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Abstract. In this paper, we prove some topological properties and a common fixed point

type theorem for two self mappings on new generalized metric spaces, called A−metric

spaces.

1. Introduction

The metric space forms an important environment for studying fixed point
of single and multi-valued operators and the fixed point theory is important on
applied sciences. Many authors have studied this important theory. In 1963,
Gahler [3, 4] introduced the notion of a 2−metric space. He claimed that
2−metric space is a generalization of an ordinary metric space. On the other
hand, Ha et al. [5] and Sharma [13] found some mathematical flaws in theses
claims. It was demonstrated that the 2−metric is not sequentially continuous
in each of its arguments, whereas an ordinary metric satisfies this property.
To overcome these problems, Dhage [2] introduced the concept of D−metric
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space as a generalization of a metric space and claimed that D−metric space
defines a Haussdorff topology and D−metric is sequentially continuous with
respect to all it’s three variables. He proved some topological property and
some fixed point results.

In 2003, Mustafa and Sims [6] introduced a new structure of generalized
metric spaces which are called G−metric spaces and suggested an important
generalization of a metric space. They studied some topological properties
of G−metric space and afterwards some authors have obtained generalized
fixed point theorems in the setup of G−metric space, see for examples [7, 14].
Next, Sedghi et al. [11] introduced a D∗−metric space and observed that some
condition can be replaced with two axioms. So not every D∗−metric space
needs to be a G−metric space. To overcome these difficulties, they introduced
a new generalized metric space called S−metric space [10, 12], they proved
that every a S−metric space is a generalization of a D∗−metric space and
the G−metric space. A generalization of the S−metric space is called the
A−metric space (see [1]).

It is our purpose in this paper to study topological properties of anA−metric
space. We present here the concept of an A-metric space and some of its prop-
erties.

2. preliminaries

For n ≥ 2, let Xn denotes the cartesian product X ×X ×X....×X.

Definition 2.1. Let X be a nonempty set. A function A : Xn −→ [0,+∞)
is called an A-metric on X if for any xi, a ∈ X, i = 1, 2, ......., n, the following
conditions holds :

(A1) A(x1, x2, x3, ..., xn−1, xn) ≥ 0,
(A2) A(x1, x2, ..., xn−1, xn) = 0 if and only if x1 = x2 = .... = xn−1 = xn,
(A3) For any a ∈ X,

A(x1, x2, x3, ...., xn−1, xn) ≤ A(x1, x1, x1, ...., (x1)n−1, a)

+A(x2, x2, x2, ...., (x2)n−1, a)

+A(x3, x3, x3, ...., (x3)n−1, a)

...

+A(xn−1, xn−1, ...., (xn−1)n−1, a)

+A(xn, xn, xn, ...., (xn)n−1, a).

The pair (X,A) is called an A-metric space.
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Note that the A-metric space is an n-dimensional S-metric space (see [1]).
Therefore the ordinary metric d and S-metric are special cases of an A-metric
with n = 2 and n = 3, respectively.

Example 2.2. Let X = R. Define a function A : Xn → [0,+∞) by

A(x1, x2, x3, ..., xn−1, xn) = |x1 − x2|+ |x1 − x3|+ ...+ |x1 − xn|
+|x2 − x3|+ |x2 − x4|+ ...+ |x2 − xn|
...

+|xn−2 − xn−1|+ |xn−2 − xn|+ |xn−1 − xn|

=

n∑
i=1

∑
i<j

| xi − xj | .

Then (R, A) is an A-metric space.

Example 2.3. For a standard ordinary metric d on X, we define a function
A1 on Xn by

A1(x1, x2, ..., xn−1, xn) =
n∑

i,j=1,(i<j)

d(xi, xj)

for all xi ∈ X, i = 1, 2, ..., n. Then A1 is an A-metric on X and is called
the standard A-metric on X. Obviously the first two conditions are satisfied.
To prove the third condition, let xi, a ∈ X, i = 1, 2, ..., n, from the triangle
inequality, it follows

A1(x1, x2, ..., xn) = d(x1, x2) + · · ·+ d(x1, xn) + d(x2, x3) + · · ·+ d(x2, xn)

+ · · ·+ d(xn−2, xn−1) + d(xn−2, xn) + d(xn−1, xn)

≤ d(x1, a) + d(a, x2) + · · ·+ d(x1, a) + d(a, xn)

+ · · ·+ d(xn−1, a) + d(a, xn)

≤ (n− 1)d(x1, a) + (n− 1)d(x2, a) + · · ·+ (n− 1)d(xn, a)

≤ A1(x1, ..., x1, a) +A1(x2, ..., x2, a) + · · ·+A1(xn, ..., xn, a).

