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Abstract. For α ∈ C, let DαP (z) denote the polar derivative of a polynomial P (z) of degree
n. If P (z) 6= 0 in |z| < k, k ≥ 1, then it is known for |α| ≥ 1 and p ≥ 1,

‖DαP‖p ≤ n

(
|α|+ k

‖z + k‖p

)
‖P‖p .

In this paper, we present a refinement of the above inequality valid for 0 ≤ p <∞ and obtain

a bound that depends on some of the coefficients of the polynomial as well. Analogous result

for the class of polynomials having no zero in |z| > k, k ≤ 1 is also obtained.

1. Introduction and preliminaries

Let Pn denote the space of all complex polynomials P (z) =
∑n

j=0 ajz
j of

degree n. For P ∈ Pn, define

‖P‖0 := exp

{
1

2π

∫ 2π

0
log
∣∣∣P (eiθ)

∣∣∣ dθ} ,
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‖P‖p :=

{
1

2π

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ}1/p

, p > 0 and ‖P‖∞ := max
|z|=1

|P (z)| .

If P ∈ Pn, then ∥∥P ′∥∥∞ ≤ n ‖P‖∞ (1.1)

and

‖P ′‖p ≤ n‖P‖p. (1.2)

Inequality (1.1) is due to Bernstein (see [13] or [19]) whereas inequality
(1.2) is due to Zygmund [20]. Arestov [1] showed that the inequality (1.2)
remains valid for 0 < p < 1 as well. Equality in (1.1) and (1.2) holds for
P(z) = αzn, α 6= 0. If we let p →∞ in (1.2), we get inequality (1.1).

For the class of polynomials P ∈ Pn having no zero in |z| < 1, both the
inequalities (1.1) and (1.2) can be sharpened. In fact, if P ∈ Pn and P(z) 6= 0
for |z| < 1, then the inequalities (1.1) and (1.2) can be, respectively, replaced
by ∥∥P ′∥∥∞ ≤ n

2
‖P‖∞ (1.3)

and ∥∥P ′∥∥
p
≤ n

‖1 + z‖p
‖P‖p , p ≥ 1. (1.4)

Inequality (1.3) was conjectured by Erdös and later verified by Lax [10]
whereas the inequality (1.4) was found out by Bruijn [7]. Rahman and Schmei-
sser [15] proved the inequality (1.4) remains true for 0 < p < 1 as well.
Both the estimates are sharp and equality in (1.3) and (1.4) holds for P(z) =
azn + b, |a| = |b| 6= 0.

Malik [11] generalized inequality (1.3) and proved that if P ∈ Pn does not
vanish in |z| < k where k ≥ 1, then∥∥P ′∥∥∞ ≤ n

1 + k
‖P‖∞ . (1.5)

Whereas under the same hypothesis, Govil and Rahman [8] extended in-
equality (1.5) to Lp-norm by showing that∥∥P ′∥∥

p
≤ n

‖k + z‖p
‖P‖p , p ≥ 1. (1.6)

As a refinement of inequality (1.6), it was shown by Rather [16] that if
P ∈ Pn and P (z) =

∑n
j=0 ajz

j 6= 0 for |z| < k, k ≥ 1, then∥∥P ′∥∥
p
≤ n

‖δk,1 + z‖p
‖P‖p , p > 0, (1.7)
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where δk,1 is defined by

δk,1 =
n |a0| k2 + |a1| k2

n |a0|+ |a1| k2
. (1.8)

Let DαP (z) denote the polar differentiation of a polynomial P(z ) of degree
n with respect to a complex number α. Then

DαP (z) := nP (z) + (α− z)P ′(z)

(see [12]). Note that DαP (z) is of degree at most n− 1 and it generalizes the
ordinary derivative P ′(z) of P (z) in the sense that

Lim
α→∞

DαP (z)

α
= P ′(z)

uniformly with respect to z for |z| ≤ R,R > 0.
A. Aziz [2] extended inequalities (1.1) and (1.3) to the polar derivative of a

polynomial and proved that if P ∈ Pn, then for α ∈ C with |α| ≥ 1,

‖DαP‖∞ ≤ n |α| ‖P‖∞ (1.9)

and if P ∈ Pn and P(z) 6= 0 for |z| < 1, then for α ∈ C with |α| ≥ 1,

‖DαP‖∞ ≤
n

2
(|α|+ 1) ‖P‖∞ . (1.10)

Both the inequalities (1.9) and (1.10) are best possible. If we divide the two
sides (1.9) and (1.10) by |α| and make |α| → ∞, we get inequalities (1.1) and
(1.3) respectively.

