SOME TOPOLOGICAL RESULTS AND A FIXED POINT THEOREM IN A-METRIC SPACES

Zeid I. AL-Muhiameed ${ }^{1}$, Ghania Benhamida ${ }^{2}$ and Mahmoud Bousselsal ${ }^{3}$
${ }^{1}$ Department of Mathematics
College of Science, Qassim University, 51452 Buraydah (KSA)
e-mail: ksapr006@yahoo.com
${ }^{2}$ Lab. E.D.P.N.L. and Hist. of Maths
Ecole Normale Supérieure,16050-Kouba, Algiers, Algeria
e-mail: benhamidag@yahoo.fr
${ }^{3}$ Lab. E.D.P.N.L. and Hist. of Maths
Ecole Normale Supérieure,16050-Kouba, Algiers, Algeria e-mail: bousselsal55@gmail.com

Abstract

In this paper, we prove some topological properties and a common fixed point type theorem for two self mappings on new generalized metric spaces, called A-metric spaces.

1. Introduction

The metric space forms an important environment for studying fixed point of single and multi-valued operators and the fixed point theory is important on applied sciences. Many authors have studied this important theory. In 1963, Gahler [3, 4] introduced the notion of a 2 -metric space. He claimed that $2-$ metric space is a generalization of an ordinary metric space. On the other hand, Ha et al. [5] and Sharma [13] found some mathematical flaws in theses claims. It was demonstrated that the $2-$ metric is not sequentially continuous in each of its arguments, whereas an ordinary metric satisfies this property. To overcome these problems, Dhage [2] introduced the concept of D-metric

[^0]space as a generalization of a metric space and claimed that D-metric space defines a Haussdorff topology and D-metric is sequentially continuous with respect to all it's three variables. He proved some topological property and some fixed point results.

In 2003, Mustafa and Sims [6] introduced a new structure of generalized metric spaces which are called G-metric spaces and suggested an important generalization of a metric space. They studied some topological properties of G-metric space and afterwards some authors have obtained generalized fixed point theorems in the setup of G-metric space, see for examples [7, 14]. Next, Sedghi et al. [11] introduced a $D^{*}-$ metric space and observed that some condition can be replaced with two axioms. So not every D^{*}-metric space needs to be a G-metric space. To overcome these difficulties, they introduced a new generalized metric space called S-metric space [10, 12], they proved that every a S-metric space is a generalization of a D^{*}-metric space and the G-metric space. A generalization of the S-metric space is called the A-metric space (see [1]).

It is our purpose in this paper to study topological properties of an A-metric space. We present here the concept of an A-metric space and some of its properties.

2. PRELIMINARIES

For $n \geq 2$, let X^{n} denotes the cartesian product $X \times X \times X \ldots . \times X$.
Definition 2.1. Let X be a nonempty set. A function $A: X^{n} \longrightarrow[0,+\infty)$ is called an A-metric on X if for any $x_{i}, a \in X, i=1,2, \ldots \ldots ., n$, the following conditions holds :
(A1) $A\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, x_{n}\right) \geq 0$,
(A2) $A\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)=0$ if and only if $x_{1}=x_{2}=\ldots=x_{n-1}=x_{n}$,
(A3) For any $a \in X$,

$$
\begin{aligned}
A\left(x_{1}, x_{2}, x_{3}, \ldots ., x_{n-1}, x_{n}\right) \leq & A\left(x_{1}, x_{1}, x_{1}, \ldots .,\left(x_{1}\right)_{n-1}, a\right) \\
& +A\left(x_{2}, x_{2}, x_{2}, \ldots .,\left(x_{2}\right)_{n-1}, a\right) \\
& +A\left(x_{3}, x_{3}, x_{3}, \ldots,\left(x_{3}\right)_{n-1}, a\right) \\
& \vdots \\
& +A\left(x_{n-1}, x_{n-1}, \ldots,\left(x_{n-1}\right)_{n-1}, a\right) \\
& +A\left(x_{n}, x_{n}, x_{n}, \ldots,\left(x_{n}\right)_{n-1}, a\right) .
\end{aligned}
$$

The pair (X, A) is called an A-metric space.

Note that the A-metric space is an n-dimensional S-metric space (see [1]). Therefore the ordinary metric d and S-metric are special cases of an A-metric with $n=2$ and $n=3$, respectively.
Example 2.2. Let $X=\mathbb{R}$. Define a function $A: X^{n} \rightarrow[0,+\infty)$ by

$$
\begin{aligned}
A\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, x_{n}\right)= & \left|x_{1}-x_{2}\right|+\left|x_{1}-x_{3}\right|+\ldots+\left|x_{1}-x_{n}\right| \\
& +\left|x_{2}-x_{3}\right|+\left|x_{2}-x_{4}\right|+\ldots+\left|x_{2}-x_{n}\right| \\
& \vdots \\
& +\left|x_{n-2}-x_{n-1}\right|+\left|x_{n-2}-x_{n}\right|+\left|x_{n-1}-x_{n}\right| \\
= & \sum_{i=1}^{n} \sum_{i<j}\left|x_{i}-x_{j}\right| .
\end{aligned}
$$

Then (\mathbb{R}, A) is an A-metric space.
Example 2.3. For a standard ordinary metric d on X, we define a function A_{1} on X^{n} by

$$
A_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)=\sum_{i, j=1,(i<j)}^{n} d\left(x_{i}, x_{j}\right)
$$

for all $x_{i} \in X, i=1,2, \ldots, n$. Then A_{1} is an A-metric on X and is called the standard A-metric on X. Obviously the first two conditions are satisfied. To prove the third condition, let $x_{i}, a \in X, i=1,2, \ldots, n$, from the triangle inequality, it follows

$$
\begin{aligned}
A_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)= & d\left(x_{1}, x_{2}\right)+\cdots+d\left(x_{1}, x_{n}\right)+d\left(x_{2}, x_{3}\right)+\cdots+d\left(x_{2}, x_{n}\right) \\
& +\cdots+d\left(x_{n-2}, x_{n-1}\right)+d\left(x_{n-2}, x_{n}\right)+d\left(x_{n-1}, x_{n}\right) \\
\leq & d\left(x_{1}, a\right)+d\left(a, x_{2}\right)+\cdots+d\left(x_{1}, a\right)+d\left(a, x_{n}\right) \\
& +\cdots+d\left(x_{n-1}, a\right)+d\left(a, x_{n}\right) \\
\leq & (n-1) d\left(x_{1}, a\right)+(n-1) d\left(x_{2}, a\right)+\cdots+(n-1) d\left(x_{n}, a\right) \\
\leq & A_{1}\left(x_{1}, \ldots, x_{1}, a\right)+A_{1}\left(x_{2}, \ldots, x_{2}, a\right)+\cdots+A_{1}\left(x_{n}, \ldots, x_{n}, a\right) .
\end{aligned}
$$

Hence $\left(X, A_{1}\right)$ is an A-metric space.
Lemma 2.4. ([1]) Let (X, A) be an A-metric space. Then $A(x, x, x, \ldots, x, y)=$ $A(y, y, y, \ldots, y, x)$ for all $x, y \in X$.

Lemma 2.5. ([1]) Let (X, A) be an A-metric space. Then, for all $x, y \in X$ we have

$$
A(x, x, x, \cdots, x, z) \leq(n-1) A(x, x, x, \cdots, x, y)+A(z, z, z, \cdots, z, y)
$$

and

$$
A(x, x, x, \cdots, x, z) \leq(n-1) A(x, x, x, \cdots, x, y)+A(y, y, y, \cdots, y, z)
$$

Lemma 2.6. ([1]) Let (X, A) be an A-metric space. Then $\left(X^{2}, D_{A}\right)$ is an A-metric space on $X \times X$ with the metric D_{A} given by

$$
D_{A}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right)=A\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)+A\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right)
$$

for all $x_{i}, x_{j} \in X, i, j=1, \ldots, n$.
Theorem 2.7. Let X_{1}, X_{2} be two A-metric spaces with A-metrics ρ_{1} and ρ_{2} respectively. Then (X, ρ) is also an A-metric space, where $X=X_{1} \times X_{2}$ and

$$
\rho\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right)=\max \left\{\rho_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \rho_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\}
$$

Proof. Obviously the conditions of nonnegativity and symmetry are satisfied. To prove the third condition, let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right),\left(a_{1}, a_{2}\right) \in X=$ $X_{1} \times X_{2}$. Then we have

$$
\begin{aligned}
& \rho\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right),\left(x_{n}, y_{n}\right)\right) \\
& =\max \left\{\rho_{1}\left(x_{1}, \ldots, x_{n}\right), \rho_{2}\left(y_{1}, \ldots, y_{n}\right)\right\} \\
& \leq \max \left\{\rho_{1}\left(x_{1}, . ., a_{1}\right)+\ldots+\rho_{1}\left(x_{n}, . ., a_{1}\right), \rho_{2}\left(y_{1}, . ., a_{2}\right)+\ldots+\rho_{2}\left(y_{n}, . ., a_{2}\right)\right\} \\
& \leq \max \left\{\rho_{1}\left(x_{1}, \ldots, a_{1}\right), \rho_{2}\left(y_{1}, \ldots, a_{2}\right)\right\}+\ldots+\max \left\{\rho_{1}\left(x_{n}, \ldots, a_{1}\right), \rho_{2}\left(y_{n}, \ldots, a_{2}\right)\right\} \\
& \leq \rho\left(\left(x_{1}, y_{1}\right), \ldots,\left(a_{1}, a_{2}\right)\right)+\rho\left(\left(x_{2}, y_{2}\right), \ldots,\left(a_{1}, a_{2}\right)\right. \\
& \quad+\ldots+\rho\left(\left(x_{n}, y_{n}\right), \ldots,\left(a_{1}, a_{2}\right)\right)
\end{aligned}
$$

Hence (X, ρ) is an A-metric space.
The following useful properties of an A-metric are easily derived from the axioms.

