Nonlinear Functional Analysis and Applications Vol. 23, No. 3 (2018), pp. 407-430 ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2018 Kyungnam University Press

SOME TOPOLOGICAL RESULTS AND A FIXED POINT THEOREM IN A-METRIC SPACES

Zeid I. AL-Muhiameed¹, Ghania Benhamida² and Mahmoud Bousselsal³

¹Department of Mathematics College of Science, Qassim University, 51452 Buraydah (KSA) e-mail: ksapr006@yahoo.com

²Lab. E.D.P.N.L. and Hist. of Maths Ecole Normale Supérieure,16050-Kouba, Algiers, Algeria e-mail: benhamidag@yahoo.fr

³Lab. E.D.P.N.L. and Hist. of Maths Ecole Normale Supérieure,16050-Kouba, Algiers, Algeria e-mail: bousselsal550gmail.com

Abstract. In this paper, we prove some topological properties and a common fixed point type theorem for two self mappings on new generalized metric spaces, called A-metric spaces.

1. INTRODUCTION

The metric space forms an important environment for studying fixed point of single and multi-valued operators and the fixed point theory is important on applied sciences. Many authors have studied this important theory. In 1963, Gahler [3, 4] introduced the notion of a 2-metric space. He claimed that 2-metric space is a generalization of an ordinary metric space. On the other hand, Ha et al. [5] and Sharma [13] found some mathematical flaws in theses claims. It was demonstrated that the 2-metric is not sequentially continuous in each of its arguments, whereas an ordinary metric satisfies this property. To overcome these problems, Dhage [2] introduced the concept of D-metric

⁰Received April 11, 2017. Revised May 24, 2018.

⁰2010 Mathematics Subject Classification: 54H25, 47H10.

⁰Keywords: A-metric spaces, generalized weakly contraction mapping.

 $^{^0\}mathrm{Corresponding}$ author: M. Bousselsal(bousselsal550gmail.com).

space as a generalization of a metric space and claimed that D-metric space defines a Haussdorff topology and D-metric is sequentially continuous with respect to all it's three variables. He proved some topological property and some fixed point results.

In 2003, Mustafa and Sims [6] introduced a new structure of generalized metric spaces which are called G-metric spaces and suggested an important generalization of a metric space. They studied some topological properties of G-metric space and afterwards some authors have obtained generalized fixed point theorems in the setup of G-metric space, see for examples [7, 14]. Next, Sedghi et al. [11] introduced a D^* -metric space and observed that some condition can be replaced with two axioms. So not every D^* -metric space needs to be a G-metric space. To overcome these difficulties, they introduced a new generalized metric space called S-metric space [10, 12], they proved that every a S-metric space is a generalization of a D^* -metric space and the G-metric space. A generalization of the S-metric space is called the A-metric space (see [1]).

It is our purpose in this paper to study topological properties of an A-metric space. We present here the concept of an A-metric space and some of its properties.

2. Preliminaries

For $n \ge 2$, let X^n denotes the cartesian product $X \times X \times X \dots \times X$.

Definition 2.1. Let X be a nonempty set. A function $A : X^n \longrightarrow [0, +\infty)$ is called an A-metric on X if for any $x_i, a \in X, i = 1, 2, \dots, n$, the following conditions holds :

(A1) $A(x_1, x_2, x_3, ..., x_{n-1}, x_n) \ge 0$,

(A2) $A(x_1, x_2, ..., x_{n-1}, x_n) = 0$ if and only if $x_1 = x_2 = ... = x_{n-1} = x_n$, (A3) For any $a \in X$,

$$\begin{aligned} A(x_1, x_2, x_3, \dots, x_{n-1}, x_n) &\leq A(x_1, x_1, x_1, \dots, (x_1)_{n-1}, a) \\ &+ A(x_2, x_2, x_2, \dots, (x_2)_{n-1}, a) \\ &+ A(x_3, x_3, x_3, \dots, (x_3)_{n-1}, a) \\ &\vdots \\ &+ A(x_{n-1}, x_{n-1}, \dots, (x_{n-1})_{n-1}, a) \\ &+ A(x_n, x_n, x_n, \dots, (x_n)_{n-1}, a). \end{aligned}$$

The pair (X, A) is called an A-metric space.

Note that the A-metric space is an n-dimensional S-metric space (see [1]). Therefore the ordinary metric d and S-metric are special cases of an A-metric with n = 2 and n = 3, respectively.

Example 2.2. Let $X = \mathbb{R}$. Define a function $A: X^n \to [0, +\infty)$ by

$$\begin{aligned} A(x_1, x_2, x_3, \dots, x_{n-1}, x_n) &= |x_1 - x_2| + |x_1 - x_3| + \dots + |x_1 - x_n| \\ &+ |x_2 - x_3| + |x_2 - x_4| + \dots + |x_2 - x_n| \\ &\vdots \\ &+ |x_{n-2} - x_{n-1}| + |x_{n-2} - x_n| + |x_{n-1} - x_n| \\ &= \sum_{i=1}^n \sum_{i < j} |x_i - x_j| . \end{aligned}$$

Then (\mathbb{R}, A) is an A-metric space.

Example 2.3. For a standard ordinary metric d on X, we define a function A_1 on X^n by

$$A_1(x_1, x_2, ..., x_{n-1}, x_n) = \sum_{i,j=1, (i < j)}^n d(x_i, x_j)$$

for all $x_i \in X, i = 1, 2, ..., n$. Then A_1 is an A-metric on X and is called the standard A-metric on X. Obviously the first two conditions are satisfied. To prove the third condition, let $x_i, a \in X, i = 1, 2, ..., n$, from the triangle inequality, it follows

$$A_{1}(x_{1}, x_{2}, ..., x_{n}) = d(x_{1}, x_{2}) + \dots + d(x_{1}, x_{n}) + d(x_{2}, x_{3}) + \dots + d(x_{2}, x_{n}) + \dots + d(x_{n-2}, x_{n-1}) + d(x_{n-2}, x_{n}) + d(x_{n-1}, x_{n}) \leq d(x_{1}, a) + d(a, x_{2}) + \dots + d(x_{1}, a) + d(a, x_{n}) + \dots + d(x_{n-1}, a) + d(a, x_{n}) \leq (n-1)d(x_{1}, a) + (n-1)d(x_{2}, a) + \dots + (n-1)d(x_{n}, a) \leq A_{1}(x_{1}, ..., x_{1}, a) + A_{1}(x_{2}, ..., x_{2}, a) + \dots + A_{1}(x_{n}, ..., x_{n}, a).$$

Hence (X, A_1) is an A-metric space.

Lemma 2.4. ([1]) Let (X, A) be an A-metric space. Then A(x, x, x, ..., x, y) = A(y, y, y, ..., y, x) for all $x, y \in X$.

Lemma 2.5. ([1]) Let (X, A) be an A-metric space. Then, for all $x, y \in X$ we have

$$A(x, x, x, \cdots, x, z) \le (n-1)A(x, x, x, \cdots, x, y) + A(z, z, z, \cdots, z, y)$$

and

$$A(x, x, x, \cdots, x, z) \le (n-1)A(x, x, x, \cdots, x, y) + A(y, y, y, \cdots, y, z).$$

Lemma 2.6. ([1]) Let (X, A) be an A-metric space. Then (X^2, D_A) is an A-metric space on $X \times X$ with the metric D_A given by

$$D_A((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)) = A(x_1, x_2, x_3, \dots, x_n) + A(y_1, y_2, y_3, \dots, y_n)$$

for all $x_i, x_j \in X, i, j = 1, \dots, n$.