A. Aziz [2] also considered the class of polynomials P ∈ Pn having no zero
in |z| < k and proved that if P ∈ Pn and P(z) 6= 0 for |z| < k where k ≥ 1,
then for α ∈ C with |α| ≥ 1,

‖DαP‖∞ ≤ n
(
|α|+ k

1 + k

)
‖P‖∞ . (1.11)

The result is best possible and equality in (1.11) holds for P (z) = (z + k)n,
where α is any real number with α ≥ 1.

For polynomials P ∈ Pn having all their zeros in disk, Aziz and Rather [4]
proved that if P ∈ Pn has all its zeros in |z| ≤ k where k ≤ 1, then for α ∈ C
with |α| ≥ k,

‖DαP‖∞ ≥ n
(
|α| − k
1 + k

)
‖P‖∞ . (1.12)

The result is sharp and equality in (1.12) holds for P (z) = (z − k)n with real
α ≥ k.
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As an extension of inequality (1.10) to the Lp-norm, Aziz and Rather [5]
proved that if P ∈ Pn and P (z) does not vanish in |z| < 1, then for α ∈ C
with |α| ≥ 1 and p ≥ 1,

‖DαP‖p ≤ n

(
|α|+ 1

‖1 + z‖p

)
‖P‖p . (1.13)

Aziz et al. [6] also extended inequality (1.11) to the Lp- norm and proved
that if P ∈ Pn and P (z) 6= 0 for |z| < k where k ≥ 1, then for, α ∈ C with
|α| ≥ 1 and p ≥ 1,

‖DαP‖p ≤ n

(
|α|+ k

‖k + z‖p

)
‖P‖p . (1.14)

Rather [17,18] showed that inequalities (1.13) and (1.14) remain valid for
0 < p < 1 as well.

The bound in inequality (1.14) depends upon the zero of smallest modulus.
It is interesting to obtain a bound which depends upon some or all the coef-
ficients of the polynomial P ∈ Pn in addition to the zero of smallest modulus
as well.

We need the following lemmas.

Lemma 1.1. If P (z) = a0+
∑n

j=µ ajz
j 6= 0, 1 ≤ µ ≤ n in |z| < k where k ≥ 1

and Q(z) = znP (1/z), then for |z| = 1,

δk,µ
∣∣P ′(z)∣∣ ≤ ∣∣Q′(z)∣∣

where

δk,µ =

(
n |a0| kµ+1 + µ |aµ| k2µ

n |a0|+ µ |aµ| kµ+1

)
(≥ kµ) (1.15)

and
µ

n

∣∣∣∣aµa0
∣∣∣∣ kµ ≤ 1, 1 ≤ µ ≤ n.

Lemma 1.1 follows easily on using argument similar to that used in [14,
Lemma 1].

Lemma 1.2. If a, b are any two positive real numbers such that a ≥ bt where
t ≥ 1, then for any x ≥ 1, p > 0 and 0 ≤ β < 2π,

(a+ bx)p
∫ 2π

0

∣∣∣t+ eiβ
∣∣∣p dβ ≤ (t+ x)p

∫ 2π

0

∣∣∣a+ beiβ
∣∣∣p dβ.

Proof. By hypothesis t ≥ 1 and x ≥ 1, it can be easily seen that

Re

(
1

t+ eiβ

)
≥ 1

t+ 1
≥ 1

t+ x
.
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Now using the fact that a > 0, b > 0 and a ≥ bt, we get∣∣∣∣a+ beiβ

t+ eiβ

∣∣∣∣ ≥ Re(a+ beiβ

t+ eiβ

)
= Re

(
b+

a− bt
t+ eiβ

)
≥ b+ (a− bt)

(
1

t+ x

)
=
a+ bx

t+ x
.

This implies that for each p > 0,

(a+ bx)p
∣∣∣t+ eiβ

∣∣∣p ≤ (t+ x)p
∣∣∣a+ beiβ

∣∣∣p .
which on integration leads to the desired result. �

Next two lemmas are due to Aziz and Rather [3].

Lemma 1.3. If P ∈ Pn and Q(z) = znP (1/z), then for every p > 0 and real
β with 0 ≤ β < 2π,∫ 2π

0

∫ 2π

0

∣∣∣P ′(eiθ) + eiβQ′(eiθ)
∣∣∣p dθdβ ≤ 2πnp

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ.