Proposition 2.8. Let (X, A) be an A-metric space. Then for any $x_{1}, x_{2}, \ldots, x_{n}, a \in$ X, we have
(1) $A\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \sum_{j=2}^{n} A\left(x_{1}, x_{1}, \ldots, x_{1}, x_{j}\right)$,
(2) $A\left(x_{1}, x_{2}, \ldots, x_{2}\right) \leq(n-1) A\left(x_{1}, x_{1}, \ldots, x_{1}, x_{2}\right)$,
(3) $A\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \sum_{j=1}^{n} A\left(a, a, \ldots, a, x_{j}\right)$.

Proof. Let $x_{1}, x_{2}, \ldots, x_{n}, a \in X$. Then

$$
\begin{equation*}
A\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \sum_{j=1}^{n} A\left(x_{j}, x_{j}, \ldots, x_{j}, a\right) \tag{1}
\end{equation*}
$$

by taking $a=x_{1}$, we obtain

$$
A\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \sum_{j=2}^{n} A\left(x_{j}, x_{j}, \ldots, x_{j}, x_{1}\right)
$$

and by using lemma 2.5 , we have

$$
A\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \sum_{j=2}^{n} A\left(x_{1}, x_{1}, \ldots, x_{1}, x_{j}\right)
$$

also for almost $i=1,2, \ldots, n$, we obtain

$$
A\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \sum_{j=1, j \neq i}^{n} A\left(x_{i}, x_{i}, \ldots, x_{i}, x_{j}\right) .
$$

(2) Using the previous property and by taking $x_{j}=x_{2}, \forall j=3, \ldots, n$, we obtain

$$
A\left(x_{1}, x_{2}, \ldots, x_{2}\right) \leq(n-1) A\left(x_{1}, x_{1}, \ldots, x_{1}, x_{2}\right)
$$

(3) It's obvious. By using the condition (A3) and Lemma 2.5, we obtain the result.

Next the following lemma is needed to show the continuity of the A-metric function in one variable and in all its variables.

Lemma 2.9. In an A-metric space X,

$$
\begin{align*}
& \left|A\left(x_{1}, x_{2}, \ldots, x_{n-1}, a\right)-A\left(x_{1}, x_{2}, \ldots, x_{n-1}, b\right)\right| \tag{i}\\
& \leq \sum_{j=1}^{n-1}\left[A\left(a, a, \ldots, a, x_{j}\right)+A\left(b, b, \ldots, b, x_{j}\right)\right]
\end{align*}
$$

for all $x_{1}, \ldots, x_{n-1}, a, b \in X$,
(ii)

$$
\begin{aligned}
& \mid A\left(x_{1}, x_{2}, \ldots, x_{n-1}, a\right)-A\left(y_{1}, y_{2}, \ldots, y_{n-1}, a \mid\right. \\
& \leq \sum_{j=1}^{n-1}\left[A\left(a, a, \ldots, a, x_{j}\right)+A\left(a, a, \ldots, a, y_{j}\right)\right],
\end{aligned}
$$

for all $x_{1}, \ldots ., x_{n-1}, y_{1}, \ldots, y_{n-1}, a \in X$ and
(iii)

$$
\begin{aligned}
& \qquad\left|A\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)-A\left(y_{1}, y_{2}, \ldots, y_{n-1}, y_{n}\right)\right| \\
& \leq \sum_{j=1}^{n}\left[A\left(x_{j}, x_{j}, \ldots, x_{j}, y_{1}\right)+A\left(y_{j}, y_{j}, \ldots, y_{j}, x_{1}\right)\right], \\
& \text { for all } x_{1}, \ldots, x_{n-1}, x_{n}, y_{1}, \ldots, y_{n-1}, y_{n} \in X .
\end{aligned}
$$

Proof. To prove this Lemma we use the Proposition 2.8.
(i) Let $x_{1}, \ldots, x_{n-1}, a, b \in X$. Then by Proposition 2.8 (3) we have

$$
\begin{aligned}
& \left|A\left(x_{1}, x_{2}, \ldots, x_{n-1}, a\right)-A\left(x_{1}, x_{2}, \ldots, x_{n-1}, b\right)\right| \\
& \leq A\left(x_{1}, x_{2}, \ldots, x_{n-1}, a\right)+A\left(x_{1}, x_{2}, \ldots, x_{n-1}, b\right) \\
& =\sum_{j=1}^{n-1}\left[A\left(a, a, \ldots, a, x_{j}\right)+A\left(b, b, \ldots, b, x_{j}\right)\right] .
\end{aligned}
$$

(ii) Let $x_{1}, \ldots, x_{n-1}, y_{1}, y_{2}, \ldots, y_{n-1}, a \in X$. Then by using Proposition 2.8 (3) we obtain

$$
\begin{aligned}
& \left|A\left(x_{1}, x_{2}, \ldots, x_{n-1}, a\right)-A\left(y_{1}, y_{2}, \ldots, y_{n-1}, a\right)\right| \\
& \leq A\left(x_{1}, x_{2}, \ldots, x_{n-1}, a\right)+A\left(y_{1}, y_{2}, \ldots, y_{n-1}, a\right) \\
& \leq \sum_{j=1}^{n-1}\left[A\left(a, a, \ldots, a, x_{j}\right)+A\left(a, a, \ldots, a, y_{j}\right)\right] .
\end{aligned}
$$

(iii) Let $x_{1}, \ldots, x_{n-1}, x_{n}, y_{1}, y_{2}, \ldots, y_{n-1}, y_{n}, a, b \in X$. Then by condition (A3) we have

$$
\begin{aligned}
& \left|A\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)-A\left(y_{1}, y_{2}, \ldots, y_{n-1}, y_{n}\right)\right| \\
& \leq A\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)+A\left(y_{1}, y_{2}, \ldots, y_{n-1}, y_{n}\right) \\
& \leq \sum_{j=1}^{n}\left[A\left(x_{j}, x_{j}, \ldots, x_{j}, a\right)+A\left(y_{j}, y_{j}, \ldots, y_{j}, b\right)\right]
\end{aligned}
$$

Take $a=y_{1}, b=x_{1}$, then we obtain the result.

3. The A-metric topology

Definition 3.1. Given a point x_{0} in an A-metric space (X, A) and a positive real number r, the set

$$
B\left(x_{0}, r\right)=\left\{y \in X: A\left(y, y, \ldots, y, x_{0}\right)<r\right\}
$$

is called an open ball centered at x_{0} with radius r.
The set

$$
\overline{B\left(x_{0}, r\right)}=\left\{y \in X: A\left(y, y, \ldots, y, x_{0}\right) \leq r\right\}
$$

is called a closed ball centered at x_{0} with radius r.
Let X be an A-metric space with A-metric A. Then the diameter $\delta(X)$ of X is defined by

$$
\delta(X)=\sup \{A(x, x, x, \ldots, x, y): x, y \in X\}
$$

Definition 3.2. The A-metric space (X, A) is said to be bounded if there exists a constant $r>0$ such that $A(x, x, \ldots, x, y) \leq r$ for all $x, y \in X$. Otherwise, X is unbounded.

Theorem 3.3. Let $\left(X_{1}, \rho_{1}\right)$ and $\left(X_{2}, \rho_{2}\right)$ be two bounded A-metric spaces with bounds M_{1} and M_{2}, respectively. Then the A-metric space (X, ρ) is bounded with bound $M=\max \left\{M_{1}, M_{2}\right\}$, where $X=X_{1} \times X_{2}$ and ρ is defined as in Theorem 2.7.

Proof. Since $\left(X_{1}, \rho_{1}\right)$ and (X_{2}, ρ_{2}) are bounded, we have

$$
\begin{aligned}
\rho_{1}\left(x_{1}, x_{1}, \ldots, x_{1}, x_{2}\right) \leq M_{1} & \text { for all } x_{1}, x_{2} \in X_{1} \\
\rho_{2}\left(y_{1}, y_{1}, \ldots, y_{1}, y_{2}\right) \leq M_{2} & \text { for all } y_{1}, y_{2} \in X_{2}
\end{aligned}
$$

By definition of ρ, we obtain

$$
\begin{aligned}
\rho\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =\max \left\{\rho_{1}\left(x_{1}, \ldots, x_{1}, x_{2}\right), \rho_{2}\left(y_{1}, \ldots, y_{1}, y_{2}\right)\right\} \\
& \leq \max \left\{M_{1}, M_{2}\right\}=M
\end{aligned}
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X=X_{1} \times X_{2}$. This completes the proof.
Definition 3.4. Let (X, A) be an A-metric space. A subset Ω of X is said to be an open set if for each $x \in \Omega$ there exists an $r>0$ such that $B(x, r) \subset \Omega$.