Theorem 2.7. Let X_1, X_2 be two A-metric spaces with A-metrics ρ_1 and ρ_2 respectively. Then (X, ρ) is also an A-metric space, where $X = X_1 \times X_2$ and

$$\rho((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)) = \max \left\{ \rho_1(x_1, x_2, \dots, x_n), \rho_2(y_1, y_2, \dots, y_n) \right\}.$$

Proof. Obviously the conditions of nonnegativity and symmetry are satisfied. To prove the third condition, let $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n), (a_1, a_2) \in X = X_1 \times X_2$. Then we have

$$\begin{aligned} \rho((x_1, y_1), \dots, (x_{n-1}, y_{n-1}), (x_n, y_n)) \\ &= \max \left\{ \rho_1(x_1, \dots, x_n), \rho_2(y_1, \dots, y_n) \right\} \\ &\leq \max \left\{ \rho_1(x_1, \dots, a_1) + \dots + \rho_1(x_n, \dots, a_1), \rho_2(y_1, \dots, a_2) + \dots + \rho_2(y_n, \dots, a_2) \right\} \\ &\leq \max \left\{ \rho_1(x_1, \dots, a_1), \rho_2(y_1, \dots, a_2) \right\} + \dots + \max \left\{ \rho_1(x_n, \dots, a_1), \rho_2(y_n, \dots, a_2) \right\} \\ &\leq \rho((x_1, y_1), \dots, (a_1, a_2)) + \rho((x_2, y_2), \dots, (a_1, a_2)) \\ &+ \dots + \rho((x_n, y_n), \dots, (a_1, a_2)). \end{aligned}$$

Hence (X, ρ) is an A-metric space.

The following useful properties of an A-metric are easily derived from the axioms.

Proposition 2.8. Let (X, A) be an A-metric space. Then for any $x_1, x_2, ..., x_n, a \in X$, we have

(1)
$$A(x_1, x_2, ..., x_n) \leq \sum_{j=2}^n A(x_1, x_1, ..., x_1, x_j),$$

(2) $A(x_1, x_2, ..., x_2) \leq (n-1)A(x_1, x_1, ..., x_1, x_2),$
(3) $A(x_1, x_2, ..., x_n) \leq \sum_{j=1}^n A(a, a, ..., a, x_j).$

Proof. Let $x_1, x_2, ..., x_n, a \in X$. Then (1)

$$A(x_1, x_2, ..., x_n) \le \sum_{j=1}^n A(x_j, x_j, ..., x_j, a)$$

by taking $a = x_1$, we obtain

$$A(x_1, x_2, ..., x_n) \le \sum_{j=2}^n A(x_j, x_j, ..., x_j, x_1)$$

and by using lemma 2.5, we have

$$A(x_1, x_2, ..., x_n) \le \sum_{j=2}^n A(x_1, x_1, ..., x_1, x_j)$$

also for almost i = 1, 2, ..., n, we obtain

$$A(x_1, x_2, ..., x_n) \le \sum_{j=1, j \ne i}^n A(x_i, x_i, ..., x_i, x_j).$$

(2) Using the previous property and by taking $x_j = x_2, \forall j = 3, ..., n$, we obtain

$$A(x_1, x_2, ..., x_2) \le (n-1)A(x_1, x_1, ..., x_1, x_2).$$

(3) It's obvious. By using the condition (A3) and Lemma 2.5, we obtain the result.

Next the following lemma is needed to show the continuity of the A-metric function in one variable and in all its variables.

Lemma 2.9. In an A-metric space X,

(i)

$$|A(x_1, x_2, ..., x_{n-1}, a) - A(x_1, x_2, ..., x_{n-1}, b)| \le \sum_{j=1}^{n-1} [A(a, a, ..., a, x_j) + A(b, b, ..., b, x_j)]$$

for all $x_1, ..., x_{n-1}, a, b \in X$,

(ii)

$$|A(x_1, x_2, ..., x_{n-1}, a) - A(y_1, y_2, ..., y_{n-1}, a)|$$

$$\leq \sum_{j=1}^{n-1} [A(a, a, ..., a, x_j) + A(a, a, ..., a, y_j)],$$

for all $x_1, ..., x_{n-1}, y_1, ..., y_{n-1}, a \in X$ and (iii)

$$|A(x_1, x_2, ..., x_{n-1}, x_n) - A(y_1, y_2, ..., y_{n-1}, y_n)| \le \sum_{j=1}^n [A(x_j, x_j, ..., x_j, y_1) + A(y_j, y_j, ..., y_j, x_1)]$$

for all $x_1, ..., x_{n-1}, x_n, y_1, ..., y_{n-1}, y_n \in X$.

Proof. To prove this Lemma we use the Proposition 2.8. (i) Let $x_1, ..., x_{n-1}, a, b \in X$. Then by Proposition 2.8 (3) we have

$$\begin{aligned} |A(x_1, x_2, ..., x_{n-1}, a) - A(x_1, x_2, ..., x_{n-1}, b)| \\ &\leq A(x_1, x_2, ..., x_{n-1}, a) + A(x_1, x_2, ..., x_{n-1}, b) \\ &= \sum_{j=1}^{n-1} \left[A(a, a, ..., a, x_j) + A(b, b, ..., b, x_j) \right]. \end{aligned}$$

(ii) Let $x_1, ..., x_{n-1}, y_1, y_2, ..., y_{n-1}, a \in X$. Then by using Proposition 2.8 (3) we obtain

$$|A(x_1, x_2, ..., x_{n-1}, a) - A(y_1, y_2, ..., y_{n-1}, a)| \le A(x_1, x_2, ..., x_{n-1}, a) + A(y_1, y_2, ..., y_{n-1}, a) \le \sum_{j=1}^{n-1} [A(a, a, ..., a, x_j) + A(a, a, ..., a, y_j)].$$

(iii) Let $x_1, ..., x_{n-1}, x_n, y_1, y_2, ..., y_{n-1}, y_n, a, b \in X$. Then by condition (A3) we have

$$|A(x_1, x_2, ..., x_{n-1}, x_n) - A(y_1, y_2, ..., y_{n-1}, y_n)| \le A(x_1, x_2, ..., x_{n-1}, x_n) + A(y_1, y_2, ..., y_{n-1}, y_n) \le \sum_{j=1}^n [A(x_j, x_j, ..., x_j, a) + A(y_j, y_j, ..., y_j, b)]$$

Take $a = y_1, b = x_1$, then we obtain the result.

3. The A-metric topology

Definition 3.1. Given a point x_0 in an A-metric space (X, A) and a positive real number r, the set

$$B(x_0, r) = \{ y \in X : A(y, y, ..., y, x_0) < r \}$$

is called an open ball centered at x_0 with radius r. The set

$$B(x_0, r) = \{ y \in X : A(y, y, ..., y, x_0) \le r \}$$

is called a closed ball centered at x_0 with radius r.

Let X be an A-metric space with A-metric A. Then the diameter $\delta(X)$ of X is defined by

$$\delta(X) = \sup \{ A(x, x, x, ..., x, y) : x, y \in X \}.$$

Definition 3.2. The A-metric space (X, A) is said to be bounded if there exists a constant r > 0 such that $A(x, x, ..., x, y) \le r$ for all $x, y \in X$. Otherwise, X is unbounded.

Theorem 3.3. Let (X_1, ρ_1) and (X_2, ρ_2) be two bounded A-metric spaces with bounds M_1 and M_2 , respectively. Then the A-metric space (X, ρ) is bounded with bound $M = \max \{M_1, M_2\}$, where $X = X_1 \times X_2$ and ρ is defined as in Theorem 2.7.

