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Abstract. In this work, we study a class of singular multi-point nonlinear boundary value

problems with parameter λ > 0, the existence and nonexistence results of positive solutions

are obtained when the nonlinear term satisfy different requirements of superlinearity and

sublinearity and the parameter lies in some intervals.

1. Introduction

This paper considers the existence and nonexistence of positive solutions
for the following second-order m-point boundary value problem (BVP):





(p(t)x′(t))′ − q(t)x(t) + λh(t)f(t, x(t)) = 0, t ∈ (0, 1),
ax(0)− bp(0)x′(0) =

∑m−2
i=1 αix(ξi),

cx(1) + dp(1)x′(1) =
∑m−2

i=1 βix(ξi),
(1.1)
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where λ > 0 is a parameter, a, c ∈ [0, +∞), b, d ∈ (0, +∞), ξi ∈ (0, 1), αi, βi ∈
[0, +∞) for (i ∈ {1, 2, · · · ,m−2}) are given constants, p ∈ C1([0, 1], (0, +∞)), q ∈
C([0, 1], (0, +∞)) and f ∈ C([0, 1] × [0, +∞), [0, +∞)), h(t) is allowed to be
singular at t = 0, t = 1.

If λ = 1, h = p ≡ 1, q ≡ 0, αi, βi = 0 ( i = 1, 2, · · · ,m − 2), m-point BVP
(1.1) reduces to the two-point BVP





x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1),

ax(0)− bx′(0) = 0,

cx(1) + dx′(1) = 0.

(1.2)

In this case, (1.2) has been intensively studied (see, [4, 6]).
In recent years, singular multi-point boundary value problems have been

extensively studied and many optimal results have been obtained (see, [6, 11,
12, 13, 14]) and references therein. In addition, many paper investigated the
existence of solutions for the nonsingular multi-point boundary value problems
(see,[2, 3, 4, 10]).

Recently, Ma [8] and Ma and Thompson [9] obtained many good results
about the existence of positive solutions for the more general m-point bound-
ary value problem (1.1), but they only considered the case the nonlinearity
being nonsingular. In this work, we consider the existence and nonexistence
of positive solutions for BVP (1.1), here we allow h has singularity at t = 0, 1.

This work is organized as follows. In section 2, we present some lemmas
that are used to prove our main result. Then in section 3, the existence and
nonexistence of positive solutions for BVP (1.1) will be established by using
the Krasnoselskii fixed point theory, which we state here for the convenience
of the reader.

Lemma 1.1. ([1, 5]) Suppose that E is a Banach space, K is a cone in E.
Let Ω1 and Ω2 be two bounded open sets in E such that θ ∈ Ω1 and Ω1 ⊂ Ω2.
Let operator T : K ∩ (Ω2\Ω1) → K be completely continuous. Suppose that
one of the following two conditions is satisfied:

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2.
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has at least one fixed point in K ∩ (Ω2 \ Ω1).

2. Preliminaries and some lemmas

Let E = C[0, 1] be a real Banach space equipped with the norm ‖x‖ =
maxt∈[0,1] |x(t)| for x ∈ C[0, 1]. We let P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]}.
Clearly P is a cone of E.



Existence and nonexistence results of nonlinear second-order m-point BVP 217

In the rest of the paper, we adopt the following assumptions:

(H1) p ∈ C1([0, 1], (0, +∞)), q ∈ C([0, 1], (0, +∞)).

(H2) a, c ∈ [0, +∞), b, d ∈ (0, +∞) with ac + ad + bc > 0, αi, βi ∈ [0,+∞)
for i ∈ {1, · · · ,m− 2}.

(H3) f ∈ C([0, 1]× [0,+∞), [0, +∞)), h ∈ C((0, 1), [0, +∞)) and

0 <

∫ 1

0
G(s, s)h(s)ds < +∞,

where G(t, s) will be given by (2.3).

The following lemmas play important roles to prove our main results, which
can be found in papers [8] and [9].