Remark 3.5. The open sets so described are those of a topology on X called A-metric topology.

Theorem 3.6. The open sets of an A-metric space X are exactly the union of open balls.

Proof. First, each open ball is an open set in X ([1]). Then, any union of open balls is open and, if Ω is an open set, for all $x \in \Omega$, there exists an $r_{x}>0$ such that $B\left(x, r_{x}\right) \subset \Omega$ from where $\Omega \subset \bigcup_{x \in \Omega} B\left(x, r_{x}\right) \subset \Omega$ and we obtain equality $\Omega=\bigcup_{x \in \Omega} B\left(x, r_{x}\right)$.

Theorem 3.7. The A-metric function $A\left(x_{1}, x_{2}, \ldots ., x_{n}\right)$ is continuous in all its variables.

Proof. Let $\epsilon>0$ be given and let $x_{1}^{0}, \ldots, x_{n-1}^{0}, x_{n}^{0} \in X$. Then for $x_{1}, x_{2}, \ldots, x_{n} \in$ X such that

$$
x_{j} \in \bigcap_{i=1}^{n} B\left(x_{i}^{0}, \frac{\epsilon}{2 n}\right)
$$

for $j=1,2, \ldots, n$ and using lemma 2.9 (iii), we obtain

$$
\begin{aligned}
& \left|A\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)-A\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n-1}^{0}, x_{n}^{0}\right)\right| \\
& \leq \sum_{j=1}^{n}\left[A\left(x_{j}, \ldots, x_{j}, x_{1}^{0}\right)+A\left(x_{j}^{0}, x_{j}^{0}, \ldots, x_{j}^{0}, x_{1}\right)\right] \\
& <\sum_{j=1}^{n}\left(\frac{\epsilon}{2 n}+\frac{\epsilon}{2 n}\right)=\epsilon
\end{aligned}
$$

This completes the proof.

We denote also another important problem that is the A-metrizability of the topological space which is satisfied under a condition given in the following theorem.

Theorem 3.8. If the topological space X is metrizable then it is A-metrizable.
Proof. Suppose that X is a metrizable space and denote the ordinary metric on X by d, where d induces the topology of X. Using an A-metric A_{1} on X defined as in example 2.3. This A-metric generate the same topology on that of X. We deduce that X is A-metrizable.

Theorem 3.9. (Kolmogorov space) An A-metric space X is a T_{0}-space.
Proof. Let $x_{0}, y_{0} \in X$ be such that $x_{0} \neq y_{0}$. Suppose that $A\left(y_{0}, y_{0}, \ldots, y_{0}, x_{0}\right)=$ $r>0$, then $y_{0} \notin B\left(x_{0}, r\right)$, where $B\left(x_{0}, r\right)$ is an open ball in X defined by

$$
B\left(x_{0}, r\right)=\left\{y \in X: A\left(y, y, \ldots, y, x_{0}\right)<r\right\}
$$

Hence X is a T_{0}-space.

Theorem 3.10. (Frechet space) An A-metric space X is T_{1}-space.
Proof. Let $x_{0}, y_{0} \in X$ be such that $x_{0} \neq y_{0}$. Suppose that

$$
A\left(y_{0}, y_{0}, \ldots, y_{0}, x_{0}\right)=A\left(x_{0}, x_{0}, \ldots, x_{0}, y_{0}\right)=r_{1}>0
$$

Then $y_{0} \notin B\left(x_{0}, r_{1}\right)$, where $B\left(x_{0}, r_{1}\right)=\left\{y \in X: A\left(y, y, \ldots, y, x_{0}\right)<r_{1}\right\}$. Similarly, $x_{0} \notin B\left(y_{0}, r_{1}\right)$, where $B\left(y_{0}, r_{1}\right)=\left\{x \in X: A\left(x, x, \ldots, x, y_{0}\right)<r_{1}\right\}$. Since $B\left(x_{0}, r_{1}\right)$ and $B\left(y_{0}, r_{1}\right)$ are two open balls in X containing x_{0} and y_{0}, respectively, we deduce that X is T_{1}-space.

Theorem 3.11. (Haussdorff space) An A-metric space X is T_{2}-space.

Proof. Let $x_{0}, y_{0} \in X$ such that $x_{0} \neq y_{0}$. Consider two sets B_{1}^{*} and B_{2}^{*} as follows :

$$
B_{1}^{*}=\left\{x \in X: A\left(x, x, \ldots, x, x_{0}\right)<A\left(x, x, \ldots, x, y_{0}\right)\right\}
$$

and

$$
B_{2}^{*}=\left\{x \in X: A\left(x, x, \ldots, x, y_{0}\right)<A\left(x, x, \ldots, x, x_{0}\right)\right\}
$$

It is clear that B_{1}^{*} and B_{2}^{*} contains x_{0} and y_{0}, respectively. To prove that $B_{1}^{*} \cap B_{2}^{*}=\varnothing$, suppose there exists $z \in B_{1}^{*} \cap B_{2}^{*}$, then

$$
A\left(z, z, \ldots, z, x_{0}\right)<A\left(z, z, \ldots, z, y_{0}\right)
$$

and

$$
A\left(z, z, \ldots, z, y_{0}\right)<A\left(z, z, \ldots, z, x_{0}\right)
$$

which is absurd, because there are two contradictory statements. Then $B_{1}^{*} \cap$ $B_{2}^{*}=\varnothing$. It remains to prove that B_{1}^{*} and B_{2}^{*} are open sets. For this, let $x \in B_{1}^{*}$. Then we have

$$
A\left(x, x, \ldots, x, x_{0}\right)<A\left(x, x, \ldots, x, y_{0}\right)
$$

and set $s=\frac{A\left(x, x, \ldots, x, y_{0}\right)-A\left(x, x, \ldots, x, x_{0}\right)}{2(n-1)}>0$. It is clear that $B(x, s) \subset$ B_{1}^{*}, because for $z \in B(x, s)$, we have

$$
\begin{equation*}
A(z, z, \ldots, z, x)<\frac{A\left(x, x, \ldots, x, y_{0}\right)-A\left(x, x, \ldots, x, x_{0}\right)}{2(n-1)} \tag{3.1}
\end{equation*}
$$

therefore $2(n-1) A(z, z, \ldots, z, x)<A\left(x, x, \ldots, x, y_{0}\right)-A\left(x, x, \ldots, x, x_{0}\right)$, which implies that

$$
\begin{equation*}
(n-1) A(z, \ldots, z, x)+A\left(x, \ldots, x, x_{0}\right)<A\left(x, \ldots, x, y_{0}\right)-(n-1) A(z, \ldots, z, x) \tag{3.2}
\end{equation*}
$$

Now from (3.2), Lemma 2.4 and condition (A3), we obtain

$$
\begin{aligned}
A\left(z, \ldots, z, x_{0}\right) & \leq(n-1) A(z, \ldots, z, x)+A\left(x_{0}, \ldots, x_{0}, x\right) \\
& <A\left(x, \ldots, x, y_{0}\right)-(n-1) A(z, \ldots, z, x) \\
& \leq(n-1) A(x, \ldots, x, z)+A\left(z, \ldots, z, y_{0}\right)-(n-1) A(z, \ldots, z, x) \\
& =A\left(z, \ldots, z, y_{0}\right)
\end{aligned}
$$

So

$$
A\left(z, \ldots, z, x_{0}\right)<A\left(z, \ldots, z, y_{0}\right)
$$

which is the desired result. This proves that B_{1}^{*} is an open set contains x_{0}. Similarly, we can show that B_{2}^{*} is also an open set contains y_{0}. Hence, any A-metric space is T_{2}-space.

3.1. Completeness of A-metric spaces.

Definition 3.12. Let (X, A) be an A-metric space. A sequence $\left\{x_{k}\right\}$ in X is said to converge to a point $x \in X$, if $A\left(x_{k}, x_{k}, \ldots, x_{k}, x\right) \longrightarrow 0$ as $k \longrightarrow+\infty$. That is, for each $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that for all $k \geq n_{0}$ we have $A\left(x_{k}, x_{k}, \ldots, x_{k}, x\right) \leq \epsilon$ and we write $\lim _{k \rightarrow+\infty} x_{k}=x$.

Lemma 3.13. ([1]) Let (X, A) be an A-metric space. If the sequence $\left\{x_{k}\right\}$ in X converges to a point x, then x is unique.