Proof. Since (X_1, ρ_1) and (X_2, ρ_2) are bounded, we have

 $\rho_1(x_1, x_1, ..., x_1, x_2) \le M_1 \text{ for all } x_1, x_2 \in X_1,$

 $\rho_2(y_1, y_1, \dots, y_1, y_2) \le M_2 \text{ for all } y_1, y_2 \in X_2.$

By definition of ρ , we obtain

$$\rho((x_1, y_1), ..., (x_1, y_1), (x_2, y_2)) = \max \{\rho_1(x_1, ..., x_1, x_2), \rho_2(y_1, ..., y_1, y_2)\}$$
$$\leq \max \{M_1, M_2\} = M$$

for all $(x_1, y_1), (x_2, y_2) \in X = X_1 \times X_2$. This completes the proof. \Box

Definition 3.4. Let (X, A) be an A-metric space. A subset Ω of X is said to be an open set if for each $x \in \Omega$ there exists an r > 0 such that $B(x, r) \subset \Omega$.

Remark 3.5. The open sets so described are those of a topology on X called A-metric topology.

Theorem 3.6. The open sets of an A-metric space X are exactly the union of open balls.

Proof. First, each open ball is an open set in X ([1]). Then, any union of open balls is open and, if Ω is an open set, for all $x \in \Omega$, there exists an $r_x > 0$ such that $B(x, r_x) \subset \Omega$ from where $\Omega \subset \bigcup_{x \in \Omega} B(x, r_x) \subset \Omega$ and we obtain equality $\Omega = \bigcup_{x \in \Omega} B(x, r_x)$.

Theorem 3.7. The A-metric function $A(x_1, x_2, ..., x_n)$ is continuous in all its variables.

Proof. Let $\epsilon > 0$ be given and let $x_1^0, ..., x_{n-1}^0, x_n^0 \in X$. Then for $x_1, x_2, ..., x_n \in X$ such that

$$x_j \in \bigcap_{i=1}^n B(x_i^0, \frac{\epsilon}{2n})$$

for j = 1, 2, ..., n and using lemma 2.9 (iii), we obtain

$$|A(x_1, x_2, ..., x_{n-1}, x_n) - A(x_1^0, x_2^0, ..., x_{n-1}^0, x_n^0)|$$

$$\leq \sum_{j=1}^n \left[A(x_j, ..., x_j, x_1^0) + A(x_j^0, x_j^0, ..., x_j^0, x_1) \right]$$

$$< \sum_{j=1}^n \left(\frac{\epsilon}{2n} + \frac{\epsilon}{2n} \right) = \epsilon.$$

This completes the proof.

We denote also another important problem that is the A-metrizability of the topological space which is satisfied under a condition given in the following theorem.

Theorem 3.8. If the topological space X is metrizable then it is A-metrizable.

Proof. Suppose that X is a metrizable space and denote the ordinary metric on X by d, where d induces the topology of X. Using an A-metric A_1 on X defined as in example 2.3. This A-metric generate the same topology on that of X. We deduce that X is A-metrizable.

Theorem 3.9. (Kolmogorov space) An A-metric space X is a T_0 -space.

Proof. Let $x_0, y_0 \in X$ be such that $x_0 \neq y_0$. Suppose that $A(y_0, y_0, ..., y_0, x_0) = r > 0$, then $y_0 \notin B(x_0, r)$, where $B(x_0, r)$ is an open ball in X defined by

$$B(x_0, r) = \{y \in X : A(y, y, ..., y, x_0) < r\}.$$

Hence X is a T_0 -space.

$$\square$$

Theorem 3.10. (Frechet space) An A-metric space X is T_1 -space.

Proof. Let $x_0, y_0 \in X$ be such that $x_0 \neq y_0$. Suppose that

$$A(y_0, y_0, ..., y_0, x_0) = A(x_0, x_0, ..., x_0, y_0) = r_1 > 0.$$

Then $y_0 \notin B(x_0, r_1)$, where $B(x_0, r_1) = \{y \in X : A(y, y, ..., y, x_0) < r_1\}$. Similarly, $x_0 \notin B(y_0, r_1)$, where $B(y_0, r_1) = \{x \in X : A(x, x, ..., x, y_0) < r_1\}$. Since $B(x_0, r_1)$ and $B(y_0, r_1)$ are two open balls in X containing x_0 and y_0 , respectively, we deduce that X is T_1 -space.

Theorem 3.11. (Haussdorff space) An A-metric space X is T_2 -space.

Proof. Let $x_0, y_0 \in X$ such that $x_0 \neq y_0$. Consider two sets B_1^* and B_2^* as follows :

$$B_1^* = \{x \in X : A(x, x, ..., x, x_0) < A(x, x, ..., x, y_0)\}$$

and

$$B_2^* = \{x \in X : A(x, x, ..., x, y_0) < A(x, x, ..., x, x_0)\}$$

It is clear that B_1^* and B_2^* contains x_0 and y_0 , respectively. To prove that $B_1^* \cap B_2^* = \emptyset$, suppose there exists $z \in B_1^* \cap B_2^*$, then

$$A(z, z, ..., z, x_0) < A(z, z, ..., z, y_0)$$

and

$$A(z, z, ..., z, y_0) < A(z, z, ..., z, x_0)$$

which is absurd, because there are two contradictory statements. Then $B_1^* \cap B_2^* = \emptyset$. It remains to prove that B_1^* and B_2^* are open sets. For this, let $x \in B_1^*$. Then we have

$$A(x, x, ..., x, x_0) < A(x, x, ..., x, y_0)$$

and set $s = \frac{A(x, x, ..., x, y_0) - A(x, x, ..., x, x_0)}{2(n-1)} > 0$. It is clear that $B(x, s) \subset B_1^*$, because for $z \in B(x, s)$, we have

$$A(z, z, ..., z, x) < \frac{A(x, x, ..., x, y_0) - A(x, x, ..., x, x_0)}{2(n-1)}$$
(3.1)

therefore $2(n-1)A(z, z, ..., z, x) < A(x, x, ..., x, y_0) - A(x, x, ..., x, x_0)$, which implies that

$$(n-1)A(z,...,z,x) + A(x,...,x,x_0) < A(x,...,x,y_0) - (n-1)A(z,...,z,x)$$
(3.2)

Now from (3.2), Lemma 2.4 and condition (A3), we obtain

$$\begin{array}{lll} A(z,...,z,x_0) &\leq & (n-1)A(z,...,z,x) + A(x_0,...,x_0,x) \\ & < & A(x,...,x,y_0) - (n-1)A(z,...,z,x) \\ & \leq & (n-1)A(x,...,x,z) + A(z,...,z,y_0) - (n-1)A(z,...,z,x) \\ & = & A(z,...,z,y_0). \end{array}$$

 So

$$A(z, ..., z, x_0) < A(z, ..., z, y_0),$$

which is the desired result. This proves that B_1^* is an open set contains x_0 . Similarly, we can show that B_2^* is also an open set contains y_0 . Hence, any A-metric space is T_2 -space.

3.1. Completeness of A-metric spaces.

Definition 3.12. Let (X, A) be an A-metric space. A sequence $\{x_k\}$ in X is said to converge to a point $x \in X$, if $A(x_k, x_k, ..., x_k, x) \longrightarrow 0$ as $k \longrightarrow +\infty$. That is, for each $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $k \ge n_0$ we have $A(x_k, x_k, ..., x_k, x) \le \epsilon$ and we write $\lim_{k \to +\infty} x_k = x$.

Lemma 3.13. ([1]) Let (X, A) be an A-metric space. If the sequence $\{x_k\}$ in X converges to a point x, then x is unique.

Definition 3.14. Let (X, A) be an A-metric space. A sequence $\{x_k\}$ in X is called a Cauchy sequence if $A(x_k, x_k, ..., x_k, x_m) \longrightarrow 0$ as $k, m \longrightarrow +\infty$. That is, for each $\epsilon > 0$, there exists $n_0 \in N$ such that for all $k, m \ge n_0$ we have $A(x_k, x_k, ..., x_k, x_m) \le \epsilon$.