Lemma 2.1. Let (H1) and (H2) hold. Let ψ and φ be the solutions of the
linear problems

{
(p(t)ψ′(t))′(t)− q(t)ψ(t) = 0, t ∈ (0, 1),
ψ(0) = b, p(0)ψ′(0) = a,

(2.1)

and {
(p(t)φ′(t))′(t)− q(t)φ(t) = 0, t ∈ (0, 1),
φ(1) = d, p(1)φ′(1) = −c,

(2.2)

respectively. Then
(i) ψ is strictly increasing on [0,1], and ψ(t) > 0 on [0, 1].
(ii) φ is strictly decreasing on [0,1], and φ(t) > 0 on [0, 1].

As in [9], set

∆ =

∣∣∣∣∣∣

−∑m−2
i=1 αiψ(ξi) ρ−∑m−2

i=1 αiφ(ξi)

ρ−∑m−2
i=1 βiψ(ξi) −∑m−2

i=1 βiφ(ξi)

∣∣∣∣∣∣
, ρ = p(t)

∣∣∣∣
φ(t) ψ(t)
φ′(t) ψ′(t)

∣∣∣∣ .

Then, by Liouville’s formula, we have

ρ = p(0)
∣∣∣∣

φ(0) ψ(0)
φ′(0) ψ′(0)

∣∣∣∣ = constant.

Define

G(t, s) =
1
ρ

{
φ(t)ψ(s), 0 ≤ s ≤ t ≤ 1,
φ(s)ψ(t), 0 ≤ t ≤ s ≤ 1.

(2.3)

It is easy to see that

0 ≤ G(t, s) ≤ G(s, s), 0 ≤ s, t ≤ 1. (2.4)
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Lemma 2.2. Let (H1) and (H2) hold. Assume that ∆ 6= 0. Then for y ∈
C[0, 1], the problem




(p(t)x′(t))′(t)− q(t)x(t) + y(t) = 0, t ∈ (0, 1),

ax(0)− bp(0)x′(0) =
m−2∑

i=1

αix(ξi), cx(1) + dp(1)x′(1) =
m−2∑

i=1

βix(ξi),

(2.5)
has a unique solution

x(t) =
∫ 1

0
G(t, s)y(s)ds + A(y)ψ(t) + B(y)φ(t), (2.6)

where

A(y) =
1
∆

∣∣∣∣∣∣

∑m−2
i=1 αi

∫ 1
0 G(ξi, s)y(s)ds ρ−∑m−2

i=1 αiφ(ξi)

∑m−2
i=1 βi

∫ 1
0 G(ξi, s)y(s)ds −∑m−2

i=1 βiφ(ξi)

∣∣∣∣∣∣
(2.7)

and

B(y) =
1
∆

∣∣∣∣∣∣

−∑m−2
i=1 αiψ(ξi)

∑m−2
i=1 αi

∫ 1
0 G(ξi, s)y(s)ds

ρ−∑m−2
i=1 βiψ(ξi)

∑m−2
i=1 βi

∫ 1
0 G(ξi, s)y(s)ds

∣∣∣∣∣∣
. (2.8)

Lemma 2.3. Let (H1) and (H2) hold. Assume

(H4) ∆ < 0, ρ−∑m−2
i=1 αiφ(ξi) > 0, ρ−∑m−2

i=1 βiψ(ξi) > 0.

Then for y ∈ C[0, 1] with y ≥ 0, the unique solution x of the problem (2.5)
satisfies

x(t) ≥ 0, for t ∈ [0, 1].

Remark 2.4. By (2.3) and Lemma 2.1, for any t ∈ [0, 1], we have

G(t, s)
G(s, s)

=

{
φ(t)
φ(s) , 0 ≤ s ≤ t ≤ 1,
ψ(t)
ψ(s) , 0 ≤ t ≤ s ≤ 1,

≥
{

d
φ(0) , 0 ≤ s ≤ t ≤ 1,

b
ψ(1) , 0 ≤ t ≤ s ≤ 1.

Let γ = min
{

d
φ(0) ,

b
ψ(1)

}
. Then G(t, s) ≥ γG(s, s), 0 ≤ t, s ≤ 1.