Definition 3.14. Let (X, A) be an A-metric space. A sequence $\left\{x_{k}\right\}$ in X is called a Cauchy sequence if $A\left(x_{k}, x_{k}, \ldots, x_{k}, x_{m}\right) \longrightarrow 0$ as $k, m \longrightarrow+\infty$. That is, for each $\epsilon>0$, there exists $n_{0} \in N$ such that for all $k, m \geq n_{0}$ we have $A\left(x_{k}, x_{k}, \ldots, x_{k}, x_{m}\right) \leq \epsilon$.

Lemma 3.15. ([1]) Every convergent sequence in A-metric space is a Cauchy sequence. The converse does not hold in general.

Definition 3.16. The A-metric space (X, A) is said to be complete if every Cauchy sequence in X is convergent.

Lemma 3.17. ([1]) Let (X, A) be an A-metric space. Then the function $A(x, x, \ldots, x, y)$ is continuous if there exist $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ such that $\lim _{k \rightarrow \infty} x_{k}=$ x and $\lim _{k \rightarrow \infty} y_{k}=y$ then $\lim _{k \rightarrow \infty} A\left(x_{k}, x_{k}, \ldots, x_{k}, y_{k}\right)=A(x, x, \ldots, x, y)$.

The following lemma shows that every metric space is an A-metric space.
Lemma 3.18. Let (X, d) be a metric space. Then we have
(1) $A_{d}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n-1} d\left(x_{i}, x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in X$ is an A metric on X.
(2) $x_{n} \longrightarrow x$ in (X, d) if and only if $x_{n} \longrightarrow x$ in $\left(X, A_{d}\right)$.
(3) $\left\{x_{n}\right\}$ is Cauchy in (X, d) if and only if $\left\{x_{n}\right\}$ is Cauchy in $\left(X, A_{d}\right)$.
(4) (X, d) is complete if and only if $\left(X, A_{d}\right)$ is complete.

Proof. (1) Obviously, the first and the second conditions are satisfied. For the third condition we have:

$$
\begin{aligned}
A_{d}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\sum_{i=1}^{n-1} d\left(x_{i}, x_{n}\right) \\
& \leq \sum_{i=1}^{n-1}\left[d\left(x_{i}, a\right)+d\left(a, x_{n}\right)\right] \\
& =\sum_{i=1}^{n-1} d\left(x_{i}, a\right)+\sum_{i=1}^{n-1} d\left(a, x_{n}\right) \\
& \leq \sum_{i=1}^{n-1}\left[d\left(x_{i}, a\right)+\ldots+d\left(x_{i}, a\right)\right]+\sum_{i=1}^{n-1} d\left(a, x_{n}\right) \\
& =\sum_{i=1}^{n-1} A_{d}\left(x_{i}, x_{i}, \ldots, x_{i}, a\right)+A_{d}\left(x_{n}, x_{n}, \ldots, x_{n}, a\right) \\
& =\sum_{i=1}^{n} A_{d}\left(x_{i}, x_{i}, \ldots, x_{i}, a\right) .
\end{aligned}
$$

(2) We have

$$
\begin{aligned}
x_{n} \longrightarrow x \text { in }(X, d) & \Longleftrightarrow d\left(x_{n}, x\right) \longrightarrow 0 \\
& \Longleftrightarrow d\left(x_{n}, x\right)+\ldots+d\left(x_{n}, x\right) \longrightarrow 0 \text { in }(X, d) \\
& \Longleftrightarrow A_{d}\left(x_{n}, \ldots, x_{n}, x\right) \longrightarrow 0
\end{aligned}
$$

where $A_{d}\left(x_{n}, x_{n}, \ldots, x_{n}, x\right)=(n-1) d\left(x_{n}, x\right)$, that is $x_{n} \longrightarrow x$ in $\left(X, A_{d}\right)$.
(3) We have

$$
\begin{aligned}
\left\{x_{n}\right\} \text { is Cauchy sequence in }(X, d) & \Longleftrightarrow d\left(x_{n}, x_{m}\right) \longrightarrow 0 \text { as } n, m \longrightarrow+\infty \\
& \Longleftrightarrow A_{d}\left(x_{n}, . ., x_{m}\right)=(n-1) d\left(x_{n}, x_{m}\right) \\
& \rightarrow 0
\end{aligned}
$$

as $n, m \longrightarrow+\infty$, that is $\left\{x_{n}\right\}$ is Cauchy in $\left(X, A_{d}\right)$.
(4) It is a consequence of (2) and (3).

The following example proves that the inverse implication of the precedent lemma does not hold.

Example 3.19. Let $X=\mathbb{R}$ and

$$
A\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \sum_{i<j}^{n}\left|x_{i}-x_{j}\right|
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X . A$ is an A-metric (see[1], p7). Suppose that there exists a metric d with $A\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n-1} d\left(x_{i}, x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in X$. Then $A\left(x_{i}, x_{i}, \ldots, x_{i}, x_{n}\right)=d\left(x_{i}, x_{n}\right)+d\left(x_{i}, x_{n}\right)+\ldots+d\left(x_{i}, x_{n}\right)$ and so

$$
d\left(x_{i}, x_{n}\right)=\frac{1}{n-1} A\left(x_{i}, x_{i}, \ldots, x_{i}, x_{n}\right) .
$$

We have also

$$
\begin{aligned}
\sum_{i=1}^{n-1} d\left(x_{i}, x_{n}\right) & =\frac{1}{n-1} \sum_{i=1}^{n-1} A\left(x_{i}, x_{i}, \ldots, x_{i}, x_{n}\right) \\
& =\frac{1}{n-1} A\left(x_{1}, \ldots, x_{1}, x_{n}\right)+\ldots+\frac{1}{n-1} A\left(x_{n-1}, \ldots, x_{n-1}, x_{n}\right) \\
& \left.=\frac{1}{n-1}\left|x_{1}-x_{n}\right|+\frac{1}{n-1}\left|x_{2}-x_{n}+\ldots+\frac{1}{n-1}\right| x_{n-1}-x_{n} \right\rvert\,
\end{aligned}
$$

Clearly, $A\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq \sum_{i=1}^{n} d\left(x_{i}, x_{n}\right)$, and this is a contradiction.
Next we show that the A-metric space is normal. Let C be a closed subset of an A-metric space X. We define a function $A(x, x, x, \ldots, x, C)$ by

$$
A(x, x, \ldots, x, C)=\inf \{A(x, x, \ldots, x, c): c \in C\}
$$

Then it is clear that

$$
A(x, x, \ldots, x, C)=0 \Longleftrightarrow x \in C
$$

We need the following lemma in the sequel.
Lemma 3.20. $x \longmapsto A(x, x, \ldots, x, C)$ is a continuous function in an A-metric space X.
Proof. Let $c \in C$. Then by the condition (A3), Lemma 2.4 and Lemma 2.5 we have

$$
\begin{equation*}
A(x, x, \ldots, x, c) \leq(n-1) A(x, x, \ldots, x, y)+A(y, y, \ldots, y, c) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A(y, y, \ldots, y, c) \leq(n-1) A(y, y, \ldots, y, x)+A(x, x, \ldots, x, c) \tag{3.4}
\end{equation*}
$$

It follows from (3.3) and (3.4) that

$$
A(x, x, \ldots, x, C)-A(y, y, \ldots, y, C) \leq(n-1) A(x, x, \ldots, x, y)
$$

and

$$
A(y, y, \ldots, y, C)-A(x, x, \ldots, x, C) \leq(n-1) A(y, y, \ldots, y, x)
$$

And then we obtain

$$
|A(x, x, \ldots, C)-A(y, y, \ldots, y, C)| \leq(n-1) A(x, x, \ldots, x, y)
$$

Therefore, if $\left\{x_{i}\right\}$ is a sequence such that $x_{i} \longrightarrow y$ and

$$
\left|A\left(x_{i}, x_{i}, \ldots, x_{i}, C\right)-A(y, y, \ldots, y, C)\right| \leq(n-1) A\left(x_{i}, x_{i}, \ldots, x_{i}, y\right)
$$

then we obtain $A\left(x_{i}, x_{i}, \ldots, x_{i}, C\right) \longrightarrow A(y, y, \ldots, y, C)$. This shows that $x \longrightarrow$ $A(x, x, \ldots, x, C)$ is a continuous function on X.

Theorem 3.21. Let C and B be two closed subsets of an A-metric space X such that $C \cap B=\varnothing$. Then there exists a continuous real function $f: X \longrightarrow R$ such that $f(x)=0$ for $x \in C$ and $f(x)=1$ for $x \in B$.
Proof. Define a function $f: X \longrightarrow R$ by

$$
f(x)=\frac{A(x, x, \ldots, x, C)}{A(x, x, \ldots, x, C)+A(x, x, \ldots, x, B)} .
$$

Since the function $x \longmapsto A(x, x, \ldots, x, C)$ is continuous and denominator is continuous and positive, the function f is continuous on X and satisfied $f(x)=$ 0 for $x \in C$ and $f(x)=1$ for $x \in B$.