Lemma 1.4. If P (z) = anz
n +

∑n
j=µ an−jz

n−j (1 ≤ µ ≤ n) has all zeros in

|z| ≤ k where k ≤ 1 and Q(z) = znP (1/z), then for |z| = 1,

tk,µ
∣∣P ′(z)∣∣ ≥ ∣∣Q′(z)∣∣

where tk,µ is given by

tk,µ =

(
n |an| k2µ + µ |an−µ| kµ−1

n |an| kµ−1 + µ |an−µ|

)
. (1.16)

We also need the following lemma due to Aziz [2].

Lemma 1.5. If P ∈ Pn and Q(z) = znP (1/z), then for every non-zero com-
plex number γ and 0 ≤ θ < 2π,∣∣∣DγQ(eiθ)

∣∣∣ = |γ|
∣∣∣D 1

γ̄
P (eiθ)

∣∣∣ .
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2. Main results

Theorem 2.1. If P ∈ Pn and P (z) does not vanish in |z| < k where k ≥ 1,
then for α ∈ C with |α| ≥ 1 and 0 ≤ p <∞,

‖DαP‖p ≤ n

(
|α|+ δk,1
‖δk,1 + z‖p

)
‖P‖p , (2.1)

where δk,1 is given by (1.8). In the limiting case, when p → ∞, the result is
sharp and equality in (2.1) holds for P (z) = (z + k)n with real α ≥ 1.

Remark 2.2. Since δk,1 ≥ k ≥ 1, setting a = δk,1, b = 1, t = k and x = |α| in
Lemma 1.2, we get

(δk,1 + |α|)p
∫ 2π

0

∣∣∣k + eiβ
∣∣∣p dβ ≤ (k + |α|)p

∫ 2π

0

∣∣∣δk,1 + eiβ
∣∣∣p dβ.

Equivalently,
(δk,1 + |α|)p∫ 2π

0 |δk,1 + eiβ|p dβ
≤ (k + |α|)p∫ 2π

0 |k + eiβ|p dβ
,

that is,
(δk,1 + |α|)
‖δk,1 + z‖P

≤ (k + |α|)
‖k + z‖p

,

which shows that Theorem 2.1 sharpens the inequality (1.14).

Instead of proving Theorem 2.1, we prove a more general result for the class
of lacunary type polynomials

Pn,µ :=

P ∈ Pn : P (z) = a0 +
n∑
j=µ

ajz
j , 1 ≤ µ ≤ n

 ,

which also extends an Lp- inequality due Rather [15] to the polar derivatives
of a polynomial valid for 0 ≤ p <∞. More precisely, we prove:

Theorem 2.3. If P ∈ Pn,µ and P (z) does not vanish in |z| < k where k ≥ 1,
then for α ∈ C with |α| ≥ 1 and 0 ≤ p <∞,

‖DαP‖p ≤ n

(
|α|+ δk,µ
‖δk,µ + z‖p

)
‖P‖p . (2.2)

where δk,µ is given by (1.15). In the limiting case, when p→∞, the result is

sharp and equality in (2.2) holds for P (z) = (zµ+kµ)n/µ, where n is a multiple
of µ and real α ≥ 1.



Integral inequalities for the polar derivative of a polynomial 387

Proof. By hypothesis, P ∈ Pn does not vanish in |z| < k where k ≥ 1 and

Q(z) = znP (1/z), therefore, by Lemma 1.1, we have

δk,µ
∣∣P ′(z)∣∣ ≤ ∣∣Q′(z)∣∣ ,

where δk,µ is given by (1.15). Further, since δk,µ ≥ kµ ≥ 1, 1 ≤ µ ≤ n, by

Lemma 1.2 with a =
∣∣Q′(eiθ)∣∣, b =

∣∣P ′(eiθ)∣∣, t = δk,µ and x = |α|, we get for
every α ∈ C with |α| ≥ 1,(

|Q′(eiθ)|+ |α||P ′(eiθ)|p
)∫ 2π

0
|δk,µ + eiβ|pdβ

≤ (|α|+ δk,µ)p
∫ 2π

0
|Q′(eiθ) + eiβP ′(eiθ)|pdβ

= (|α|+ δk,µ)p
∫ 2π

0
|P ′(eiθ) + eiβQ′(eiθ)|pdβ. (2.3)

Now for every p > 0, we have∫ 2π

0

∣∣∣δk,µ + eiβ
∣∣∣p dβ ∫ 2π

0

∣∣∣DαP (eiθ)
∣∣∣p dθ

=

∫ 2π

0

∫ 2π

0

∣∣∣δk,µ + eiβ
∣∣∣p ∣∣∣DαP (eiθ)