Remark 2.5. Since γ = min
{

d
φ(0) ,

b
ψ(1)

}
, according to the monotonicity of

ψ(t), we have γ ≤ b
ψ(1) = ψ(0)

ψ(1) ≤
ψ(t)
ψ(1) , so ψ(t) ≥ γψ(1), t ∈ [0, 1]. Similarly, by

the monotonicity of φ(t), we have γ ≤ d
φ(0) = φ(1)

φ(0) ≤
φ(t)
φ(0) , so φ(t) ≥ γφ(0), t ∈

[0, 1].
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With Lemma 2.2, BVP (1.1) has a solution x = x(t) if and only if x is a
solution of the following nonlinear integral equation

x(t) = λ

∫ 1

0
G(t, s)h(s)f(s, x(s))ds + A(F )ψ(t) + B(F )φ(t), (2.9)

where F , λh(t)f(t, x(t)), A(·), B(·) are defined by (2.7) and (2.8), respec-
tively.

Define an operator T : P → P by

(Tx)(t) = λ

∫ 1

0
G(t, s)h(s)f(s, x(s))ds + A(F )ψ(t) + B(F )φ(t). (2.10)

It is easy to prove that the existence of solution to BVP (1.1) is equivalent
to the existence of solutions to Eq.(2.9). That is the fixed point of operator
T.

Let
K = {x ∈ P : x(t) ≥ γ‖x‖, t ∈ [0, 1]}. (2.11)

It is obvious that K is a subcone of P . Let Kr = {x ∈ K : ‖x‖ < r} for r > 0.

Lemma 2.6. T (K) ⊂ K, and T : K → K is completely continuous.

Proof. For any x ∈ K, (H3) and (H4) imply that (Tx)(t) ≥ 0. From (2.4),
(2.10) and the monotonicity of ψ(t) and φ(t), we have

(Tx)(t) ≤ λ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds + A(F )ψ(1) + B(F )φ(0),

which implies

‖Tx‖ ≤ λ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds + A(F )ψ(1) + B(F )φ(0). (2.12)

By Remarks 2.4 and 2.5, we have

(Tx)(t) = λ

∫ 1

0
G(t, s)h(s)f(s, x(s))ds + A(F )ψ(t) + B(F )φ(t)

≥ γλ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds + A(F )γψ(1) + B(F )γφ(0)

≥ γ

[
λ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds + A(F )ψ(1) + B(F )φ(0)

]
.

(2.13)

Then, (2.12) and (2.13) yield that

(Tx)(t) ≥ γ‖Tx‖.
Thus, Tx ∈ K. Therefore, T (K) ⊂ K. The complete continuity of T : K → K
is obvious. ¤
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For convenience, we introduce the following symbols :

A =
1
∆

∣∣∣∣∣∣

∑m−2
i=1 αi ρ−∑m−2

i=1 αiφ(ξi)

∑m−2
i=1 βi −∑m−2

i=1 βiφ(ξi)

∣∣∣∣∣∣
, (2.14)

B =
1
∆

∣∣∣∣∣∣

−∑m−2
i=1 αiψ(ξi)

∑m−2
i=1 αi

ρ−∑m−2
i=1 βiψ(ξi)

∑m−2
i=1 βi

∣∣∣∣∣∣
, (2.15)

L =
∫ 1

0
G(s, s)h(s)ds. (2.16)

3. Main results

In this section, we present our main results as follows:

Theorem 3.1. Suppose that (H1)− (H4) hold. Besides, we assume that f0 <
∞, f∞ > 0 and

γ2f∞max
{

1, γAψ(1), γBφ(0)
}

> (1 + Aψ(1) + Bφ(0))f0.

Then BVP (1.1) has at least one positive solution for any

1
γ2Lf∞max{1, γAψ(1), γBφ(0)} < λ <

1
(1 + Aψ(1) + Bφ(0))Lf0

, (3.1)

where γ is defined in Remark 2.4 and A,B, L are defined by (2.14), (2.15) and
(2.16), respectively.

Proof. Let λ satisfies (3.1), we choose ε1 > 0 such that f∞ − ε1 > 0 and

1
γ2L(f∞ − ε1)max{1, γAψ(1), γBφ(0)} ≤ λ ≤ 1

(1 + Aψ(1) + Bφ(0))L(f0 + ε1)
.