Lemma 3.15. ([1]) Every convergent sequence in A-metric space is a Cauchy sequence. The converse does not hold in general.

Definition 3.16. The A-metric space (X, A) is said to be complete if every Cauchy sequence in X is convergent.

Lemma 3.17. ([1]) Let (X, A) be an A-metric space. Then the function A(x, x, ..., x, y) is continuous if there exist $\{x_k\}$ and $\{y_k\}$ such that $\lim_{k\to\infty} x_k = x$ and $\lim_{k\to\infty} y_k = y$ then $\lim_{k\to\infty} A(x_k, x_k, ..., x_k, y_k) = A(x, x, ..., x, y)$.

The following lemma shows that every metric space is an A-metric space.

Lemma 3.18. Let (X, d) be a metric space. Then we have

- (1) $A_d(x_1, x_2, ..., x_n) = \sum_{i=1}^{n-1} d(x_i, x_n)$ for all $x_1, ..., x_n \in X$ is an A-metric on X.
- (2) $x_n \longrightarrow x$ in (X, d) if and only if $x_n \longrightarrow x$ in (X, A_d) .
- (3) $\{x_n\}$ is Cauchy in (X, d) if and only if $\{x_n\}$ is Cauchy in (X, A_d) .
- (4) (X, d) is complete if and only if (X, A_d) is complete.

Proof. (1) Obviously, the first and the second conditions are satisfied. For the third condition we have:

$$\begin{aligned} A_d(x_1, x_2, ..., x_n) &= \sum_{i=1}^{n-1} d(x_i, x_n) \\ &\leq \sum_{i=1}^{n-1} \left[d(x_i, a) + d(a, x_n) \right] \\ &= \sum_{i=1}^{n-1} d(x_i, a) + \sum_{i=1}^{n-1} d(a, x_n) \\ &\leq \sum_{i=1}^{n-1} \left[d(x_i, a) + ... + d(x_i, a) \right] + \sum_{i=1}^{n-1} d(a, x_n) \\ &= \sum_{i=1}^{n-1} A_d(x_i, x_i, ..., x_i, a) + A_d(x_n, x_n, ..., x_n, a) \\ &= \sum_{i=1}^n A_d(x_i, x_i, ..., x_i, a). \end{aligned}$$

(2) We have

$$\begin{array}{rcl} x_n \longrightarrow x \ \mbox{in} \ (X,d) & \Longleftrightarrow & d(x_n,x) \longrightarrow 0 \\ & \Leftrightarrow & d(x_n,x) + \ldots + d(x_n,x) \longrightarrow 0 \ \mbox{in} \ (X,d) \\ & \Leftrightarrow & A_d(x_n,\ldots,x_n,x) \longrightarrow 0 \end{array}$$

where $A_d(x_n, x_n, ..., x_n, x) = (n-1)d(x_n, x)$, that is $x_n \longrightarrow x$ in (X, A_d) . (3) We have

$$\begin{aligned} \{x_n\} \text{ is Cauchy sequence in } (X,d) & \iff d(x_n,x_m) \longrightarrow 0 \text{ as } n,m \longrightarrow +\infty \\ & \iff A_d(x_n,..,x_m) = (n-1)d(x_n,x_m) \\ & \to 0 \end{aligned}$$

as $n, m \longrightarrow +\infty$, that is $\{x_n\}$ is Cauchy in (X, A_d) . (4) It is a consequence of (2) and (3).

The following example proves that the inverse implication of the precedent lemma does not hold.

Example 3.19. Let $X = \mathbb{R}$ and

$$A(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sum_{i< j}^n |x_i - x_j|$$

for all $x_1, x_2, ..., x_n \in X$. A is an A-metric (see[1], p7). Suppose that there exists a metric d with $A(x_1, x_2, ..., x_n) = \sum_{i=1}^{n-1} d(x_i, x_n)$ for all $x_1, ..., x_n \in X$. Then $A(x_i, x_i, ..., x_i, x_n) = d(x_i, x_n) + d(x_i, x_n) + ... + d(x_i, x_n)$ and so

$$d(x_i, x_n) = \frac{1}{n-1} A(x_i, x_i, ..., x_i, x_n).$$

We have also

$$\sum_{i=1}^{n-1} d(x_i, x_n) = \frac{1}{n-1} \sum_{i=1}^{n-1} A(x_i, x_i, \dots, x_i, x_n)$$

= $\frac{1}{n-1} A(x_1, \dots, x_1, x_n) + \dots + \frac{1}{n-1} A(x_{n-1}, \dots, x_{n-1}, x_n)$
= $\frac{1}{n-1} |x_1 - x_n| + \frac{1}{n-1} |x_2 - x_n + \dots + \frac{1}{n-1} |x_{n-1} - x_n|$

Clearly, $A(x_1, x_2, ..., x_n) \neq \sum_{i=1}^n d(x_i, x_n)$, and this is a contradiction.

Next we show that the A-metric space is normal. Let C be a closed subset of an A-metric space X. We define a function A(x, x, x, ..., x, C) by

 $A(x, x, ..., x, C) = \inf \left\{ A(x, x, ..., x, c) : c \in C \right\}.$

Then it is clear that

$$A(x, x, ..., x, C) = 0 \Longleftrightarrow x \in C.$$

We need the following lemma in the sequel.

Lemma 3.20. $x \mapsto A(x, x, ..., x, C)$ is a continuous function in an A-metric space X.

Proof. Let $c \in C$. Then by the condition (A3), Lemma 2.4 and Lemma 2.5 we have

$$A(x, x, ..., x, c) \le (n-1)A(x, x, ..., x, y) + A(y, y, ..., y, c)$$
(3.3)

and

$$A(y, y, ..., y, c) \le (n-1)A(y, y, ..., y, x) + A(x, x, ..., x, c).$$
(3.4)
from (2.2) and (2.4) that

It follows from (3.3) and (3.4) that

$$A(x, x, ..., x, C) - A(y, y, ..., y, C) \le (n - 1)A(x, x, ..., x, y)$$

and

$$A(y, y, ..., y, C) - A(x, x, ..., x, C) \le (n - 1)A(y, y, ..., y, x).$$

And then we obtain

$$|A(x, x, ..., C) - A(y, y, ..., y, C)| \le (n-1)A(x, x, ..., x, y).$$

Therefore, if $\{x_i\}$ is a sequence such that $x_i \longrightarrow y$ and

 $|A(x_i, x_i, ..., x_i, C) - A(y, y, ..., y, C)| \le (n-1)A(x_i, x_i, ..., x_i, y),$

then we obtain $A(x_i, x_i, ..., x_i, C) \longrightarrow A(y, y, ..., y, C)$. This shows that $x \longrightarrow A(x, x, ..., x, C)$ is a continuous function on X.

Theorem 3.21. Let C and B be two closed subsets of an A-metric space X such that $C \cap B = \emptyset$. Then there exists a continuous real function $f : X \longrightarrow R$ such that f(x) = 0 for $x \in C$ and f(x) = 1 for $x \in B$.

Proof. Define a function $f: X \longrightarrow R$ by

$$f(x) = \frac{A(x, x, ..., x, C)}{A(x, x, ..., x, C) + A(x, x, ..., x, B)}.$$

Since the function $x \mapsto A(x, x, ..., x, C)$ is continuous and denominator is continuous and positive, the function f is continuous on X and satisfied f(x) = 0 for $x \in C$ and f(x) = 1 for $x \in B$.

Theorem 3.22. An A-metric space X is normal.

