.6 for p > 0. The extension to
p = 0 obtains by letting p — 0+ . (]

P(e?) jp de}l/p .

1/p
P(&?) ‘p d@} ,

The following result is an immediate consequence of Theorem 2.6.

Corollary 2.7. If P € P}, and P(z) has all its zeros in 0 < |z| < k where
k <1, then for a € C with |a| <1,

|Ot’ + %
nDumen( 2 1Pl

1+,
where ty, ,, is given by (1.16). The result is sharp.

Finally, we present following integral inequality, which yields a refinement
of the inequality (1.12) as a special case.
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Theorem 2.8. If P € P, , and P(z) has all its zeros in |z| <k where k <1,
then for oo € C with |a| >ty and 0 < p < o0,

<1+t (2.9)

P
n(lal —tgu) DPp
@ p

where g, is given by (1.16).

Proof. Let Q(z) = 2"P(1/Z). Then it can be easly verified for |z| = 1,
|Q'(2)| = |nP(z) — 2P'(2)| and |P'(z)] = [nQ(z) — 2Q'(2)| . (2.10)

Since all the zeros of polynomial P € P, , lie in |2| < 1, by Lemma 1.4, we
have

o }P’(z)‘ > ’Q/(z)‘ for |z] =1 (2.11)
where tj, , is given by (1.16). This gives with the help of (2.10),
1Q'(2)] <ty |nQ(2) — 2Q'(2)] for |z|=1. (2.12)

Also, since all the zeros of P(z) lie in |z| < k < 1, by Gauss-Lucas theorem
all the zeros of polynomial P’(z) also lie |z| < k < 1. This shows that all
the zeros of polynomial 2" 'P(1/z) = nQ(z) — 2Q'(2) lie in |z| > (1/k) > 1,
Therefore, the function

_ 2Q'(2)
9 = @) — Q)
is analytic in |z|] < 1 and by (2.12), we have |f(z)| < 1 for |2| = 1. Fur-

ther, f(0) = 0. Thus the function 1 + ¢, f(z) is subordinate to the function
1 + t4,,2. Hence by property of subordination [9], we have for each p > 0,

/2#
0

"o, (2.13)

T 27 .
1+ tk,uf(eze)‘ do < / 1+t e
0

Now

nQ(z)
Q(z) — 2Q'(2)’

1 + tk,uf(z) = n
which by using (2.10) gives,

QN = 1+ 1, () 0012) =@/ = -+t NP e 1
Since [Q(2)] = |P(2)] for |2| = 1, we get from (2.14), '

n|P(z)| = |1+ tp . f(2)] |P’(z)‘ for |z| =1 (2.15)
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Further, for a € C with |a| >t} , and for 2| =1,
|DoP(2)| = [nP(z) — 2P'(2) + aP' ()|
> |af ’P,(Z)’ - }nP(z) - ZP/(Z)‘ .
Combining this with (2.10) and (2.11), we obtain for |z| =1,

1DaP(2)] = |al [P'(2)| — |Q' ()]
> |of |[P'(2)| =ty [P'(2))]

= (la| = tr) [ P'(2)]- (2.16)
Using (2.16) in (2.15), it follows that,
n(laf = tr) [P()] < L+t uf (2)[ [ DaP(2)], 2] = 1. (2.17)

From (2.13) and (2.17), we deduce for each p > 0,
o 0y |P 2
P(e™)
n? (|a| - ¢ p/ _Per) deg/
(ol k,u) 0 DaP(e“’) 0
which is equivalent to the desired result. This completes the proof of Theorem
2.8. To establish this result for p = 0, we simply let p — 0 +. O

D
1+t | do,

Since |DoP(2)| < [[DaPly, for |z] = 1, we immediately get the following
result from Theorem 2.8.

Corollary 2.9. If P € P}, , and P(z) has all its zeros in |2| <k, k <1, then
for a € C with |a| >ty and 0 < p < oo,

n(lel = teu) 1P, <1+t 2l [DaPllo (2.18)
where ty, ,, is given by (1.16).

Letting p — oo in (2.18) and taking p = 1, we obtain the following refine-
ment of the inequality (1.12).

Corollary 2.10. If P € P,, and P(z) has all its zeros in |z| < k where k < 1,
then for oo € C with o] >ty 1,

la| — i
D. P > - P 2.19
1DaPl = 0 (05 ) 1P 219)
where | ‘ ) | |
nlay| k% + |ap-1
tr1 = . 2.20
b1 ( nlan] + Jan_1] > (2.20)

The result is best possible and equality in (2.19) holds for P(z) = (z — k)™ with
real o >ty 1.
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Remark 2.11. From (2.13) and (2.17), we deduce for each p > 0,
2 ) P 2

(ol =t [ [Pt as < [

0 0

which gives with the help of Holder’s inequality for » > 1,s > 1 with r—! +
-1
s =1,

1+t e do,

: )Dap(ew) ’p

27 L p
o (lal =t [ [Pl as
0

21 pr 1/r 21
{/ oy {]
0 0

Thus we have proved the following generalization of Corollary 2.9 which also
leads to an extension of the inequality (1.12) to L, mean of |P(z)| on |z| = 1.

o 1/s
1+ tg e” DaP(e“’))p d@} :

Theorem 2.12. If P € Py, and P(z) has all its zeros in |z| < k where
k <1, then for o € C with |a| > t,, 0 < p < oo, and r > 1,5 > 1 with
rl sl =1,

ot =t { [ |renf

2w pr 1/pr 21 1ps 1/ps
< {/ de} X {/ Dy P(e') de} . (2.21)
0 0

where ty ,, is given by (1.16).

1+ tkwew
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