(3.2)
Since f0 < ∞, there exists r1 > 0 such that

f(t, x) ≤ (f0 + ε1)x, for 0 ≤ t ≤ 1, 0 < x ≤ r1. (3.3)



Existence and nonexistence results of nonlinear second-order m-point BVP 221

For any x ∈ ∂Kr1 , by (3.2) and (3.3) we obtain

‖Tx‖ ≤λ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds + A(F )ψ(1) + B(F )φ(0)

≤λ(f0 + ε1)
∫ 1

0
G(s, s)h(s)ds‖x‖

+ λ(f0 + ε1)Aψ(1)
∫ 1

0
G(s, s)h(s)ds‖x‖

+ λ(f0 + ε1)Bφ(0)
∫ 1

0
G(s, s)h(s)ds‖x‖

=λ(f0 + ε1)L(1 + Aψ(1) + Bφ(0))‖x‖
≤‖x‖.

(3.4)

On the other hand, since max
{

1, γAψ(1), γBφ(0)
}

> 0. Without loss of

generality, we assume that max
{

1, γAψ(1), γBφ(0)
}

= 1. By f∞ > 0, there
exists r2 satisfying γr2 > r1 > 0 and

f(t, x) ≥ (f∞ − ε1)x, for x ≥ γr2, 0 ≤ t ≤ 1. (3.5)

For any x ∈ ∂Kr2 , by (3.2) and (3.5) we have

‖Tx‖ ≥λ

∫ 1

0
G(t, s)h(s)f(s, x(s))ds + A(F )ψ(t) + B(F )φ(t)

≥λγ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds

≥λγ2(f∞ − ε1)
∫ 1

0
G(s, s)h(s)ds‖x‖

≥‖x‖.

(3.6)

It follows from (3.4), (3.6) and Lemma 1.1 that the operator T has a fixed
point in Kr2\Kr1 , which is a positive solution of BVP (1.1). ¤

Corollary 3.2. Suppose that (H1) − (H4) hold and f0 = 0, f∞ = ∞. Then
BVP (1.1) has at least one positive solution for λ > 0.

Theorem 3.3. Suppose that (H1) − (H4) hold. In addition, we assume that
f∞ < +∞, f0 > 0 and

γ2f0 max
{

1, γAψ(1), γBφ(0)
}

> (1 + Aψ(1) + Bφ(0))f∞.
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Then BVP (1.1) has at least one positive solution for any
1

γ2Lf0 max
{

1, γAψ(1), γBφ(0)
} < λ <

1
(1 + Aψ(1) + Bφ(0))Lf∞

, (3.7)

where γ is defined in Remark 2.4 and A,B, L are defined by (2.14), (2.15) and
(2.16), respectively.

Proof. Let λ satisfies (3.7), we choose ε2 > 0 such that f0 − ε2 > 0 and
1

γ2L(f0 − ε2)max{1, γAψ(1), γBφ(0)} ≤ λ ≤ 1
(1 + Aψ(1) + Bφ(0))L(f∞ + ε2)

.

(3.8)
Since f∞ < ∞, there exists r1 > 0 such that

f(t, x) ≤ (f∞ + ε2)x, for 0 ≤ t ≤ 1, 0 < x ≤ γr1. (3.9)

For any x ∈ ∂Kr1 , by (3.8) and (3.9) we obtain

‖Tx‖ ≤λ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds + A(F )ψ(1) + B(F )φ(0)

≤λ(f∞ + ε2)
∫ 1

0
G(s, s)h(s)ds‖x‖

+ λ(f∞ + ε2)Aψ(1)
∫ 1

0
G(s, s)h(s)ds‖x‖

+ λ(f∞ + ε2)Bφ(0)
∫ 1

0
G(s, s)h(s)ds‖x‖

=λ(f∞ + ε2)L(1 + Aψ(1) + Bφ(0))‖x‖
≤‖x‖.

(3.10)

On the other hand, since max
{

1, γAψ(1), γBφ(0)
}

> 0. Without loss of

generality, we assume that max
{

1, γAψ(1), γBφ(0)
}

= γAψ(1). Since f0 > 0,
there exists 0 < r2 < γr1 such that

f(t, x) ≥ (f0 − ε2)x, for t ∈ [0, 1], x ∈ [0, r2]. (3.11)

For any x ∈ ∂Kr2 , by (3.8) and (3.11) we have

‖Tx‖ ≥λ

∫ 1

0
G(t, s)h(s)f(s, x(s))ds + A(F )ψ(t) + B(F )φ(t)

≥A(λh(s)f(s, x(s)))γψ(1)

≥λγ3(f0 − ε2)
∫ 1

0
G(s, s)h(s)ds‖x‖Aψ(1)

≥‖x‖.