∣∣∣p dβdθ
=

∫ 2π

0

∫ 2π

0

∣∣∣δk,µ + eiβ
∣∣∣p ∣∣∣nP (eiθ)− eiθP ′(eiθ) + αP ′(eiθ)

∣∣∣p dβdθ
≤
∫ 2π

0

∫ 2π

0

∣∣∣δk,µ + eiβ
∣∣∣p {∣∣∣nP (eiθ)− eiθP ′(eiθ)

∣∣∣+ |α|
∣∣∣P ′(eiθ)∣∣∣}p dβdθ

=

∫ 2π

0

∫ 2π

0

∣∣∣δk,µ + eiβ
∣∣∣p {∣∣∣Q′(eiθ)∣∣∣+ |α|

∣∣∣P ′(eiθ)∣∣∣}p dβdθ. (2.4)

Using (2.3) in (2.4) and the property of definite integrals, we obtain for each
p > 0 and |α| ≥ 1,

∫ 2π

0

∣∣∣δk,µ + eiβ
∣∣∣p dβ ∫ 2π

0

∣∣∣DαP (eiθ)
∣∣∣p dθ

≤ (|α|+ δk,µ)p
∫ 2π

0

∫ 2π

0

∣∣∣∣∣∣P ′(eiθ)∣∣∣+ eiβ
∣∣∣Q′(eiθ)∣∣∣∣∣∣p dθdβ

= (|α|+ δk,µ)p
∫ 2π

0

∫ 2π

0

∣∣∣P ′(eiθ) + eiβQ′(eiθ)
∣∣∣p dθdβ.

This gives with the help of Lemma 1.3 for α ∈ C with |α| ≥ 1 and p > 0,
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∫ 2π

0

∣∣∣δk,µ + eiβ
∣∣∣p dβ ∫ 2π

0

∣∣∣DαP (eiθ)
∣∣∣p dθ ≤ 2πnp (|α|+ δk,µ)p

∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ,

which immediately leads to (2.2) and this completes the proof of Theorem 2.3
for p > 0. To obtain this result for p = 0, we simply make p→ 0+. �

The following result, which extends a result due to Qazi [14] to the polar
derivatives of a polynomial, immediately follows from Theorem 2.3 by letting
p→∞ in (2.2).

Corollary 2.4. If P ∈ Pn,µ and P (z) does not vanish in |z| < k where k ≥
1, then for α ∈ C with |α| ≥ 1,

‖DαP‖∞ ≤ n
(
|α|+ δk,µ
1 + δk,µ

)
‖P‖∞ (2.5)

where δk,µ is given by (1.15). The result is best possible and equality in (2.5)

holds for P (z) = (zµ + kµ)n/µ where n is a multiple of µ and α ≥ 1.

For µ = 1, Corollary 2.4 sharpens the inequality (1.11).

Using Lemma 1.2 and the fact that δk,µ ≥ kµ ≥ 1, 1 ≤ µ ≤ n, the follwing
result which is a generalization of inequality (1.14) also follows from Theorem
2.3.

Corollary 2.5. If P ∈ Pn,µ does not vanish in |z| < k where k ≥ 1, then for
α ∈ C with |α| ≥ 1 and 0 ≤ p <∞,

‖DαP‖p ≤ n

(
|α|+ kµ

‖kµ + z‖p

)
‖P‖p , (2.6)

where δk,µ is given by (1.15). In the limiting case, when p→∞, the result is

sharp and equality in (2.6) holds for P (z) = (zµ+kµ)n/µ, where n is a multiple
of µ and real α ≥ 1.

For the class of polynomials

P∗n,µ :=

P ∈ Pn : P (z) = anz
n +

n∑
j=µ

an−jz
n−j , 1 ≤ µ ≤ n

 ,

we also establish the following result:
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Theorem 2.6. If P ∈ P∗n,µand P (z) has all its zeros in 0 < |z| ≤ k where
k ≤ 1, then for α ∈ C with |α| ≤ 1 and 0 ≤ p <∞,

‖DαP‖p ≤ n

(
|α|+ tk,µ
‖tk,µ + z‖p

)
‖P‖p , (2.7)

where tk,µ is defined by (1.16).