Theorem 3.22. An A-metric space X is normal.
Proof. Let A and B be two closed and disjoint subsets of X. Using the Theorem 3.21, there exists a continuous real function $f: X \longrightarrow R$ such that $f(x)=0$ for $x \in A$ and $f(x)=1$ for $x \in B$. Define the open sets U and V in X by

$$
U=\left\{x \in X / f(x)<\frac{3}{4}\right\}
$$

and

$$
V=\left\{x \in X / f(x)>\frac{3}{4}\right\}
$$

It is clear that, $A \subset U$ and $B \subset V$ and $U \cap V=\varnothing$. Hence, X is normal.
Theorem 3.23. If a Cauchy sequence in an A-metric space contains a convergent subsequence, then the sequence is convergent.
Proof. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in an A-metric space X. Then, for each $\epsilon>0$, there exists $n_{0} \in N$ such that for all $k, m \geq n_{0}$ we have

$$
A\left(x_{k}, x_{k}, \ldots, x_{k}, x_{m}\right)<\frac{\epsilon}{2(n-1)} .
$$

Since the subsequence $\left\{x_{\varphi(n)}\right\}$ of $\left\{x_{n}\right\}$ converging to a point $x \in X$, and also, at the same $\epsilon>0$ is associated r_{0} such that

$$
\forall r \geq r_{0}, A\left(x_{\varphi(r)}, x_{\varphi(r)}, \ldots, x_{\varphi(r)}, x\right)<\frac{\epsilon}{2}
$$

As φ is strictly increasing, there exist $r_{1} \geq r_{0}$ such that $\varphi\left(r_{1}\right) \geq n_{0}$, then for all $k \geq n_{0}$,

$$
\begin{aligned}
A\left(x_{k}, x_{k}, \ldots, x_{k}, x\right) \leq & (n-1) A\left(x_{k}, x_{k}, \ldots, x_{k}, x_{\varphi\left(r_{1}\right)}\right) \\
& +A\left(x_{\varphi\left(r_{1}\right)}, x_{\varphi\left(r_{1}\right)}, \ldots, x_{\varphi\left(r_{1}\right)}, x\right)
\end{aligned}
$$

$$
\leq \frac{(n-1) \epsilon}{2(n-1)}+\frac{\epsilon}{2}=\epsilon
$$

Finaly, for all $\epsilon>0$ there exist $n_{0} \in N$ such that for all $k \geq n_{0}$ we have $A\left(x_{k}, x_{k}, \ldots, x_{k}, x\right)<\epsilon$.

Theorem 3.24. Let X_{1}, X_{2} be two A-metric spaces with A-metrics ρ_{1} and ρ_{2}, respectively. Define A on $X_{1} \times X_{2}$ by

$$
A\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right)=\max \left\{\rho_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \rho_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\}
$$

for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots .,\left(x_{n}, y_{n}\right) \in X_{1} \times X_{2}$. Then (X, A) is complete if and only if $\left(X_{1}, \rho_{1}\right)$ and $\left(X_{2}, \rho_{2}\right)$ are complete.

Proof. From the definition of completeness, we can prove this theorem.

Definition 3.25. A sequence $\left\{F_{n}\right\}$ of closed sets in an A-metric space X is said to be nested if

$$
F_{1} \supset F_{2} \supset \ldots \supset F_{n} \supset \ldots
$$

Theorem 3.26. (Intersection theorem) Let X be an A-metric space and let $\left\{F_{n}\right\}$ be a nested sequence of nonempty subsets of X such that $\delta\left(F_{n}\right) \longrightarrow 0$ as $n \longrightarrow \infty$. If X is complete, then $\bigcap_{i=1}^{\infty} F_{n}$ is a singleton.

Proof. Let X be complete. For each $n \in N$, there exists $x_{n} \in F_{n}$ which is nonempty. Then, for all $m \geq n$ we have $x_{m} \in F_{m} \subset F_{n}$. So, for all $m \geq n$ and $k \geq n$ we get $A\left(x_{m}, x_{m}, \ldots, x_{m}, x_{k}\right) \leq \delta\left(F_{n}\right)$ such that $\delta\left(F_{n}\right) \longrightarrow 0$ as $n \rightarrow \infty$ that is to say, for all $\epsilon>0$ there exist $n_{0} \in N$ such that for all $n \geq n_{0}$ we have $\delta\left(F_{n}\right) \leq \epsilon$, a fortiori, we will have for all $m \geq n_{0}$ and $k \geq n_{0}$ we get $A\left(x_{m}, x_{m}, \ldots, x_{m}, x_{k}\right) \leq \epsilon$. Then $\left\{x_{n}\right\}$ is a Cauchy sequence in a complete space X and then $\left\{x_{n}\right\}$ converges. Let x be the limit of $\left\{x_{n}\right\}$. As for all $m \geq n$ we have $x_{m} \in F_{n}$ and then $x \in \overline{F_{n}}=F_{n}\left(F_{n}\right.$ closed), from where $x \in \cap_{n \in N} F_{n}$, which is nonempty. Finally, if $y \in \cap_{n \in N} F_{n}$ we get

$$
A(x, x, \ldots, x, y) \leq \delta\left(F_{n}\right)
$$

for all $n \in N$, so if n tends to infinity, we obtain

$$
A(x, x, \ldots, x, y) \leq 0
$$

It follows from $A(x, x, \ldots, x, y)=0$ that $x=y$. Therefore the intersection is a singleton.

3.2. Compactness in A-metric spaces.

Definition 3.27. Let (X, A) be an A-metric space, and let $\epsilon>0$ be given. Then a set $\Omega \subseteq X$ is called an ϵ-net of (X, A) if given any x in X there is at least one point a in Ω such that $x \in B(a, \epsilon)$. If the set Ω is finite then Ω is called a finite ϵ-net of (X, A). Note that if Ω is an ϵ-net then $\Omega=\bigcup_{a \in A} B(a, \epsilon)$.

Definition 3.28. An A-metric space (X, A) is called A-totally bounded if for every $\epsilon>0$ there exists a finite ϵ-net.

Definition 3.29. An A-metric space (X, A) is said to be a compact A-metric space if it is A-complete and A-totally bounded.

Theorem 3.30. Every sequentially compact A-metric space X is A-totally bounded.

Proof. If X is not A-totally bounded, there exists $\epsilon>0$ such that X has no ϵ-net. Let $x_{0} \in X$. Then there must exists a point $x_{1} \in X$, distinct from x_{0}, such that $A\left(x_{1}, x_{1}, \ldots, x_{1}, x_{0}\right) \geq \epsilon$, for otherwise, $\left\{x_{0}\right\}$ would be an $\epsilon-$ net for X. In the same way, there exists a point $x_{2} \in X$, distinct from x_{0} and x_{1} such that $A\left(x_{2}, x_{2}, \ldots, x_{2}, x_{1}\right) \geq \epsilon$, for otherwise $\left\{x_{0}, x_{1}\right\}$ would be an ϵ-net for X. Continuing this process, we obtain a sequence $\left\{x_{0}, x_{1}, \ldots\right\}$ with the property $A\left(x_{j}, x_{j}, \ldots, x_{j}, x_{i}\right) \geq \epsilon, i \neq j$. Then $\left\{x_{n}\right\}$ cannot contain any convergent sequence. Hence X is not sequentially compact.

Below we give a theorem in an A-metric space without proof, since its proof is similar to ordinary metric space case with appropriate modifications.
Theorem 3.31. For an A-metric space (X, A), the following are equivalent:
(1) X is compact,
(2) X is countably compact,
(3) X has Bolzano-Weierstrass property,
(4) X is sequentially compact.

Before stating our main result, we recall the following definitions which will be useful later.
Definition 3.32. ([8]) A pair of maps f and g is called weakly compatible if they commute at coincidence points.

Example 3.33. Let $(X=[0,1], d)$ be a metric space with $d(x, y)=|x-y|$.
Define $f, g:[0,1] \rightarrow[0,1]$ by

$$
f(x)=x, g(x)=1-x \quad \text { if } x \in\left[0, \frac{1}{2}\right],
$$

and

$$
f(x)=g(x)=\frac{1}{2} \quad \text { if } x \in\left[\frac{1}{2}, 1\right] .
$$

Then, for any $x \in\left[\frac{1}{2}, 1\right], f g(x)=g f(x)$, therefore f, g are weakly compatible maps on $[0,1]$.

Example 3.34. Let $X=R$. Define $f, g: R \rightarrow R$ by $f(x)=x^{2}-1, x \in R$ and $g(x)=x-1, x \in R .0$ a nd 1 are two coincidence points for the maps f, g. We have $f g(1)=g f(1)=-1$, but $f g(0)=0$ and $g f(0)=-2$. Hence f and g are not weakly compatible maps on R.