(3.12)
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It follows from (3.10), (3.12) and Lemma 1.1 that the operator T has a fixed
point in Kr1\Kr2 , which is a positive solution of BVP (1.1). ¤

Corollary 3.4. Suppose that (H1) − (H4) hold and f0 = ∞, f∞ = 0. Then
BVP (1.1) has at least one positive solution for λ > 0.

Theorem 3.5. Suppose that (H1)−(H4) hold. Besides, we assume that f0 = 0
or f∞ = 0. Then there exists λ0 > 0 such that BVP (1.1) has at least one
positive solution for λ > λ0.

Proof. Choose r1 > 0 and

λ0 = r1

(
Lγ(1 + Aγψ(1) + Bγφ(0)) min

(t,x)∈D
f(t, x)

)−1

,

where D = {(t, x) : t ∈ [0, 1], x ∈ [γr1, r1]}. For λ > λ0, x ∈ ∂Kr1 we have

‖Tx‖ ≥λ

∫ 1

0
G(t, s)h(s)f(s, x(s))ds + A(F )ψ(t) + B(F )φ(t)

≥λγ

∫ 1

0
G(s, s)h(s)f(s, u(s))ds + λγ

∫ 1

0
G(s, s)h(s)f(s, x(s))dsAγψ(1)

+ λγ

∫ 1

0
G(s, s)h(s)f(s, x(s))dsBγφ(0)

>λ0Lγ(1 + Aγψ(1) + Bγφ(0)) min
(t,x)∈D

f(t, x)

=r1 = ‖x‖.
(3.13)

If f0 = 0. Taking r2 ∈ (0, γr1) such that f(t, x) < εx, for t ∈ [0, 1], x ∈
[0, r2], where ε satisfying ελL(1 + Aψ(1) + Bφ(0)) < 1. For x ∈ ∂Kr2 we have

‖Tx‖ ≤λ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds + A(F )ψ(1) + B(F )φ(0)

≤λLεr2 + λLAψ(1)εr2 + λLBφ(0)εr2

=λL(1 + Aψ(1) + Bφ(0))εr2

<r2 = ‖x‖.

(3.14)

(3.13), (3.14) and Lemma 1.1 yield that the operator T has a fixed point in
Kr1\Kr2 , which is a positive solution of BVP (1.1).

If f∞ = 0. Taking r3 ∈ ( r1
γ ,∞) such that f(t, x) < εx, for t ∈ [0, 1], x ∈

[γr3,∞), where ε satisfying ελL(1 + Aψ(1) + Bφ(0)) < 1. For x ∈ ∂Kr3 , we
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have γr3 ≤ x(t) ≤ r3, t ∈ [0, 1]. So

‖Tx‖ ≤λ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds + A(F )ψ(1) + B(F )φ(0)

≤λLεr3 + λLAψ(1)εr3 + λLBφ(0)εr3

=λL(1 + Aψ(1) + Bφ(0))εr3

<r3 = ‖x‖.

(3.15)

By (3.13), (3.15) and Lemma 1.1 that the operator T has a fixed point in
Kr1\Kr2 , which is a positive solution of BVP (1.1). ¤
Theorem 3.6. Suppose that (H1)−(H4) hold. Besides, we assume that f0 = 0
or f∞ = 0. Then there exists λ0 > 0 such that BVP (1.1) has at least one
positive solution for 0 < λ < λ0.

Proof. Choose r1 > 0 and

λ0 = r1

(
L(1 + Aψ(1) + Bφ(0)) max

(t,x)∈D
f(t, x)

)−1

,

where D = {(t, x) : t ∈ [0, 1], x ∈ [0, r1]}. For 0 < λ < λ0, x ∈ ∂Kr1 ,

‖Tx‖ ≤λ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds + A(F )ψ(1) + B(F )φ(0)

≤λL max
(t,x)∈D

f(t, x) + λLAψ(1) max
(t,x)∈D

f(t, x) + λLBφ(0) max
(t,x)∈D

f(t, x)