Proof. Let Q(z) = znP (1/z). Since all the zeros of polynomial P (z) = a0 +
a1z + · · ·+ an−µz

n−µ + anz
n of degree n lie in 0 < |z| ≤ k, therefore, Q(z) =

an + an−µz
µ + · · · + a1z

n−1 + a0z
n is a polynomial of degree n which does

not vanish in |z| < (1/k) where (1/k) ≥ 1. Applying Theorem 2.3 to the
polynomial Q(z) and using the fact that

∣∣Q(eiθ)
∣∣ =

∣∣P (eiθ)
∣∣ for 0 ≤ θ < 2π

and ‖z + 1/tk,µ‖p = 1
tk,µ
‖z + tk,µ‖p , we get for γ ∈ C with |γ| ≥ 1 and p > 0,

{∫ 2π

0

∣∣∣DγQ(eiθ)
∣∣∣p dθ}1/p

≤ n

(
tk,µ |γ|+ 1

‖z + tk,µ‖p

){∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ}1/p

.

This gives by using Lemma 1.5 for |γ| ≥ 1, and p > 0,{∫ 2π

0
|γ|
∣∣∣D1/γP (eiθ)

∣∣∣p dθ}1/p

≤ n

(
tk,µ |γ|+ 1

‖z + tk,µ‖p

){∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ}1/p

.

(2.8)
Replacing 1/γ by α, we obtain from (2.8),{∫ 2π

0

∣∣∣DαP (eiθ)
∣∣∣p dθ}1/p

≤ n

(
|α|+ tk,µ
‖z + tk,µ‖p

){∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ}1/p

,

for |α| ≤ 1 and p > 0. This proves Theorem 2.6 for p > 0. The extension to
p = 0 obtains by letting p→ 0 + . �

The following result is an immediate consequence of Theorem 2.6.

Corollary 2.7. If P ∈ P∗n,µ and P (z) has all its zeros in 0 < |z| ≤ k where
k ≤ 1, then for α ∈ C with |α| ≤ 1,

‖DαP‖∞ ≤ n
(
|α|+ tk,µ
1 + tk,µ

)
‖P‖∞ ,

where tk,µ is given by (1.16). The result is sharp.

Finally, we present following integral inequality, which yields a refinement
of the inequality (1.12) as a special case.
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Theorem 2.8. If P ∈ P∗n,µ and P (z) has all its zeros in |z| ≤ k where k ≤ 1,
then for α ∈ C with |α| > tk,µ and 0 ≤ p <∞,

n(|α| − tk,µ)

∥∥∥∥ P

DαP

∥∥∥∥
p

≤ ‖1 + tk,µz‖p (2.9)

where tk,µ is given by (1.16).

Proof. Let Q(z) = znP (1/z). Then it can be easly verified for |z| = 1,∣∣Q′(z)∣∣ =
∣∣nP (z)− zP ′(z)

∣∣ and
∣∣P ′(z)∣∣ =

∣∣nQ(z)− zQ′(z)
∣∣ . (2.10)

Since all the zeros of polynomial P ∈ P∗n,µ lie in |z| ≤ 1, by Lemma 1.4, we
have

tk,µ
∣∣P ′(z)∣∣ ≥ ∣∣Q′(z)∣∣ for |z| = 1 (2.11)

where tk,µ is given by (1.16). This gives with the help of (2.10),∣∣Q′(z)∣∣ ≤ tk,µ ∣∣nQ(z)− zQ′(z)
∣∣ for |z| = 1. (2.12)

Also, since all the zeros of P (z) lie in |z| ≤ k ≤ 1, by Gauss-Lucas theorem
all the zeros of polynomial P ′(z) also lie |z| ≤ k ≤ 1. This shows that all

the zeros of polynomial zn−1P (1/z) = nQ(z) − zQ′(z) lie in |z| ≥ (1/k) ≥ 1,
Therefore, the function

f(z) =
zQ′(z)

tk,µ(nQ(z)− zQ′(z))

is analytic in |z| ≤ 1 and by (2.12), we have |f(z)| ≤ 1 for |z| = 1. Fur-
ther, f(0) = 0. Thus the function 1 + tk,µf(z) is subordinate to the function
1 + tk,µz. Hence by property of subordination [9], we have for each p > 0,

∫ 2π

0

∣∣∣1 + tk,µf(eiθ)
∣∣∣p dθ ≤ ∫ 2π

0

∣∣∣1 + tk,µe
iθ
∣∣∣p dθ. (2.13)

Now

1 + tk,µf(z) =
nQ(z)

nQ(z)− zQ′(z)
,

which by using (2.10) gives,

n |Q(z)| = |1 + tk,µf(z)|
∣∣nQ(z)− zQ′(z)

∣∣ = |1 + tk,µf(z)|
∣∣P ′(z)∣∣ , |z| = 1.