Hence (X,A1) is an A-metric space.

Lemma 2.4. ([1]) Let (X,A) be an A-metric space. Then A(x, x, x, ..., x, y) =
A(y, y, y, ..., y, x) for all x, y ∈ X.

Lemma 2.5. ([1]) Let (X,A) be an A-metric space. Then, for all x, y ∈ X
we have

A(x, x, x, · · · , x, z) ≤ (n− 1)A(x, x, x, · · · , x, y) +A(z, z, z, · · · , z, y)
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and

A(x, x, x, · · · , x, z) ≤ (n− 1)A(x, x, x, · · · , x, y) +A(y, y, y, · · · , y, z).

Lemma 2.6. ([1]) Let (X,A) be an A-metric space. Then (X2, DA) is an
A-metric space on X ×X with the metric DA given by

DA((x1, y1), (x2, y2), ..., (xn, yn)) = A(x1, x2, x3, ..., xn) +A(y1, y2, y3, ..., yn)

for all xi, xj ∈ X, i, j = 1, ..., n.

Theorem 2.7. Let X1, X2 be two A-metric spaces with A-metrics ρ1 and ρ2

respectively. Then (X, ρ) is also an A-metric space, where X = X1 ×X2 and

ρ((x1, y1), (x2, y2), ..., (xn, yn)) = max {ρ1(x1, x2, ..., xn), ρ2(y1, y2, ..., yn)} .

Proof. Obviously the conditions of nonnegativity and symmetry are satisfied.
To prove the third condition, let (x1, y1), (x2, y2), ..., (xn, yn), (a1, a2) ∈ X =
X1 ×X2. Then we have

ρ((x1, y1), ..., (xn−1, yn−1), (xn, yn))

= max {ρ1(x1, ..., xn), ρ2(y1, ..., yn)}
≤ max {ρ1(x1, .., a1) + ...+ ρ1(xn, .., a1), ρ2(y1, .., a2) + ...+ ρ2(yn, .., a2)}
≤ max {ρ1(x1, ..., a1), ρ2(y1, ..., a2)}+ ...+max {ρ1(xn, ..., a1), ρ2(yn, ..., a2)}
≤ ρ((x1, y1), ..., (a1, a2)) + ρ((x2, y2), ..., (a1, a2)

+ ...+ ρ((xn, yn), ..., (a1, a2)).

Hence (X, ρ) is an A-metric space. �

The following useful properties of an A-metric are easily derived from the
axioms.

Proposition 2.8. Let (X,A) be an A-metric space. Then for any x1, x2, ..., xn, a ∈
X, we have

(1) A(x1, x2, ..., xn) ≤
∑n

j=2A(x1, x1, ..., x1, xj),

(2) A(x1, x2, ..., x2) ≤ (n− 1)A(x1, x1, ..., x1, x2),
(3) A(x1, x2, ..., xn) ≤

∑n
j=1A(a, a, ..., a, xj).

Proof. Let x1, x2, ..., xn, a ∈ X. Then
(1)

A(x1, x2, ..., xn) ≤
n∑

j=1

A(xj , xj , ..., xj , a)
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by taking a = x1, we obtain

A(x1, x2, ..., xn) ≤
n∑

j=2

A(xj , xj , ..., xj , x1)

and by using lemma 2.5, we have

A(x1, x2, ..., xn) ≤
n∑

j=2

A(x1, x1, ..., x1, xj)

also for almost i = 1, 2, ..., n, we obtain

A(x1, x2, ..., xn) ≤
n∑

j=1,j 6=i

A(xi, xi, ..., xi, xj).

(2) Using the previous property and by taking xj = x2,∀j = 3, ..., n, we obtain

A(x1, x2, ..., x2) ≤ (n− 1)A(x1, x1, ..., x1, x2).

(3) It’s obvious. By using the condition (A3) and Lemma 2.5, we obtain the
result. �

Next the following lemma is needed to show the continuity of the A-metric
function in one variable and in all its variables.