<λ0L(1 + Aψ(1) + Bφ(0)) max
(t,x)∈D

f(t, x)

=r1 = ‖x‖.
(3.16)

On the other hand, since max
{

1, γAψ(1), γBφ(0)
}

> 0. Without loss of

generality, we assume that max
{

1, γAψ(1), γBφ(0)
}

= γBφ(0).
Case (i) If f0 = ∞, there exists r2 ∈ (0, r1) such that f(t, x) ≥ ξx, for t ∈

[0, 1], x ∈ [0, r2], where ξ satisfying λγ3ξLBφ(0) > 1. For any x ∈ ∂Kr2 ,

‖Tx‖ ≥λ

∫ 1

0
G(t, s)h(s)f(s, x(s))ds + A(F )ψ(t) + B(F )φ(t)

≥B(λh(s)f(s, x(s)))γφ(0)

≥λγ3ξ

∫ 1

0
G(s, s)h(s)dsBφ(0)‖x‖

>‖x‖.

(3.17)

By (3.16), (3.17) and Lemma 1.1 that the operator T has a fixed point in
Kr1\Kr2 , which is a positive solution of BVP (1.1).
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Case (ii) If f∞ = 0, there exists M > 0 such that f(t, x) ≥ ξx, for 0 ≤ t ≤
1, x ≥ M, where ξ satisfying λξγL > 1. Let r3 = max{ r1

γ , M
γ }. For x ∈ ∂Kr3 ,

mint∈[0,1] x(t) ≥ γ‖x‖ ≥ M. So

‖Tx‖ ≥λ

∫ 1

0
G(t, s)h(s)f(s, x(s))ds + A(F )ψ(t) + B(F )φ(t)

≥B(λh(s)f(s, x(s)))γφ(0)

≥λγ3ξ

∫ 1

0
G(s, s)h(s)dsBφ(0)‖x‖

>‖x‖.

(3.18)

By (3.16), (3.18) and Lemma 1.1 that the operator T has a fixed point in
Kr3\Kr1 , which is a positive solution of BVP (1.1). ¤

Theorem 3.7. Suppose that (H1)− (H4) hold. Besides, we assume that f0 =
f∞ = 0. Then there exists λ0 > 0 such that BVP (1.1) has at least two positive
solutions for λ > λ0.

Proof. Choose two numbers 0 < r3 < γr4. Let

λ0 = r4

(
Lγ(1 + Aγψ(1) + Bγφ(0)) min

(t,x)∈D
f(t, x)

)−1

,

where D = {(t, x) : t ∈ [0, 1], x ∈ [γr3, r3] ∪ [γr4, r4]}. Similar to (3.13), we
have

‖Tx‖ ≥ ‖x‖, for λ > λ0, x ∈ ∂Kr3 , (3.19)

and
‖Tx‖ ≥ ‖x‖, for λ > λ0, x ∈ ∂Kr4 . (3.20)

From the proof of Theorem 3.5 we know, if f0 = f∞ = 0, choose r1 ∈
(0, γr3), r2 ∈ ( r4

γ ,∞), respectively. Then we have

‖Tx‖ ≤ ‖x‖, x ∈ ∂Kr1 , (3.21)

and
‖Tx‖ ≤ ‖x‖, x ∈ ∂Kr2 . (3.22)

By (3.19), (3.21) and (3.20), (3.22), T has at least one fixed point in Kr3\Kr1

and Kr2\Kr4 , respectively. Therefore, BVP (1.1) has at least two positive
solutions x1, x2 satisfying r1 ≤ ‖x1‖ ≤ r3 < r4 ≤ ‖x2‖ ≤ r2. ¤

Theorem 3.8. Suppose that (H1)− (H4) hold. Besides, we assume that f0 =
f∞ = 0. Then there exists λ0 > 0 such that BVP (1.1) has at least one positive
solution for 0 < λ < λ0.
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Proof. Choose two numbers 0 < r3 < r4. Let

λ0 = r3

(
L(1 + Aψ(1) + Bφ(0)) max

(t,x)∈D
f(t, x)

)−1

,

where D = {(t, x) : t ∈ [0, 1], x ∈ [0, r4]}. Similar to (3.16), we have

‖Tx‖ ≤ ‖x‖, for 0 < λ < λ0, x ∈ ∂Kr3 , (3.23)

and
‖Tx‖ ≤ ‖x‖, for 0 < λ < λ0, x ∈ ∂Kr4 . (3.24)