Now, we present the concept of weakly A-contractive for mapping $f: X \rightarrow X$ as follows:

Definition 3.35. Let (X, A) be an A-metric space. A mapping $f: X \rightarrow X$ is said to be weakly A-contractive type if for all $x_{i} \in X, i=1, \ldots, n$, the following inequality holds :

$$
\begin{aligned}
A\left(f x_{1}, f x_{2}, \ldots, f x_{n}\right) \leq & \frac{1}{2 n} A\left(x_{1}, \ldots, x_{1}, f x_{2}\right)+\frac{1}{2 n} A\left(x_{2}, \ldots, x_{2}, f x_{3}\right) \\
& +\ldots+\frac{1}{2 n} A\left(x_{n-1}, \ldots, x_{n-1}, f x_{n}\right)+\frac{1}{2 n} A\left(x_{n}, \ldots, x_{n}, f x_{1}\right) \\
& -\phi\left(A\left(x_{1}, \ldots, f x_{2}\right), \ldots, A\left(x_{n-1}, \ldots, f x_{n}\right), A\left(x_{n}, \ldots, f x_{1}\right)\right),
\end{aligned}
$$

where $\phi:[0,+\infty)^{n} \rightarrow[0,+\infty)$ is a continuous function with $\phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=$ 0 if and only if $\alpha_{i}=0$ for all $i=1, \ldots, n$.

The following definition of the altering distance function was introduced in ([9]).

Definition 3.36. The function $\psi:[0,+\infty) \rightarrow[0,+\infty)$ is called an altering distance function if the following properties are satisfied :
(1) ψ is continuous and increasing;
(2) $\psi(t)=0$ if and only if $t=0$.

4. Main Results

Let (X, A) be an A-metric space and $f, g: X \longrightarrow X$ be two mappings. We say that f is a generalized weakly contraction mapping (g.w.c.m.) with
respect to g if for all $x, y \in X$, the following inequality holds:

$$
\begin{align*}
& \psi(A(f x, \ldots, f x, f y)) \\
& \leq \psi\left(\frac{1}{2 n}[(n-2) A(g x, \ldots, f x)+A(g x, \ldots, f y)+A(g y, \ldots, f x)]\right) \tag{4.1}\\
& \quad-\phi(A(g x, \ldots, f x), \ldots, A(g x, \ldots, f x), A(g x, \ldots, f y), A(g y, \ldots, f x))
\end{align*}
$$

where
(1) ψ is an altering distance function;
(2) $\phi:[0,+\infty)^{n} \longrightarrow[0,+\infty)$ is a continuous function with $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ $=0$ if and only if $x_{i}=0$, for all $i=1, \ldots, n$.

Theorem 4.1. Let (X, A) be an A-metric space and $f, g: X \longrightarrow X$ be two mappings such that f is a g.w.c.m. with respect to g. Assume that
(i) $f(X) \subset g(X)$,
(ii) $g(X)$ is a complete subset of (X, A),
(iii) f and g are weakly compatible maps.

Then f and g have a unique common fixed point.
Proof. By using the assumption (i), we can construct a sequence $\left\{x_{m}\right\}$ in X such that $g x_{m+1}=f x_{m}$, for any $m \in N$. If for some $m, g x_{m+1}=g x_{m}$, we obtain $g x_{m}=f x_{m}$ and then f and g have a common fixed point. Assume that $g x_{m+1} \neq g x_{m}$ for any $m \in N$. For $m \in N$ and by (4.1) and (A_{3}), we get

$$
\begin{aligned}
& \psi\left(A\left(g x_{m}, \ldots, g x_{m}, g x_{m+1}\right)\right) \\
& =\psi\left(A\left(f x_{m-1}, \ldots, f x_{m-1}, f x_{m}\right)\right) \\
& \leq \psi\left(\frac{1}{2 n}\left[(n-2) A\left(g x_{m-1}, \ldots, g x_{m}\right)+A\left(g x_{m-1}, \ldots, g x_{m+1}\right)+A\left(g x_{m}, \ldots, g x_{m}\right)\right]\right) \\
& \quad-\phi\left(A\left(g x_{m-1}, \ldots, g x_{m}\right), . ., A\left(g x_{m-1}, . ., g x_{m+1}\right), A\left(g x_{m}, \ldots, g x_{m}\right)\right) \\
& \leq \psi\left(\frac{1}{2 n}\left[(2 n-3) A\left(g x_{m-1}, \ldots, g x_{m-1}, g x_{m}\right)+A\left(g x_{m+1}, \ldots, g x_{m+1}, g x_{m}\right)\right]\right) .
\end{aligned}
$$

Since ψ is increasing, by (4.2) and Lemma 2.5 we obtain

$$
\begin{align*}
& A\left(g x_{m}, \ldots, g x_{m+1}\right) \\
& \leq \frac{1}{2 n}\left[(n-2) A\left(g x_{m-1}, \ldots, g x_{m}\right)+A\left(g x_{m-1}, \ldots, g x_{m+1}\right)\right] \tag{4.2}\\
& \leq \frac{1}{2 n}\left[(2 n-3) A\left(g x_{m-1}, \ldots, g x_{m}\right)+A\left(g x_{m}, \ldots, g x_{m+1}\right)\right] .
\end{align*}
$$

Then we have

$$
\begin{aligned}
\left(1-\frac{1}{2 n}\right) A\left(g x_{m}, \ldots, g x_{m}, g x_{m+1}\right) & \leq \frac{2 n-3}{2 n} A\left(g x_{m-1}, \ldots, g x_{m-1}, g x_{m}\right) \\
& \leq \frac{2 n-1}{2 n} A\left(g x_{m-1}, \ldots, g x_{m-1}, g x_{m}\right)
\end{aligned}
$$

it implies that

$$
A\left(g x_{m}, \ldots, g x_{m}, g x_{m+1}\right) \leq A\left(g x_{m-1}, \ldots, g x_{m-1}, g x_{m}\right)
$$

for any $n \geq 1$. Therefore $\left\{A\left(g x_{m}, \ldots, g x_{m}, g x_{m+1}\right), n \in N\right\}$ is a non-increasing sequence. Hence there exists $\varrho \geq 0$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} A\left(g x_{m}, \ldots, g x_{m}, g x_{m+1}\right)=\varrho . \tag{4.3}
\end{equation*}
$$

Letting $m \rightarrow+\infty$ in (4.2), we obtain

$$
\begin{equation*}
\lim _{m \rightarrow \infty} A\left(g x_{m-1}, \ldots, g x_{m-1}, g x_{m+1}\right)=n \varrho . \tag{4.4}
\end{equation*}
$$

We also have from (4.2)

$$
\begin{aligned}
& \psi\left(A\left(g x_{m}, \ldots, g x_{m+1}\right)\right) \\
& \leq \psi\left(\frac{1}{2 n}\left[(n-2) A\left(g x_{m-1}, \ldots, g x_{m}\right)+A\left(g x_{m-1}, \ldots, g x_{m+1}\right)\right]\right) \\
& \quad-\phi\left(A\left(g x_{m-1}, \ldots, g x_{m}\right), \ldots, A\left(g x_{m-1}, \ldots, g x_{m}\right), A\left(g x_{m-1}, \ldots, g x_{m+1}\right), 0\right)
\end{aligned}
$$

Letting $m \rightarrow+\infty$ and using (4.3), (4.4) and the continuity of ψ and ϕ, we get

$$
\psi(\varrho) \leq \psi(\varrho)-\phi(\varrho, \ldots, \varrho, n \varrho, 0)
$$

hence $\phi(\varrho, \varrho, \ldots, \varrho, n \varrho, 0)=0$. By a property of ϕ, we deduce that $\varrho=0$, that is

$$
\begin{equation*}
\lim _{m \rightarrow \infty} A\left(g x_{m}, \ldots, g x_{m}, g x_{m+1}\right)=0 . \tag{4.5}
\end{equation*}
$$

To prove that $\left\{g x_{m}\right\}$ is a Cauchy sequence, we proceed as follows: Suppose $\left\{g x_{m}\right\}$ is not a Cauchy sequence, then there exists $\epsilon>0$ such that, for all $i \in N$, there exists two subsequences $\left\{g x_{p(i)}\right\}$ and $\left\{g x_{q(i)}\right\}$ of $\left\{g x_{m}\right\}$ such that $q(i)$ is the smallest index for which $q(i)>p(i)>i$,

$$
\begin{equation*}
A\left(g x_{p(i)}, \ldots, g x_{p(i)}, g x_{q(i)}\right) \geq \epsilon . \tag{4.6}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
A\left(g x_{p(i)}, \ldots, g x_{p(i)}, g x_{q(i)-1}\right)<\epsilon . \tag{4.7}
\end{equation*}
$$