(2.14)
Since |Q(z)| = |P (z)| for |z| = 1, we get from (2.14),

n |P (z)| = |1 + tk,µf(z)|
∣∣P ′(z)∣∣ for |z| = 1. (2.15)
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Further, for α ∈ C with |α| > tk,µ and for |z| = 1,

|DαP (z)| =
∣∣nP (z)− zP ′(z) + αP ′(z)

∣∣
≥ |α|

∣∣P ′(z)∣∣− ∣∣nP (z)− zP ′(z)
∣∣ .

Combining this with (2.10) and (2.11), we obtain for |z| = 1,

|DαP (z)| ≥ |α|
∣∣P ′(z)∣∣− ∣∣Q′(z)∣∣

≥ |α|
∣∣P ′(z)∣∣− tk,µ ∣∣P ′(z)∣∣

= (|α| − tk,µ)
∣∣P ′(z)∣∣ . (2.16)

Using (2.16) in (2.15), it follows that,

n (|α| − tk,µ) |P (z)| ≤ |1 + tk,µf(z)| |DαP (z)| , |z| = 1. (2.17)

From (2.13) and (2.17), we deduce for each p > 0,

np (|α| − tk,µ)p
∫ 2π

0

∣∣∣∣ P (eiθ)

DαP (eiθ)

∣∣∣∣p dθ ≤ ∫ 2π

0

∣∣∣1 + tk,µe
iθ
∣∣∣p dθ,

which is equivalent to the desired result. This completes the proof of Theorem
2.8. To establish this result for p = 0, we simply let p→ 0 + . �

Since |DαP (z)| ≤ ‖DαP‖∞ for |z| = 1, we immediately get the following
result from Theorem 2.8.

Corollary 2.9. If P ∈ P∗n,µ and P (z) has all its zeros in |z| ≤ k, k ≤ 1, then
for α ∈ C with |α| ≥ tk,µ and 0 ≤ p <∞,

n(|α| − tk,µ) ‖P‖p ≤ ‖1 + tk,µz‖p ‖DαP‖∞ (2.18)

where tk,µ is given by (1.16).

Letting p → ∞ in (2.18) and taking µ = 1, we obtain the following refine-
ment of the inequality (1.12).

Corollary 2.10. If P ∈ Pn and P (z) has all its zeros in |z| ≤ k where k ≤ 1,
then for α ∈ C with |α| ≥ tk,1,

‖DαP‖∞ ≥ n
(
|α| − tk,1
1 + tk,1

)
‖P‖∞ (2.19)

where

tk,1 =

(
n |an| k2 + |an−1|
n |an|+ |an−1|

)
. (2.20)

The result is best possible and equality in (2.19) holds for P (z) = (z−k)n with
real α ≥ tk,1.
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Remark 2.11. From (2.13) and (2.17), we deduce for each p > 0,

np (|α| − tk,µ)p
∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ ≤ ∫ 2π

0

∣∣∣1 + tk,µe
iθ
∣∣∣p ∣∣∣DαP (eiθ)

∣∣∣p dθ,
which gives with the help of Holder’s inequality for r > 1, s > 1 with r−1 +
s−1 = 1,

np (|α| − tk,µ)p
∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ

≤
{∫ 2π

0

∣∣∣1 + tk,µe
iθ
∣∣∣pr dθ}1/r

×
{∫ 2π

0

∣∣∣DαP (eiθ)
∣∣∣ps dθ}1/s

.

Thus we have proved the following generalization of Corollary 2.9 which also
leads to an extension of the inequality (1.12) to Lp mean of |P (z)| on |z| = 1.

Theorem 2.12. If P ∈ P∗n,µ and P (z) has all its zeros in |z| ≤ k where
k ≤ 1, then for α ∈ C with |α| ≥ tk,µ, 0 ≤ p < ∞, and r > 1, s > 1 with
r−1 + s−1 = 1,

n (|α| − tk,µ)

{∫ 2π

0

∣∣∣P (eiθ)
∣∣∣p dθ}1/p

≤
{∫ 2π

0

∣∣∣1 + tk,µe
iθ
∣∣∣pr dθ}1/pr

×
{∫ 2π

0

∣∣∣DαP (eiθ)
∣∣∣ps dθ}1/ps

. (2.21)

where tk,µ is given by (1.16).
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