Lemma 2.9. In an A-metric space X,

(i)

|A(x1, x2, ..., xn−1, a)−A(x1, x2, ..., xn−1, b)|

≤
n−1∑
j=1

[A(a, a, ..., a, xj) +A(b, b, ..., b, xj)]

for all x1, ..., xn−1, a, b ∈ X,
(ii)

|A(x1, x2, ..., xn−1, a)−A(y1, y2, ..., yn−1, a|

≤
n−1∑
j=1

[A(a, a, ..., a, xj) +A(a, a, ..., a, yj)] ,

for all x1, ...., xn−1, y1, ..., yn−1, a ∈ X and
(iii)

|A(x1, x2, ..., xn−1, xn)−A(y1, y2, ..., yn−1, yn)|

≤
n∑

j=1

[A(xj , xj , ..., xj , y1) +A(yj , yj , ..., yj , x1)] ,

for all x1, ..., xn−1, xn, y1, ..., yn−1, yn ∈ X.
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Proof. To prove this Lemma we use the Proposition 2.8.
(i) Let x1, ..., xn−1, a, b ∈ X. Then by Proposition 2.8 (3) we have

|A(x1, x2, ..., xn−1, a)−A(x1, x2, ..., xn−1, b)|
≤ A(x1, x2, ..., xn−1, a) +A(x1, x2, ..., xn−1, b)

=

n−1∑
j=1

[A(a, a, ..., a, xj) +A(b, b, ..., b, xj)] .

(ii) Let x1, ..., xn−1, y1, y2, ..., yn−1, a ∈ X. Then by using Proposition 2.8 (3)
we obtain

|A(x1, x2, ..., xn−1, a)−A(y1, y2, ..., yn−1, a)|
≤ A(x1, x2, ..., xn−1, a) +A(y1, y2, ..., yn−1, a)

≤
n−1∑
j=1

[A(a, a, ..., a, xj) +A(a, a, ..., a, yj)] .

(iii) Let x1, ..., xn−1, xn, y1, y2, ..., yn−1, yn, a, b ∈ X. Then by condition (A3)
we have

|A(x1, x2, ..., xn−1, xn)−A(y1, y2, ..., yn−1, yn)|
≤ A(x1, x2, ..., xn−1, xn) +A(y1, y2, ..., yn−1, yn)

≤
n∑

j=1

[A(xj , xj , ..., xj , a) +A(yj , yj , ..., yj , b)]

Take a = y1, b = x1, then we obtain the result. �

3. The A-metric topology

Definition 3.1. Given a point x0 in an A-metric space (X,A) and a positive
real number r, the set

B(x0, r) = {y ∈ X : A(y, y, ..., y, x0) < r}
is called an open ball centered at x0 with radius r.
The set

B(x0, r) = {y ∈ X : A(y, y, ..., y, x0) ≤ r}
is called a closed ball centered at x0 with radius r.

Let X be an A-metric space with A-metric A. Then the diameter δ(X) of
X is defined by

δ(X) = sup {A(x, x, x, ..., x, y) : x, y ∈ X} .



Some topological results and a fixed point theorem in A-metric spaces 413

Definition 3.2. The A-metric space (X,A) is said to be bounded if there ex-
ists a constant r > 0 such that A(x, x, ..., x, y) ≤ r for all x, y ∈ X. Otherwise,
X is unbounded.

Theorem 3.3. Let (X1, ρ1) and (X2, ρ2) be two bounded A-metric spaces with
bounds M1 and M2, respectively. Then the A-metric space (X, ρ) is bounded
with bound M = max {M1,M2} , where X = X1 ×X2 and ρ is defined as in
Theorem 2.7.

Proof. Since (X1, ρ1) and (X2, ρ2) are bounded, we have

ρ1(x1, x1, ..., x1, x2) ≤M1 for all x1, x2 ∈ X1,

ρ2(y1, y1, ..., y1, y2) ≤M2 for all y1, y2 ∈ X2.

By definition of ρ, we obtain

ρ((x1, y1), ..., (x1, y1), (x2, y2)) = max {ρ1(x1, ..., x1, x2), ρ2(y1, ..., y1, y2)}

≤ max {M1,M2} = M

for all (x1, y1), (x2, y2) ∈ X = X1 ×X2. This completes the proof. �

Definition 3.4. Let (X,A) be an A-metric space. A subset Ω of X is said to
be an open set if for each x ∈ Ω there exists an r > 0 such that B(x, r) ⊂ Ω.

Remark 3.5. The open sets so described are those of a topology on X called
A-metric topology.