Using (4.6), (4.7) and the condition $\left(A_{3}\right)$, we have

$$
\begin{aligned}
\epsilon \leq & A\left(g x_{p(i)}, \ldots, g x_{p(i)}, g x_{q(i)}\right) \\
\leq & (n-1) A\left(g x_{p(i)}, \ldots, g x_{p(i)}, g x_{p(i)-1}\right)+A\left(g x_{q(i)}, \ldots, g x_{q(i)}, g x_{p(i)-1}\right) \\
\leq & (n-1) A\left(g x_{p(i)}, \ldots, g x_{p(i)}, g x_{p(i)-1}\right)+(n-1) A\left(g x_{q(i)}, \ldots, g x_{q(i)}, g x_{q(i)-1}\right) \\
& +A\left(g x_{p(i)-1}, \ldots, g x_{p(i)-1}, g x_{q(i)-1}\right) \\
\leq & (n-1) A\left(g x_{p(i)}, \ldots, g x_{p(i)}, g x_{p(i)-1}\right)+(n-1) A\left(g x_{q(i)}, \ldots, g x_{q(i)}, g x_{q(i)-1}\right) \\
& +(n-1) A\left(g x_{p(i)-1}, \ldots, g x_{p(i)-1}, g x_{p(i)}\right)+A\left(g x_{q(i)-1}, \ldots, g x_{q(i)-1}, g x_{p(i)}\right) \\
< & (n-1) A\left(g x_{p(i)}, \ldots, g x_{p(i)}, g x_{p(i)-1}\right)+(n-1) A\left(g x_{q(i)}, \ldots, g x_{q(i)}, g x_{q(i)-1}\right) \\
& +(n-1) A\left(g x_{p(i)-1}, \ldots, g x_{p(i)-1}, g x_{p(i)}\right)+\epsilon
\end{aligned}
$$

Letting $i \rightarrow+\infty$ in the precedent inequalities and using (4.5), we obtain

$$
\begin{align*}
& \lim _{i \rightarrow+\infty} A\left(g x_{p(i)}, \ldots, g x_{p(i)}, g x_{q(i)}\right) \\
& =\lim _{i \rightarrow+\infty} A\left(g x_{q(i)}, \ldots, g x_{q(i)}, g x_{p(i)-1}\right) \tag{4.8}\\
& =\lim _{i \rightarrow+\infty} A\left(g x_{p(i)-1}, \ldots, g x_{p(i)-1}, g x_{q(i)-1}\right) \\
& =\epsilon .
\end{align*}
$$

Now, by (4.1) we have

$$
\begin{align*}
\psi & \left(A\left(g x_{q(i)}, \ldots, g x_{q(i)}, g x_{p(i)}\right)\right) \\
= & \psi\left(A\left(f x_{q(i)-1}, \ldots, f x_{q(i)-1}, f x_{p(i)-1}\right)\right) \\
\leq & \psi\left(\frac{n-2}{2 n} A\left(g x_{q(i)-1}, \ldots, f x_{q(i)-1}\right)+\frac{1}{2 n} A\left(g x_{q(i)-1}, \ldots, f x_{p(i)-1}\right)\right. \\
& \left.+\frac{1}{2 n} A\left(g x_{p(i)-1}, \ldots, f x_{q(i)-1}\right)\right)-\phi\left(A\left(g x_{q(i)-1}, \ldots, f x_{q(i)-1}\right), \ldots\right. \\
& \left.A\left(g x_{q(i)-1}, \ldots, f x_{p(i)-1}\right), A\left(g x_{p(i)-1}, \ldots, f x_{q(i)-1}\right)\right) \\
= & \psi\left(\frac { 1 } { 2 n } \left[(n-2) A\left(g x_{q(i)-1}, . ., g x_{q(i)}\right)+A\left(g x_{q(i)-1}, . ., g x_{p(i)}\right)\right.\right. \tag{4.9}\\
& \left.\left.+A\left(g x_{p(i)-1}, . ., g x_{q(i)}\right)\right]\right)-\phi\left(A\left(g x_{q(i)-1}, \ldots, g x_{q(i)}\right), \ldots\right. \\
& \left.A\left(g x_{q(i)-1}, \ldots, g x_{p(i)}\right), A\left(g x_{p(i)-1}, \ldots, g x_{q(i)}\right)\right) \\
\leq & \psi\left(\frac { 1 } { 2 n } \left[(n-2) A\left(g x_{q(i)-1}, . ., g x_{q(i)}\right)+A\left(g x_{q(i)-1}, . ., g x_{p(i)}\right)\right.\right. \\
& \left.\left.+A\left(g x_{p(i)-1}, . ., g x_{q(i)}\right)\right]\right)
\end{align*}
$$

Since ψ is increasing and by $\left(A_{3}\right)$, we obtain

$$
\begin{aligned}
A\left(g x_{q(i)}, \ldots, g x_{q(i)}, g x_{p(i)}\right) \leq & \frac{n-2}{2 n} A\left(g x_{q(i)-1}, \ldots, g x_{q(i)-1}, g x_{q(i)}\right) \\
& +\frac{1}{2 n} A\left(g x_{q(i)-1}, \ldots, g x_{q(i)-1}, g x_{p(i)}\right) \\
& +\frac{1}{2 n} A\left(g x_{p(i)-1}, \ldots, g x_{p(i)-1}, g x_{q(i)}\right) \\
\leq & \frac{n-2}{2 n} A\left(g x_{q(i)-1}, \ldots, g x_{q(i)-1}, g x_{q(i)}\right) \\
& +\frac{n-1}{2 n} A\left(g x_{q(i)-1}, \ldots, g x_{q(i)-1}, g x_{p(i)-1}\right) \\
& +\frac{1}{2 n} A\left(g x_{p(i)}, \ldots, g x_{p(i)}, g x_{p(i)-1}\right) \\
& +\frac{n-1}{2 n} A\left(g x_{p(i)-1}, \ldots, g x_{p(i)-1}, g x_{q(i)-1}\right) \\
& +\frac{1}{2 n} A\left(g x_{q(i)-1}, \ldots, g x_{q(i)-1}, g x_{q(i)}\right) .
\end{aligned}
$$

Letting $i \rightarrow \infty$ in the precedent inequalities and using (4.5) and (4.8), we get

$$
\begin{aligned}
\epsilon & \leq \frac{1}{2 n}\left[\lim _{i \rightarrow+\infty} A\left(g x_{q(i)-1}, \ldots, g x_{q(i)-1}, g x_{p(i)}\right)+\epsilon\right] \\
& \leq \frac{1}{2 n}[2(n-1) \epsilon] .
\end{aligned}
$$

It implies that

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} A\left(g x_{q(i)-1}, \ldots, g x_{q(i)-1}, g x_{p(i)}\right)=2 n \epsilon-\epsilon . \tag{4.10}
\end{equation*}
$$

Letting $i \rightarrow+\infty$ in (4.9) and by (4.5), (4.8), (4.10) and the continuity of ψ and ϕ, we get

$$
\psi(\epsilon) \leq \psi\left(\frac{1}{2 n}[2 n \epsilon-\epsilon+\epsilon]\right)-\phi(0, \ldots, 0,2 n \epsilon-\epsilon, \epsilon) .
$$

Therefore $\epsilon=0$, this is a contradiction. We deduce that $\left\{g x_{m}\right\}$ is a Cauchy sequence in $g(X)$, which is a complete subset of (X, A). So we obtain the existence of $t, u \in X$ such that $\left\{g x_{m}\right\}$ converges to $t=g u$ and then

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} A\left(g x_{m}, \ldots, g x_{m}, g u\right)=0 . \tag{4.11}
\end{equation*}
$$

By using Lemma 3.17 we have

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} A\left(g x_{m}, \ldots, g x_{m}, f u\right)=A(g u, \ldots, g u, f u) . \tag{4.12}
\end{equation*}
$$

Now, we show that $f u=t$. By (4.1), we get

$$
\begin{aligned}
\psi & \left(A\left(g x_{m+1}, \ldots, f u\right)\right) \\
= & \psi\left(A\left(f x_{m}, \ldots, f u\right)\right) \\
\leq & \psi\left(\frac{n-2}{2 n} A\left(g x_{m}, \ldots, f x_{m}\right)+\frac{1}{2 n} A\left(g x_{m}, \ldots, f u\right)+\frac{1}{2 n} A\left(g u, \ldots, f x_{m}\right)\right) \\
& -\phi\left(A\left(g x_{m}, \ldots, f x_{m}\right), \ldots, A\left(g x_{m}, \ldots, f u\right), A\left(g u, \ldots, f x_{m}\right)\right) \\
= & \psi\left(\frac{n-2}{2 n} A\left(g x_{m}, \ldots, g x_{m+1}\right)+\frac{1}{2 n} A\left(g x_{m}, \ldots, f u\right)+\frac{1}{2 n} A\left(g u, \ldots, f x_{m+1}\right)\right) \\
& -\phi\left(A\left(g x_{m}, \ldots, g x_{m+1}\right), \ldots, A\left(g x_{m}, \ldots, f u\right), A\left(g u, \ldots, g x_{m+1}\right)\right) .
\end{aligned}
$$

Letting $m \rightarrow+\infty$ and using (4.5), (4.11), (4.12) and the continuity of ψ and ϕ and the fact that ψ is increasing, we get

$$
\begin{align*}
& \psi(A(g u, \ldots, g u, f u)) \\
& \leq \psi\left(\frac{1}{2 n}[A(g u, \ldots, g u, f u)]\right)-\phi(0, \ldots, 0, A(g u, \ldots, g u, f u), 0) \tag{4.13}
\end{align*}
$$

Then, $A(g u, \ldots, g u, f u)=0$ and hence $f u=g u=t$. Therefore, u is a coincidence point of f and g. And since the pair $\{f, g\}$ is weakly compatible, we have $f t=g t$.