Proof. Let A and B be two closed and disjoint subsets of X. Using the Theorem 3.21, there exists a continuous real function $f : X \longrightarrow R$ such that f(x) = 0 for $x \in A$ and f(x) = 1 for $x \in B$. Define the open sets U and V in X by

$$U = \left\{ x \in X/f(x) < \frac{3}{4} \right\}$$

and

$$V = \left\{ x \in X/f(x) > \frac{3}{4} \right\}$$

It is clear that, $A \subset U$ and $B \subset V$ and $U \cap V = \emptyset$. Hence, X is normal. \Box

Theorem 3.23. If a Cauchy sequence in an A-metric space contains a convergent subsequence, then the sequence is convergent.

Proof. Let $\{x_n\}$ be a Cauchy sequence in an A-metric space X. Then, for each $\epsilon > 0$, there exists $n_0 \in N$ such that for all $k, m \ge n_0$ we have

$$A(x_k, x_k, \dots, x_k, x_m) < \frac{\epsilon}{2(n-1)}.$$

Since the subsequence $\{x_{\varphi(n)}\}$ of $\{x_n\}$ converging to a point $x \in X$, and also, at the same $\epsilon > 0$ is associated r_0 such that

$$\forall r \ge r_0, A(x_{\varphi(r)}, x_{\varphi(r)}, ..., x_{\varphi(r)}, x) < \frac{\epsilon}{2}.$$

~

As φ is strictly increasing, there exist $r_1 \ge r_0$ such that $\varphi(r_1) \ge n_0$, then for all $k \ge n_0$,

$$A(x_k, x_k, ..., x_k, x) \le (n-1)A(x_k, x_k, ..., x_k, x_{\varphi(r_1)}) + A(x_{\varphi(r_1)}, x_{\varphi(r_1)}, ..., x_{\varphi(r_1)}, x)$$

Z. I. AL-Muhiameed, G. Benhamida and M. Bousselsal

$$\leq \frac{(n-1)\epsilon}{2(n-1)} + \frac{\epsilon}{2} = \epsilon.$$

Finaly, for all $\epsilon > 0$ there exist $n_0 \in N$ such that for all $k \ge n_0$ we have $A(x_k, x_k, ..., x_k, x) < \epsilon$.

Theorem 3.24. Let X_1, X_2 be two A-metric spaces with A-metrics ρ_1 and ρ_2 , respectively. Define A on $X_1 \times X_2$ by

$$A((x_1, y_1), (x_2, y_2), ..., (x_n, y_n)) = \max \{\rho_1(x_1, x_2, ..., x_n), \rho_2(y_1, y_2, ..., y_n)\}$$

for $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \in X_1 \times X_2$. Then (X, A) is complete if and only if (X_1, ρ_1) and (X_2, ρ_2) are complete.

Proof. From the definition of completeness, we can prove this theorem. \Box

Definition 3.25. A sequence $\{F_n\}$ of closed sets in an A-metric space X is said to be nested if

$$F_1 \supset F_2 \supset \ldots \supset F_n \supset \ldots$$

Theorem 3.26. (Intersection theorem) Let X be an A-metric space and let $\{F_n\}$ be a nested sequence of nonempty subsets of X such that $\delta(F_n) \longrightarrow 0$ as $n \longrightarrow \infty$. If X is complete, then $\bigcap_{i=1}^{\infty} F_n$ is a singleton.

Proof. Let X be complete. For each $n \in N$, there exists $x_n \in F_n$ which is nonempty. Then, for all $m \ge n$ we have $x_m \in F_m \subset F_n$. So, for all $m \ge n$ and $k \ge n$ we get $A(x_m, x_m, ..., x_m, x_k) \le \delta(F_n)$ such that $\delta(F_n) \longrightarrow 0$ as $n \to \infty$ that is to say, for all $\epsilon > 0$ there exist $n_0 \in N$ such that for all $n \ge n_0$ we have $\delta(F_n) \le \epsilon$, a fortiori, we will have for all $m \ge n_0$ and $k \ge n_0$ we get $A(x_m, x_m, ..., x_m, x_k) \le \epsilon$. Then $\{x_n\}$ is a Cauchy sequence in a complete space X and then $\{x_n\}$ converges. Let x be the limit of $\{x_n\}$. As for all $m \ge n$ we have $x_m \in F_n$ and then $x \in \overline{F_n} = F_n$ (F_n closed), from where $x \in \cap_{n \in N} F_n$, which is nonempty. Finally, if $y \in \cap_{n \in N} F_n$ we get

 $A(x, x, ..., x, y) \le \delta(F_n)$

for all $n \in N$, so if n tends to infinity, we obtain

$$A(x, x, \dots, x, y) \le 0.$$

It follows from A(x, x, ..., x, y) = 0 that x = y. Therefore the intersection is a singleton.

3.2. Compactness in A-metric spaces.

Definition 3.27. Let (X, A) be an A-metric space, and let $\epsilon > 0$ be given. Then a set $\Omega \subseteq X$ is called an ϵ -net of (X, A) if given any x in X there is at least one point a in Ω such that $x \in B(a, \epsilon)$. If the set Ω is finite then Ω is called a finite ϵ -net of (X, A). Note that if Ω is an ϵ -net then $\Omega = \bigcup_{a \in A} B(a, \epsilon)$.

Definition 3.28. An A-metric space (X, A) is called A-totally bounded if for every $\epsilon > 0$ there exists a finite ϵ -net.

Definition 3.29. An A-metric space (X, A) is said to be a compact A-metric space if it is A-complete and A-totally bounded.

Theorem 3.30. Every sequentially compact A-metric space X is A-totally bounded.

Proof. If X is not A-totally bounded, there exists $\epsilon > 0$ such that X has no ϵ -net. Let $x_0 \in X$. Then there must exists a point $x_1 \in X$, distinct from x_0 , such that $A(x_1, x_1, ..., x_1, x_0) \ge \epsilon$, for otherwise, $\{x_0\}$ would be an ϵ -net for X. In the same way, there exists a point $x_2 \in X$, distinct from x_0 and x_1 such that $A(x_2, x_2, ..., x_2, x_1) \ge \epsilon$, for otherwise $\{x_0, x_1\}$ would be an ϵ -net for X. Continuing this process, we obtain a sequence $\{x_0, x_1, ...\}$ with the property $A(x_j, x_j, ..., x_j, x_i) \ge \epsilon$, $i \ne j$. Then $\{x_n\}$ cannot contain any convergent sequence. Hence X is not sequentially compact.

Below we give a theorem in an A-metric space without proof, since its proof is similar to ordinary metric space case with appropriate modifications.

Theorem 3.31. For an A-metric space (X, A), the following are equivalent:

- (1) X is compact,
- (2) X is countably compact,
- (3) X has Bolzano-Weierstrass property,
- (4) X is sequentially compact.

Before stating our main result, we recall the following definitions which will be useful later.

Definition 3.32. ([8]) A pair of maps f and g is called weakly compatible if they commute at coincidence points.

Example 3.33. Let (X = [0, 1], d) be a metric space with d(x, y) = |x - y|. Define $f, g : [0, 1] \to [0, 1]$ by

$$f(x) = x, g(x) = 1 - x$$
 if $x \in \left[0, \frac{1}{2}\right]$,

and

$$f(x) = g(x) = \frac{1}{2}$$
 if $x \in \left[\frac{1}{2}, 1\right]$.

Then, for any $x \in \left[\frac{1}{2}, 1\right]$, fg(x) = gf(x), therefore f, g are weakly compatible maps on [0, 1].

Example 3.34. Let X = R. Define $f, g : R \to R$ by $f(x) = x^2 - 1, x \in R$ and $g(x) = x - 1, x \in R$. 0 and 1 are two coincidence points for the maps f, g. We have fg(1) = gf(1) = -1, but fg(0) = 0 and gf(0) = -2. Hence f and g are not weakly compatible maps on R.