Theorem 3.6. The open sets of an A-metric space X are exactly the union
of open balls.

Proof. First, each open ball is an open set in X ([1]). Then, any union of open
balls is open and, if Ω is an open set, for all x ∈ Ω, there exists an rx > 0 such
that B(x, rx) ⊂ Ω from where Ω ⊂

⋃
x∈ΩB(x, rx) ⊂ Ω and we obtain equality

Ω =
⋃

x∈ΩB(x, rx). �

Theorem 3.7. The A-metric function A(x1, x2, ...., xn) is continuous in all
its variables.

Proof. Let ε > 0 be given and let x0
1, ..., x

0
n−1, x

0
n ∈ X. Then for x1, x2, ..., xn ∈

X such that

xj ∈
n⋂

i=1

B(x0
i ,

ε

2n
)
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for j = 1, 2, ..., n and using lemma 2.9 (iii), we obtain

|A(x1, x2, ..., xn−1, xn)−A(x0
1, x

0
2, ..., x

0
n−1, x

0
n)|

≤
n∑

j=1

[
A(xj , ..., xj , x

0
1) +A(x0

j , x
0
j , ..., x

0
j , x1)

]
<

n∑
j=1

(
ε

2n
+

ε

2n
) = ε.

This completes the proof. �

We denote also another important problem that is the A-metrizability of
the topological space which is satisfied under a condition given in the following
theorem.

Theorem 3.8. If the topological space X is metrizable then it is A-metrizable.

Proof. Suppose that X is a metrizable space and denote the ordinary metric
on X by d, where d induces the topology of X. Using an A-metric A1 on X
defined as in example 2.3. This A-metric generate the same topology on that
of X. We deduce that X is A-metrizable. �

Theorem 3.9. (Kolmogorov space) An A-metric space X is a T0-space.

Proof. Let x0, y0 ∈ X be such that x0 6= y0. Suppose that A(y0, y0, ..., y0, x0) =
r > 0, then y0 /∈ B(x0, r), where B(x0, r) is an open ball in X defined by

B(x0, r) = {y ∈ X : A(y, y, ..., y, x0) < r} .

Hence X is a T0-space. �

Theorem 3.10. (Frechet space) An A-metric space X is T1-space.

Proof. Let x0, y0 ∈ X be such that x0 6= y0. Suppose that

A(y0, y0, ..., y0, x0) = A(x0, x0, ..., x0, y0) = r1 > 0.

Then y0 /∈ B(x0, r1), where B(x0, r1) = {y ∈ X : A(y, y, ..., y, x0) < r1}. Simi-
larly, x0 /∈ B(y0, r1), where B(y0, r1) = {x ∈ X : A(x, x, ..., x, y0) < r1}. Since
B(x0, r1) and B(y0, r1) are two open balls in X containing x0 and y0, respec-
tively, we deduce that X is T1-space. �

Theorem 3.11. (Haussdorff space) An A-metric space X is T2-space.
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Proof. Let x0, y0 ∈ X such that x0 6= y0. Consider two sets B∗1 and B∗2 as
follows :

B∗1 = {x ∈ X : A(x, x, ..., x, x0) < A(x, x, ..., x, y0)}
and

B∗2 = {x ∈ X : A(x, x, ..., x, y0) < A(x, x, ..., x, x0)}
It is clear that B∗1 and B∗2 contains x0 and y0, respectively. To prove that
B∗1 ∩B∗2 = ∅, suppose there exists z ∈ B∗1 ∩B∗2 , then

A(z, z, ..., z, x0) < A(z, z, ..., z, y0)

and

A(z, z, ..., z, y0) < A(z, z, ..., z, x0)

which is absurd, because there are two contradictory statements. Then B∗1 ∩
B∗2 = ∅. It remains to prove that B∗1 and B∗2 are open sets. For this, let
x ∈ B∗1 . Then we have

A(x, x, ..., x, x0) < A(x, x, ..., x, y0)

and set s =
A(x, x, ..., x, y0)−A(x, x, ..., x, x0)

2(n− 1)
> 0. It is clear that B(x, s) ⊂

B∗1 , because for z ∈ B(x, s), we have

A(z, z, ..., z, x) <
A(x, x, ..., x, y0)−A(x, x, ..., x, x0)

2(n− 1)
(3.1)

therefore 2(n − 1)A(z, z, ..., z, x) < A(x, x, ..., x, y0) − A(x, x, ..., x, x0), which
implies that

(n−1)A(z, ..., z, x)+A(x, ..., x, x0) < A(x, ..., x, y0)−(n−1)A(z, ..., z, x) (3.2)

Now from (3.2), Lemma 2.4 and condition (A3), we obtain

A(z, ..., z, x0) ≤ (n− 1)A(z, ..., z, x) +A(x0, ..., x0, x)

< A(x, ..., x, y0)− (n− 1)A(z, ..., z, x)

≤ (n− 1)A(x, ..., x, z) +A(z, ..., z, y0)− (n− 1)A(z, ..., z, x)

= A(z, ..., z, y0).