Now, to prove that t is a common fixed point of f and g, we have by (4.1)

$$
\begin{aligned}
\psi & \left(A\left(g t, . ., g t, g x_{m+1}\right)\right) \\
= & \psi\left(A\left(f t, . ., f t, f x_{m}\right)\right) \\
\leq & \psi\left(\frac{1}{2 n}\left[(n-2) A(g t, . ., g t, f t)+A\left(g t, . ., g t, f x_{m}\right)+A\left(g x_{m}, . ., g x_{m}, f t\right)\right]\right) \\
& -\phi\left(A(g t, . ., g t, f t), . ., A\left(g t, \ldots, g t, f x_{m}\right), A\left(g x_{m}, . ., g x_{m}, f t\right)\right) \\
= & \psi\left(\frac{1}{2 n}\left[\left(0+A\left(g t, . ., g t, g x_{m+1}\right)+A\left(g x_{m}, . ., g x_{m}, g t\right)\right]\right)\right. \\
& -\phi\left(0, \ldots, 0, A\left(g t, . ., g t, g x_{m+1}\right), A\left(g x_{m}, . ., g x_{m}, g t\right)\right) .
\end{aligned}
$$

Letting $m \rightarrow+\infty$ and by Lemma 2.5 and the fact that ψ is increasing, we obtain

$$
\begin{aligned}
\psi(A(g t, \ldots, g t, g u)) \leq & \psi\left(\frac{1}{2 n}[0+A(g t, \ldots, g t, g u)+A(g u, \ldots, g u, g t)]\right) \\
& -\phi(0, \ldots, 0, A(g t, \ldots, g t, g u), A(g u, \ldots, g u, g t)) \\
< & \psi([A(g t, \ldots, g u)])-\phi(0, \ldots, 0, A(g t, \ldots, g u), A(g u, \ldots, g t)) .
\end{aligned}
$$

Then $\phi(0, \ldots, 0, A(g t, \ldots, g t, g u), A(g u, \ldots, g u, g t))=0$ and with the property of ϕ, we obtain $A(g t, \ldots, g t, g u)=0$. Therefore, $g t=g u=t$. We deduce that $f t=f u=t$ and then $f t=g t=t$, so the result follows.

To prove the uniqueness, suppose that w is another common fixed point of f and g. Using (4.1), we get

$$
\begin{aligned}
\psi(A(t, \ldots, w))= & \psi(A(f t, \ldots, f w)) \\
\leq & \psi\left(\frac{1}{2 n}[(n-2) A(f t, \ldots, f t)+A(f t, \ldots, f w)+A(f w, \ldots, f t)]\right) \\
& -\phi(A(f t, \ldots, f t), \ldots, A(f t, \ldots, f t), A(f t, \ldots, f w), A(f w, \ldots, f t)) \\
\leq & \psi\left(\frac{1}{n} A(f t, \ldots, f w)\right)-\phi(0, \ldots, 0, A(f t, \ldots, f w), A(f w, \ldots, f t)) \\
< & \psi(A(t, \ldots, w))-\phi(0, \ldots, 0, A(t, \ldots, w), A(w, \ldots, t))
\end{aligned}
$$

Then by the property of ϕ, we have $\phi(0, \ldots, 0, A(t, \ldots, t, w), A(w, \ldots, w, t))=0$. This implies that $A(t, \ldots, t, w)=0$ and then $t=w$.

Corollary 4.2. Let (X, A) be an A-metric space and $f, g: X \rightarrow X$ be two mappings. Suppose that $g(X)$ is a complete subspace of $(X, A), f(X) \subset g(X)$ and the pair $\{f, g\}$ is weakly compatible. By putting

$$
\psi(t)=t, \quad \phi\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\left(\frac{1}{2 n}-\beta\right) \sum_{i=1}^{n} t_{i}
$$

where $\beta \in\left[0, \frac{1}{2 n}\right)$ in the inequality (4.1) and by Theorem 4.1, we conclude that f and g have a unique common fixed point.

Corollary 4.3. Let (X, A) be an A-metric space and $f: X \rightarrow X$ be a mapping such that

$$
\begin{aligned}
& \psi(A(f x, f x, \ldots, f x, f y)) \\
& \leq \psi\left(\frac{1}{2 n}[(n-2) A(x, \ldots, x, f x)+A(x, \ldots, x, f y)+A(y, \ldots, y, f x)]\right) \\
& \quad-\phi(A(x, \ldots, x, f x), \ldots, A(x, \ldots, x, f x), A(x, \ldots, x, f y), A(y, \ldots, y, f x))
\end{aligned}
$$

where ψ is an altering distance function and $\phi:[0,+\infty)^{n} \longrightarrow[0,+\infty)$ is a continuous function with $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ if and only if $x_{i}=0$, for all $i=1, \ldots, n$. Then f has a unique fixed point.

Proof. By taking $g=I d_{X}$, the identity mapping on X in Theorem 4.1, the result follows immediately.

Example 4.4. Let $X=[0,3]$ and the A-metric on X define by :

$$
A\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \sum_{i<j}\left|x_{i}-x_{j}\right|
$$

for $n \geq 2$ and $x_{1}, x_{2}, \ldots, x_{n} \in X$. By taking $\psi(t)=t, \phi\left(t_{1}, t_{2}, \ldots, t_{n}\right)=$ $\frac{\sum_{i=1}^{n} t_{i}}{k}, k \geq 2 n, f x=2$ and $g=I d_{X}$, then we obtain

$$
\psi(A(f x, f x, \ldots, f x, f y))=\psi(A(2,2, \ldots, 2))=0
$$

and

$$
\begin{aligned}
& \psi\left(\frac{1}{2 n}[(n-2) A(x, \ldots, x, 2)+A(x, \ldots, x, 2)+A(y, \ldots, y, 2)]\right) \\
& =\psi\left(\frac{1}{2 n}\left[(n-1)^{2}|x-2|+(n-1)|y-2|\right]\right) \\
& =\frac{(n-1)^{2}|x-2|+(n-1)|y-2|}{2 n}
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \phi(A(x, \ldots, x, 2), \ldots, A(x, \ldots, x, 2), A(y, \ldots, y, 2)) \\
& =\phi((n-1)|x-2|, \ldots,(n-1)|x-2|,(n-1)|y-2|) \\
& =\frac{(n-1)^{2}|x-2|+(n-1)|y-2|}{k}
\end{aligned}
$$

which means that the condition (4.1) is satisfied. Also we have, $f(X)=$ $\{2\}, g(X)=[0,3], f(X) \subset g(X), g(X)$ is a complete subset of (X, A) and the pair $\{f, g\}$ is weakly compatible. Then f and g have a unique common fixed point $x=2$.

References

[1] M. Abbas, B. Ali and Y. Suleiman, Generalized coupled common fixed point results in partially ordered A-metric spaces, Fixed Point Theory and Appl., 64 (2015), 1-24.
[2] B.C. Dhage, Generalized metric spaces and topological structure1, An. Stiint. Univ. 'Al. I. CUZA.' IASI, Mat., 46 (2000), 3-24.
[3] S. Gahler, 2-Metrische raume and ihre topologische struktur, Math. Nachr., 26 (1963), 115-148.
[4] S. Gahler, Zur geometric 2-metrische raume, Fund. 11 (1966), 665-667.
[5] K.S. Ha, Y.J. Cho and A. White, Strictly convex and 2-convex 2-normed spaces, Math. Jpn., 33(3) (1988), 375-384.
[6] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2012), 289-297.
[7] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Sci., 2009 Article ID283028, (2009), 10 pages.
[8] G. Jungck and B.E. Rhoades, Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227-238.
[9] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1-9.
[10] M.M. Rezaee and S. Sedghi, Tripled fixed point results in partially ordered S-metric spaces, Nonlinear Funct. Anal. and Appl., 23(2) (2018), 395-405.
[11] S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D^{\star}-metric spaces, Fixed Point Theory Appl., 2007 Article ID 27906 (2007), 1-13.
[12] S. Sedghi, N. Shobe and T. Dosenovic,Fixed point results in S-metric spaces, Nonlinear Funct. Anal. and Appl., 20(1) (2015), 55-67.
[13] A.K. Sharma, A note on fixed ponts in 2-metric spaces, Indian J. Pure Appl. Math., 11(2) (1980), 1580-1583.
[14] D. Singh, V. Joshi and J. K. Kim, Existence of solution to Bessel-type boundary value problem via G-l cyclic F-contractive mapping with graphical verification, Nonlinear Funct. Anal. and Appl., 23(2) (2018), 205-224.

[^0]: ${ }^{0}$ Received April 11, 2017. Revised May 24, 2018.
 ${ }^{0} 2010$ Mathematics Subject Classification: $54 \mathrm{H} 25,47 \mathrm{H} 10$.
 ${ }^{0}$ Keywords: A-metric spaces, generalized weakly contraction mapping.
 ${ }^{0}$ Corresponding author: M. Bousselsal(bousselsal55@gmail.com).