Now, we present the concept of weakly A-contractive for mapping $f:X\to X$ as follows:

Definition 3.35. Let (X, A) be an A-metric space. A mapping $f : X \to X$ is said to be weakly A-contractive type if for all $x_i \in X, i = 1, ..., n$, the following inequality holds :

$$\begin{aligned} A(fx_1, fx_2, ..., fx_n) &\leq \frac{1}{2n} A(x_1, ..., x_1, fx_2) + \frac{1}{2n} A(x_2, ..., x_2, fx_3) \\ &+ ... + \frac{1}{2n} A(x_{n-1}, ..., x_{n-1}, fx_n) + \frac{1}{2n} A(x_n, ..., x_n, fx_1) \\ &- \phi \left(A(x_1, ..., fx_2), ..., A(x_{n-1}, ..., fx_n), A(x_n, ..., fx_1) \right), \end{aligned}$$

where $\phi : [0, +\infty)^n \to [0, +\infty)$ is a continuous function with $\phi(\alpha_1, \alpha_2, ..., \alpha_n) = 0$ if and only if $\alpha_i = 0$ for all i = 1, ..., n.

The following definition of the altering distance function was introduced in ([9]).

Definition 3.36. The function $\psi : [0, +\infty) \to [0, +\infty)$ is called an altering distance function if the following properties are satisfied :

- (1) ψ is continuous and increasing;
- (2) $\psi(t) = 0$ if and only if t = 0.

4. MAIN RESULTS

Let (X, A) be an A-metric space and $f, g : X \longrightarrow X$ be two mappings. We say that f is a generalized weakly contraction mapping (g.w.c.m.) with

respect to g if for all $x, y \in X$, the following inequality holds:

$$\begin{split} \psi \left(A(fx, ..., fx, fy) \right) \\ &\leq \psi \left(\frac{1}{2n} \left[(n-2)A(gx, ..., fx) + A(gx, ..., fy) + A(gy, ..., fx) \right] \right) \\ &- \phi \left(A(gx, ..., fx), ..., A(gx, ..., fx), A(gx, ..., fy), A(gy, ..., fx) \right), \end{split}$$
(4.1)

where

- (1) ψ is an altering distance function;
- (2) $\phi : [0, +\infty)^n \longrightarrow [0, +\infty)$ is a continuous function with $\phi(x_1, x_2, ..., x_n) = 0$ if and only if $x_i = 0$, for all i = 1, ..., n.

Theorem 4.1. Let (X, A) be an A-metric space and $f, g : X \longrightarrow X$ be two mappings such that f is a g.w.c.m. with respect to g. Assume that

- (i) $f(X) \subset g(X)$,
- (ii) g(X) is a complete subset of (X, A),
- (iii) f and g are weakly compatible maps.

Then f and g have a unique common fixed point.

Proof. By using the assumption (i), we can construct a sequence $\{x_m\}$ in X such that $gx_{m+1} = fx_m$, for any $m \in N$. If for some m, $gx_{m+1} = gx_m$, we obtain $gx_m = fx_m$ and then f and g have a common fixed point. Assume that $gx_{m+1} \neq gx_m$ for any $m \in N$. For $m \in N$ and by (4.1) and (A₃), we get

$$\begin{split} \psi \left(A(gx_m, ..., gx_m, gx_{m+1}) \right) \\ &= \psi \left(A(fx_{m-1}, ..., fx_{m-1}, fx_m) \right) \\ &\leq \psi \left(\frac{1}{2n} \left[(n-2)A(gx_{m-1}, ..., gx_m) + A(gx_{m-1}, ..., gx_{m+1}) + A(gx_m, ..., gx_m) \right] \right) \\ &- \phi \left(A(gx_{m-1}, ..., gx_m), ..., A(gx_{m-1}, ..., gx_{m+1}), A(gx_m, ..., gx_m) \right) \\ &\leq \psi \left(\frac{1}{2n} \left[(2n-3)A(gx_{m-1}, ..., gx_{m-1}, gx_m) + A(gx_{m+1}, ..., gx_{m+1}, gx_m) \right] \right). \end{split}$$

Since ψ is increasing, by (4.2) and Lemma 2.5 we obtain

$$A(gx_m, ..., gx_{m+1}) \le \frac{1}{2n} \left[(n-2)A(gx_{m-1}, ..., gx_m) + A(gx_{m-1}, ..., gx_{m+1}) \right]$$

$$\le \frac{1}{2n} \left[(2n-3)A(gx_{m-1}, ..., gx_m) + A(gx_m, ..., gx_{m+1}) \right].$$

$$(4.2)$$

Then we have

$$(1 - \frac{1}{2n})A(gx_m, ..., gx_m, gx_{m+1}) \le \frac{2n - 3}{2n}A(gx_{m-1}, ..., gx_{m-1}, gx_m) \le \frac{2n - 1}{2n}A(gx_{m-1}, ..., gx_{m-1}, gx_m),$$

it implies that

$$A(gx_m, ..., gx_m, gx_{m+1}) \le A(gx_{m-1}, ..., gx_{m-1}, gx_m)$$

for any $n \ge 1$. Therefore $\{A(gx_m, ..., gx_m, gx_{m+1}), n \in N\}$ is a non-increasing sequence. Hence there exists $\varrho \ge 0$ such that

$$\lim_{m \to \infty} A(gx_m, \dots, gx_m, gx_{m+1}) = \varrho.$$
(4.3)

Letting $m \to +\infty$ in (4.2), we obtain

$$\lim_{m \to \infty} A(gx_{m-1}, ..., gx_{m-1}, gx_{m+1}) = n\varrho.$$
(4.4)

We also have from (4.2)

$$\begin{split} \psi \left(A(gx_m, ..., gx_{m+1}) \right) \\ &\leq \psi \left(\frac{1}{2n} \left[(n-2)A(gx_{m-1}, ..., gx_m) + A(gx_{m-1}, ..., gx_{m+1}) \right] \right) \\ &- \phi \left(A(gx_{m-1}, ..., gx_m), ..., A(gx_{m-1}, ..., gx_m), A(gx_{m-1}, ..., gx_{m+1}), 0 \right). \end{split}$$

Letting $m \to +\infty$ and using (4.3), (4.4) and the continuity of ψ and ϕ , we get

 $\psi(\varrho) \le \psi(\varrho) - \phi(\varrho, ..., \varrho, n\varrho, 0),$

hence $\phi(\varrho, \varrho, ..., \varrho, n\varrho, 0) = 0$. By a property of ϕ , we deduce that $\varrho = 0$, that is

$$\lim_{n \to \infty} A(gx_m, ..., gx_m, gx_{m+1}) = 0.$$
(4.5)

To prove that $\{gx_m\}$ is a Cauchy sequence, we proceed as follows : Suppose $\{gx_m\}$ is not a Cauchy sequence, then there exists $\epsilon > 0$ such that, for all $i \in N$, there exists two subsequences $\{gx_{p(i)}\}\$ and $\{gx_{q(i)}\}\$ of $\{gx_m\}\$ such that q(i) is the smallest index for which q(i) > p(i) > i,

$$A(gx_{p(i)}, \dots, gx_{p(i)}, gx_{q(i)}) \ge \epsilon.$$

$$(4.6)$$

Therefore we have

$$A(gx_{p(i)}, ..., gx_{p(i)}, gx_{q(i)-1}) < \epsilon.$$
(4.7)