From the proof of Theorem 3.6 we know, if f0 = f∞ = ∞, choose r1 ∈
(0, r3), r2 ∈ ( r4

γ ,∞), respectively. Then we have

‖Tx‖ ≥ ‖x‖, x ∈ ∂Kr1 , (3.25)

and
‖Tx‖ ≥ ‖x‖, x ∈ ∂Kr2 . (3.26)

By (3.23), (3.25) and (3.24), (3.26), T has at least one fixed point in Kr3\Kr1

and Kr2\Kr4 , respectively. Therefore BVP (1.1) has at least two positive
solutions x1, x2 satisfying r1 ≤ ‖x1‖ ≤ r3 < r4 ≤ ‖x2‖ ≤ r2. ¤

Theorem 3.9. Suppose that (H1)− (H4) hold. Besides, we assume that f0 <
∞ and f∞ < ∞ Then there exists λ0 > 0 such that BVP (1.1) has no positive
solution for 0 < λ < λ0.

Proof. Since f0 < ∞, f∞ < ∞, there exist positive numbers ρ1, ρ2, r1, r2 such
that r1 < r2 and f(t, x) ≤ ρ1x, t ∈ [0, 1], x ∈ [0, r1] and f(t, x) ≤ ρ2x, t ∈
[0, 1], x ∈ [r2,∞). Let ρ3 = max

{
ρ1, ρ2,max(t,x)∈D

f(t,x)
x

}
, where D = {(t, x) :

0 ≤ t ≤ 1, r1 ≤ x ≤ r2}. Then f(t, x) ≤ ρ3x, t ∈ [0, 1], x ∈ [0,∞). Let
λ0 = (Lρ3(1 + Aψ(1) + Bφ(0)))−1 > 0.

Suppose that x(t) is a positive solution of BVP (1.1), i.e., (Tx)(t) = x(t), t ∈
[0, 1]. For 0 < λ < λ0, it follows that

‖x‖ = ‖Tx‖ ≤λ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds + A(F )ψ(1) + B(F )φ(0)

≤λLρ3‖x‖+ λLAψ(1)ρ3‖x‖+ λLBφ(0)ρ3‖x‖
<λ0Lρ3(1 + Aψ(1) + Bφ(0))‖x‖
=‖x‖,

which is a contradiction. ¤

Theorem 3.10. Suppose that (H1) − (H4) hold. Besides, we assume that
f0 > 0 and f∞ > 0. Then there exists λ0 > 0 such that BVP (1.1) has no
positive solution for λ > λ0.
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Proof. Since f0 > 0, f∞ > 0, there exist positive numbers σ1, σ2, r1, r2 such
that r1 < r2 and f(t, x) ≥ σ1x, t ∈ [0, 1], x ∈ [0, r1] and f(t, x) ≥ σ2x, t ∈
[0, 1], x ∈ [r2,∞). Let σ3 = min

{
σ1, σ2,min(t,x)∈D

f(t,x)
x

}
, where D = {(t, x) :

0 ≤ t ≤ 1, r1 ≤ x ≤ r2}. Then f(t, x) ≥ σ3x, t ∈ [0, 1], x ∈ [0,∞). Let

λ0 =
(
Lγ2(1 + Aγψ(1) + Bγφ(0))σ3

)−1
.

Suppose that x(t) is a positive solution of BVP (1.1), i.e., (Tx)(t) = x(t), t ∈
[0, 1]. For λ > λ0, it follows that

‖x‖ = ‖Tx‖ ≥λ

∫ 1

0
G(t, s)h(s)f(s, x(s))ds + A(F )ψ(t) + B(F )φ(t)

≥λγ

∫ 1

0
G(s, s)h(s)f(s, x(s))ds

+ λγ

∫ 1

0
G(s, s)h(s)f(s, x(s))dsAγψ(1)

+ λγ

∫ 1

0
G(s, s)h(s)f(s, x(s))dsBγφ(0)

>λ0Lγ2(1 + Aγψ(1) + Bγφ(0))σ3‖x‖
=‖x‖,

which is a contradiction. ¤
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