So

A(z, ..., z, x0) < A(z, ..., z, y0),

which is the desired result. This proves that B∗1 is an open set contains x0.
Similarly, we can show that B∗2 is also an open set contains y0. Hence, any
A-metric space is T2-space. �
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3.1. Completeness of A-metric spaces.

Definition 3.12. Let (X,A) be an A-metric space. A sequence {xk} in X is
said to converge to a point x ∈ X, if A(xk, xk, ..., xk, x) −→ 0 as k −→ +∞.
That is, for each ε > 0, there exists n0 ∈ N such that for all k ≥ n0 we have
A(xk, xk, ..., xk, x) ≤ ε and we write limk→+∞ xk = x.

Lemma 3.13. ([1]) Let (X,A) be an A-metric space. If the sequence {xk} in
X converges to a point x, then x is unique.

Definition 3.14. Let (X,A) be an A-metric space. A sequence {xk} in X is
called a Cauchy sequence if A(xk, xk, ..., xk, xm) −→ 0 as k,m −→ +∞. That
is, for each ε > 0, there exists n0 ∈ N such that for all k,m ≥ n0 we have
A(xk, xk, ..., xk, xm) ≤ ε.

Lemma 3.15. ([1]) Every convergent sequence in A-metric space is a Cauchy
sequence. The converse does not hold in general.

Definition 3.16. The A-metric space (X,A) is said to be complete if every
Cauchy sequence in X is convergent.

Lemma 3.17. ([1]) Let (X,A) be an A-metric space. Then the function
A(x, x, ..., x, y) is continuous if there exist {xk} and {yk}such that limk→∞ xk =
x and limk→∞ yk = y then limk→∞A(xk, xk, ..., xk, yk) = A(x, x, ..., x, y).

The following lemma shows that every metric space is an A-metric space.

Lemma 3.18. Let (X, d) be a metric space. Then we have

(1) Ad(x1, x2, ..., xn) =
∑n−1

i=1 d(xi, xn) for all x1, ..., xn ∈ X is an A-
metric on X.

(2) xn −→ x in (X, d) if and only if xn −→ x in (X,Ad).

(3) {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Ad).

(4) (X, d) is complete if and only if (X,Ad) is complete.

Proof. (1) Obviously, the first and the second conditions are satisfied. For the
third condition we have:
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Ad(x1, x2, ..., xn) =
n−1∑
i=1

d(xi, xn)

≤
n−1∑
i=1

[d(xi, a) + d(a, xn)]

=

n−1∑
i=1

d(xi, a) +

n−1∑
i=1

d(a, xn)

≤
n−1∑
i=1

[d(xi, a) + ...+ d(xi, a)] +

n−1∑
i=1

d(a, xn)

=

n−1∑
i=1

Ad(xi, xi, ..., xi, a) +Ad(xn, xn, ..., xn, a)

=

n∑
i=1

Ad(xi, xi, ..., xi, a).

(2) We have

xn −→ x in (X, d) ⇐⇒ d(xn, x) −→ 0

⇐⇒ d(xn, x) + ...+ d(xn, x) −→ 0 in (X, d)

⇐⇒ Ad(xn, .., xn, x) −→ 0

where Ad(xn, xn, ..., xn, x) = (n− 1)d(xn, x), that is xn −→ x in (X,Ad).
(3) We have

{xn} is Cauchy sequence in (X, d) ⇐⇒ d(xn, xm) −→ 0 as n,m −→ +∞
⇐⇒ Ad(xn, .., xm) = (n− 1)d(xn, xm)

→ 0

as n,m −→ +∞, that is {xn} is Cauchy in (X,Ad).
(4) It is a consequence of (2) and (3). �

The following example proves that the inverse implication of the precedent
lemma does not hold.