Using (4.6), (4.7) and the condition (A_3) , we have

$$\begin{split} &\epsilon \leq A(gx_{p(i)},...,gx_{p(i)},gx_{q(i)}) \\ &\leq (n-1)A(gx_{p(i)},...,gx_{p(i)},gx_{p(i)-1}) + A(gx_{q(i)},...,gx_{q(i)},gx_{p(i)-1}) \\ &\leq (n-1)A(gx_{p(i)},...,gx_{p(i)},gx_{p(i)-1}) + (n-1)A(gx_{q(i)},...,gx_{q(i)},gx_{q(i)-1}) \\ &+ A(gx_{p(i)-1},...,gx_{p(i)},gx_{p(i)-1}) + (n-1)A(gx_{q(i)},...,gx_{q(i)},gx_{q(i)-1}) \\ &\leq (n-1)A(gx_{p(i)},...,gx_{p(i)},gx_{p(i)-1}) + (n-1)A(gx_{q(i)-1},...,gx_{q(i)},gx_{q(i)-1}) \\ &+ (n-1)A(gx_{p(i)-1},...,gx_{p(i)-1},gx_{p(i)}) + A(gx_{q(i)-1},...,gx_{q(i)},gx_{q(i)-1}) \\ &+ (n-1)A(gx_{p(i)-1},...,gx_{p(i)-1},gx_{p(i)}) + (n-1)A(gx_{q(i)},...,gx_{q(i)},gx_{q(i)-1}) \\ &+ (n-1)A(gx_{p(i)-1},...,gx_{p(i)-1},gx_{p(i)}) + \epsilon. \end{split}$$

Letting $i \to +\infty$ in the precedent inequalities and using (4.5), we obtain

$$\lim_{i \to +\infty} A(gx_{p(i)}, ..., gx_{p(i)}, gx_{q(i)})$$

$$= \lim_{i \to +\infty} A(gx_{q(i)}, ..., gx_{q(i)}, gx_{p(i)-1})$$

$$= \lim_{i \to +\infty} A(gx_{p(i)-1}, ..., gx_{p(i)-1}, gx_{q(i)-1})$$

$$= \epsilon.$$
(4.8)

Now, by (4.1) we have

$$\begin{split} &\psi\left(A(gx_{q(i)},...,gx_{q(i)},gx_{p(i)})\right) \\ &= \psi\left(A(fx_{q(i)-1},...,fx_{q(i)-1},fx_{p(i)-1})\right) \\ &\leq \psi\left(\frac{n-2}{2n}A(gx_{q(i)-1},...,fx_{q(i)-1}) + \frac{1}{2n}A(gx_{q(i)-1},...,fx_{p(i)-1})\right) \\ &\quad + \frac{1}{2n}A(gx_{p(i)-1},...,fx_{q(i)-1})\right) - \phi\left(A(gx_{q(i)-1},...,fx_{q(i)-1}),...,A(gx_{q(i)-1},...,fx_{q(i)-1})\right) \\ &= \psi\left(\frac{1}{2n}\left[(n-2)A(gx_{q(i)-1},...,gx_{q(i)}) + A(gx_{q(i)-1},...,gx_{p(i)})\right. \\ &\quad + A(gx_{p(i)-1},...,gx_{q(i)})\right]\right) - \phi\left(A(gx_{q(i)-1},...,gx_{q(i)}),...,A(gx_{q(i)-1},...,gx_{q(i)})\right) \\ &\leq \psi\left(\frac{1}{2n}\left[(n-2)A(gx_{q(i)-1},...,gx_{q(i)}) + A(gx_{q(i)-1},...,gx_{p(i)})\right. \\ &\quad + A(gx_{p(i)-1},...,gx_{q(i)})\right]\right). \end{split}$$

Since ψ is increasing and by (A_3) , we obtain

$$\begin{split} A(gx_{q(i)},...,gx_{q(i)},gx_{p(i)}) &\leq \frac{n-2}{2n} A(gx_{q(i)-1},...,gx_{q(i)-1},gx_{q(i)}) \\ &\quad + \frac{1}{2n} A(gx_{q(i)-1},...,gx_{q(i)-1},gx_{p(i)}) \\ &\quad + \frac{1}{2n} A(gx_{p(i)-1},...,gx_{p(i)-1},gx_{q(i)}) \\ &\leq \frac{n-2}{2n} A(gx_{q(i)-1},...,gx_{q(i)-1},gx_{q(i)}) \\ &\quad + \frac{n-1}{2n} A(gx_{q(i)-1},...,gx_{q(i)-1},gx_{p(i)-1}) \\ &\quad + \frac{1}{2n} A(gx_{p(i)},...,gx_{p(i)},gx_{p(i)-1}) \\ &\quad + \frac{1}{2n} A(gx_{q(i)-1},...,gx_{q(i)-1},gx_{q(i)-1}) \\ &\quad + \frac{1}$$

Letting $i \to \infty$ in the precedent inequalities and using (4.5) and (4.8), we get

$$\begin{aligned} \epsilon &\leq \frac{1}{2n} \left[\lim_{i \to +\infty} A(gx_{q(i)-1}, ..., gx_{q(i)-1}, gx_{p(i)}) + \epsilon \right] \\ &\leq \frac{1}{2n} \left[2(n-1)\epsilon \right]. \end{aligned}$$

It implies that

$$\lim_{i \to +\infty} A(gx_{q(i)-1}, ..., gx_{q(i)-1}, gx_{p(i)}) = 2n\epsilon - \epsilon.$$
(4.10)

Letting $i \to +\infty$ in (4.9) and by (4.5), (4.8), (4.10) and the continuity of ψ and ϕ , we get

$$\psi(\epsilon) \le \psi\left(\frac{1}{2n}\left[2n\epsilon - \epsilon + \epsilon\right]\right) - \phi\left(0, ..., 0, 2n\epsilon - \epsilon, \epsilon\right).$$

Therefore $\epsilon = 0$, this is a contradiction. We deduce that $\{gx_m\}$ is a Cauchy sequence in g(X), which is a complete subset of (X, A). So we obtain the existence of $t, u \in X$ such that $\{gx_m\}$ converges to t = gu and then

$$\lim_{m \to +\infty} A(gx_m, \dots, gx_m, gu) = 0.$$
(4.11)

By using Lemma 3.17 we have

$$\lim_{m \to +\infty} A(gx_m, ..., gx_m, fu) = A(gu, ..., gu, fu).$$
(4.12)

Now, we show that fu = t. By (4.1), we get $\psi (A(gx_{m+1}, ..., fu))$ $= \psi (A(fx_m, ..., fu))$ $\leq \psi \left(\frac{n-2}{2n} A(gx_m, ..., fx_m) + \frac{1}{2n} A(gx_m, ..., fu) + \frac{1}{2n} A(gu, ..., fx_m) \right)$ $- \phi (A(gx_m, ..., fx_m), ..., A(gx_m, ..., fu), A(gu, ..., fx_m))$ $= \psi \left(\frac{n-2}{2n} A(gx_m, ..., gx_{m+1}) + \frac{1}{2n} A(gx_m, ..., fu) + \frac{1}{2n} A(gu, ..., fx_{m+1}) \right)$ $- \phi (A(gx_m, ..., gx_{m+1}), ..., A(gx_m, ..., fu), A(gu, ..., gx_{m+1})).$

Letting $m \to +\infty$ and using (4.5), (4.11), (4.12) and the continuity of ψ and ϕ and the fact that ψ is increasing, we get

$$\psi(A(gu,...,gu,fu)) \le \psi\left(\frac{1}{2n}[A(gu,...,gu,fu)]\right) - \phi(0,...,0,A(gu,...,gu,fu),0).$$
(4.13)

Then, A(gu, ..., gu, fu) = 0 and hence fu = gu = t. Therefore, u is a coincidence point of f and g. And since the pair $\{f, g\}$ is weakly compatible, we have ft = gt.

Now, to prove that t is a common fixed point of f and g, we have by (4.1) $\psi(A(gt,..,gt,gx_{m+1}))$ $= \psi(A(ft,..,ft,fx_m))$

$$= \psi \left(A(gt, ..., gt, fx_m) \right)$$

$$\leq \psi \left(\frac{1}{2n} \left[(n-2)A(gt, ..., gt, ft) + A(gt, ..., gt, fx_m) + A(gx_m, ..., gx_m, ft) \right] \right)$$

$$- \phi \left(A(gt, ..., gt, ft), ..., A(gt, ..., gt, fx_m), A(gx_m, ..., gx_m, ft) \right)$$

$$= \psi \left(\frac{1}{2n} \left[(0 + A(gt, ..., gt, gx_{m+1}) + A(gx_m, ..., gx_m, gt) \right] \right)$$

$$- \phi \left(0, ..., 0, A(gt, ..., gt, gx_{m+1}), A(gx_m, ..., gx_m, gt) \right) .$$

Letting $m \to +\infty$ and by Lemma 2.5 and the fact that ψ is increasing, we obtain

$$\begin{split} \psi\left(A(gt,...,gt,gu)\right) &\leq \psi\left(\frac{1}{2n}\left[0 + A(gt,...,gt,gu) + A(gu,...,gu,gt)\right]\right) \\ &\quad -\phi\left(0,...,0,A(gt,...,gt,gu),A(gu,...,gu,gt)\right) \\ &\quad <\psi\left([A(gt,...,gu)]\right) - \phi\left(0,...,0,A(gt,...,gu),A(gu,...,gt)\right) \end{split}$$

Then $\phi(0, ..., 0, A(gt, ..., gt, gu), A(gu, ..., gu, gt)) = 0$ and with the property of ϕ , we obtain A(gt, ..., gt, gu) = 0. Therefore, gt = gu = t. We deduce that ft = fu = t and then ft = gt = t, so the result follows.

To prove the uniqueness, suppose that w is another common fixed point of f and g. Using (4.1), we get

$$\begin{split} \psi\left(A(t,...,w)\right) &= \psi\left(A(ft,...,fw)\right) \\ &\leq \psi\left(\frac{1}{2n}\left[(n-2)A(ft,...,ft) + A(ft,...,fw) + A(fw,...,ft)\right]\right) \\ &- \phi\left(A(ft,...,ft),...,A(ft,...,ft),A(ft,...,fw),A(fw,...,ft)\right) \\ &\leq \psi\left(\frac{1}{n}A(ft,...,fw)\right) - \phi\left(0,...,0,A(ft,...,fw),A(fw,...,ft)\right) \\ &< \psi\left(A(t,...,w)\right) - \phi\left(0,...,0,A(t,...,w),A(w,...,t)\right). \end{split}$$

Then by the property of ϕ , we have $\phi(0, ..., 0, A(t, ..., t, w), A(w, ..., w, t)) = 0$. This implies that A(t, ..., t, w) = 0 and then t = w.

Corollary 4.2. Let (X, A) be an A-metric space and $f, g : X \to X$ be two mappings. Suppose that g(X) is a complete subspace of (X, A), $f(X) \subset g(X)$ and the pair $\{f, g\}$ is weakly compatible. By putting

$$\psi(t) = t, \quad \phi(t_1, t_2, ..., t_n) = \left(\frac{1}{2n} - \beta\right) \sum_{i=1}^n t_i,$$

where $\beta \in [0, \frac{1}{2n})$ in the inequality (4.1) and by Theorem 4.1, we conclude that f and g have a unique common fixed point.

Corollary 4.3. Let (X, A) be an A-metric space and $f : X \to X$ be a mapping such that

$$\begin{split} \psi \left(A(fx, fx, ..., fx, fy) \right) \\ &\leq \psi \left(\frac{1}{2n} \left[(n-2)A(x, ..., x, fx) + A(x, ..., x, fy) + A(y, ..., y, fx) \right] \right) \\ &- \phi \left(A(x, ..., x, fx), ..., A(x, ..., x, fx), A(x, ..., x, fy), A(y, ..., y, fx) \right) \end{split}$$

where ψ is an altering distance function and $\phi : [0, +\infty)^n \longrightarrow [0, +\infty)$ is a continuous function with $\phi(x_1, x_2, ..., x_n) = 0$ if and only if $x_i = 0$, for all i = 1, ..., n. Then f has a unique fixed point.

Proof. By taking $g = Id_X$, the identity mapping on X in Theorem 4.1, the result follows immediately.

Example 4.4. Let X = [0,3] and the A-metric on X define by :

$$A(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sum_{i < j} |x_i - x_j|$$

n

for $n \geq 2$ and $x_1, x_2, ..., x_n \in X$. By taking $\psi(t) = t$, $\phi(t_1, t_2, ..., t_n) = \frac{\sum_{i=1}^n t_i}{k}$, $k \geq 2n$, fx = 2 and $g = Id_X$, then we obtain

$$\psi\left(A(fx, fx, ..., fx, fy)\right) = \psi\left(A(2, 2, ..., 2)\right) = 0$$

and

$$\begin{split} &\psi\left(\frac{1}{2n}\left[(n-2)A(x,...,x,2)+A(x,...,x,2)+A(y,...,y,2)\right]\right)\\ &=\psi\left(\frac{1}{2n}\left[(n-1)^2|x-2|+(n-1)|y-2|\right]\right)\\ &=\frac{(n-1)^2|x-2|+(n-1)|y-2|}{2n}. \end{split}$$

On the other hand, we have

$$\begin{split} & \phi\left(A(x,...,x,2),...,A(x,...,x,2),A(y,...,y,2)\right) \\ &= \phi\left((n-1)|x-2|,...,(n-1)|x-2|,(n-1)|y-2|\right) \\ &= \frac{(n-1)^2|x-2|+(n-1)|y-2|}{k}, \end{split}$$

which means that the condition (4.1) is satisfied. Also we have, $f(X) = \{2\}, g(X) = [0,3], f(X) \subset g(X), g(X)$ is a complete subset of (X, A) and the pair $\{f,g\}$ is weakly compatible. Then f and g have a unique common fixed point x = 2.

References

- M. Abbas, B. Ali and Y. Suleiman, Generalized coupled common fixed point results in partially ordered A-metric spaces, Fixed Point Theory and Appl., 64 (2015), 1–24.
- B.C. Dhage, Generalized metric spaces and topological structure1, An. Stiint. Univ. 'Al. I. CUZA.' IASI, Mat., 46 (2000), 3–24.
- [3] S. Gahler, 2-Metrische raume and ihre topologische struktur, Math. Nachr., 26 (1963), 115–148.
- [4] S. Gahler, Zur geometric 2-metrische raume, Fund. 11 (1966), 665–667.
- [5] K.S. Ha, Y.J. Cho and A. White, Strictly convex and 2-convex 2-normed spaces, Math. Jpn., 33(3) (1988), 375–384.
- [6] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2012), 289–297.
- [7] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Sci., 2009 Article ID283028, (2009), 10 pages.
- [8] G. Jungck and B.E. Rhoades, Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227–238.
- [9] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1–9.
- [10] M.M. Rezaee and S. Sedghi, Tripled fixed point results in partially ordered S-metric spaces, Nonlinear Funct. Anal. and Appl., 23(2) (2018), 395-405.
- [11] S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D^{*}-metric spaces, Fixed Point Theory Appl., 2007 Article ID 27906 (2007), 1–13.
- [12] S. Sedghi, N. Shobe and T. Dosenovic, Fixed point results in S-metric spaces, Nonlinear Funct. Anal. and Appl., 20(1) (2015), 55-67.

- [13] A.K. Sharma, A note on fixed ponts in 2-metric spaces, Indian J. Pure Appl. Math., 11(2) (1980), 1580–1583.
- [14] D. Singh, V. Joshi and J. K. Kim, Existence of solution to Bessel-type boundary value problem via G-l cyclic F-contractive mapping with graphical verification, Nonlinear Funct. Anal. and Appl., 23(2) (2018), 205-224.