Example 3.19. Let X = R and

A(x1, x2, ..., xn) =

n∑
i=1

n∑
i<j

|xi − xj |
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for all x1, x2, ..., xn ∈ X. A is an A-metric (see[1], p7). Suppose that there

exists a metric d with A(x1, x2, ..., xn) =
∑n−1

i=1 d(xi, xn) for all x1, ..., xn ∈ X.
Then A(xi, xi, ..., xi, xn) = d(xi, xn) + d(xi, xn) + ...+ d(xi, xn) and so

d(xi, xn) =
1

n− 1
A(xi, xi, ..., xi, xn).

We have also
n−1∑
i=1

d(xi, xn) =
1

n− 1

n−1∑
i=1

A(xi, xi, ..., xi, xn)

=
1

n− 1
A(x1, ..., x1, xn) + ...+

1

n− 1
A(xn−1, ..., xn−1, xn)

=
1

n− 1
|x1 − xn|+

1

n− 1
|x2 − xn + ...+

1

n− 1
|xn−1 − xn|

Clearly, A(x1, x2, ..., xn) 6=
∑n

i=1 d(xi, xn), and this is a contradiction.

Next we show that the A-metric space is normal. Let C be a closed subset
of an A-metric space X. We define a function A(x, x, x, ..., x, C) by

A(x, x, ..., x, C) = inf {A(x, x, ..., x, c) : c ∈ C} .
Then it is clear that

A(x, x, ..., x, C) = 0⇐⇒ x ∈ C.

We need the following lemma in the sequel.

Lemma 3.20. x 7−→ A(x, x, ..., x, C) is a continuous function in an A-metric
space X.

Proof. Let c ∈ C. Then by the condition (A3), Lemma 2.4 and Lemma 2.5 we
have

A(x, x, ..., x, c) ≤ (n− 1)A(x, x, ..., x, y) +A(y, y, ..., y, c) (3.3)

and
A(y, y, ..., y, c) ≤ (n− 1)A(y, y, ..., y, x) +A(x, x, ..., x, c). (3.4)

It follows from (3.3) and (3.4) that

A(x, x, ..., x, C)−A(y, y, ..., y, C) ≤ (n− 1)A(x, x, ..., x, y)

and
A(y, y, ..., y, C)−A(x, x, ..., x, C) ≤ (n− 1)A(y, y, ..., y, x).

And then we obtain

|A(x, x, ..., C)−A(y, y, ..., y, C)| ≤ (n− 1)A(x, x, ..., x, y).

Therefore, if {xi} is a sequence such that xi −→ y and

|A(xi, xi, ..., xi, C)−A(y, y, ..., y, C)| ≤ (n− 1)A(xi, xi, ..., xi, y),



Some topological results and a fixed point theorem in A-metric spaces 419

then we obtain A(xi, xi, ..., xi, C) −→ A(y, y, ..., y, C). This shows that x −→
A(x, x, ..., x, C) is a continuous function on X. �

Theorem 3.21. Let C and B be two closed subsets of an A-metric space X
such that C∩B = ∅. Then there exists a continuous real function f : X −→ R
such that f(x) = 0 for x ∈ C and f(x) = 1 for x ∈ B.

Proof. Define a function f : X −→ R by

f(x) =
A(x, x, ..., x, C)

A(x, x, ..., x, C) +A(x, x, ..., x, B)
.

Since the function x 7−→ A(x, x, ..., x, C) is continuous and denominator is
continuous and positive, the function f is continuous on X and satisfied f(x) =
0 for x ∈ C and f(x) = 1 for x ∈ B. �

Theorem 3.22. An A-metric space X is normal.

Proof. Let A and B be two closed and disjoint subsets of X. Using the The-
orem 3.21, there exists a continuous real function f : X −→ R such that
f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ B. Define the open sets U and V in
X by

U =

{
x ∈ X/f(x) <

3

4

}
and

V =

{
x ∈ X/f(x) >

3

4

}
It is clear that, A ⊂ U and B ⊂ V and U ∩ V = ∅. Hence, X is normal. �

Theorem 3.23. If a Cauchy sequence in an A-metric space contains a con-
vergent subsequence, then the sequence is convergent.

Proof. Let {xn} be a Cauchy sequence in an A-metric space X. Then, for each
ε > 0, there exists n0 ∈ N such that for all k,m ≥ n0 we have

A(xk, xk, ..., xk, xm) <
ε

2(n− 1)
.

Since the subsequence
{
xϕ(n)

}
of {xn} converging to a point x ∈ X, and also,

at the same ε > 0 is associated r0 such that

∀r ≥ r0, A(xϕ(r), xϕ(r), ..., xϕ(r), x) <
ε

2
.

As ϕ is strictly increasing, there exist r1 ≥ r0 such that ϕ(r1) ≥ n0, then for
all k ≥ n0,

A(xk, xk, ..., xk, x) ≤ (n− 1)A(xk, xk, ..., xk, xϕ(r1))

+A(xϕ(r1), xϕ(r1), ..., xϕ(r1), x)
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≤ (n− 1)ε

2(n− 1)
+
ε

2
= ε.

Finaly, for all ε > 0 there exist n0 ∈ N such that for all k ≥ n0 we have
A(xk, xk, ..., xk, x) < ε. �

Theorem 3.24. Let X1, X2 be two A-metric spaces with A-metrics ρ1 and ρ2,
respectively. Define A on X1 ×X2 by

A((x1, y1), (x2, y2), ..., (xn, yn)) = max {ρ1(x1, x2, ..., xn), ρ2(y1, y2, ..., yn)}

for (x1, y1), (x2, y2), ...., (xn, yn) ∈ X1 × X2. Then (X,A) is complete if and
only if (X1, ρ1) and (X2, ρ2) are complete.

Proof. From the definition of completeness, we can prove this theorem. �

Definition 3.25. A sequence {Fn} of closed sets in an A-metric space X is
said to be nested if

F1 ⊃ F2 ⊃ ... ⊃ Fn ⊃ ....

Theorem 3.26. (Intersection theorem) Let X be an A-metric space and let
{Fn} be a nested sequence of nonempty subsets of X such that δ(Fn) −→ 0 as
n −→∞. If X is complete, then

⋂∞
i=1 Fn is a singleton.

Proof. Let X be complete. For each n ∈ N , there exists xn ∈ Fn which is
nonempty. Then, for all m ≥ n we have xm ∈ Fm ⊂ Fn. So, for all m ≥ n
and k ≥ n we get A(xm, xm, ..., xm, xk) ≤ δ(Fn) such that δ(Fn) −→ 0 as
n→∞ that is to say, for all ε > 0 there exist n0 ∈ N such that for all n ≥ n0

we have δ(Fn) ≤ ε, a fortiori, we will have for all m ≥ n0 and k ≥ n0 we
get A(xm, xm, ..., xm, xk) ≤ ε. Then {xn} is a Cauchy sequence in a complete
space X and then {xn} converges. Let x be the limit of {xn}. As for all m ≥ n
we have xm ∈ Fn and then x ∈ Fn = Fn (Fn closed), from where x ∈ ∩n∈NFn,
which is nonempty. Finally, if y ∈ ∩n∈NFn we get

A(x, x, ..., x, y) ≤ δ(Fn)

for all n ∈ N , so if n tends to infinity, we obtain

A(x, x, ..., x, y) ≤ 0.

It follows from A(x, x, ..., x, y) = 0 that x = y. Therefore the intersection is a
singleton. �
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3.2. Compactness in A-metric spaces.

Definition 3.27. Let (X,A) be an A-metric space, and let ε > 0 be given.
Then a set Ω ⊆ X is called an ε-net of (X,A) if given any x in X there is at
least one point a in Ω such that x ∈ B(a, ε). If the set Ω is finite then Ω is
called a finite ε-net of (X,A). Note that if Ω is an ε-net then Ω =

⋃
a∈AB(a, ε).

Definition 3.28. An A-metric space (X,A) is called A-totally bounded if for
every ε > 0 there exists a finite ε-net.

Definition 3.29. An A-metric space (X,A) is said to be a compact A-metric
space if it is A-complete and A-totally bounded.

Theorem 3.30. Every sequentially compact A-metric space X is A-totally
bounded.

Proof. If X is not A-totally bounded, there exists ε > 0 such that X has no
ε-net. Let x0 ∈ X. Then there must exists a point x1 ∈ X, distinct from x0,
such that A(x1, x1, ..., x1, x0) ≥ ε, for otherwise, {x0} would be an ε− net for
X. In the same way, there exists a point x2 ∈ X, distinct from x0 and x1 such
that A(x2, x2, ..., x2, x1) ≥ ε, for otherwise {x0, x1} would be an ε-net for X.
Continuing this process, we obtain a sequence {x0, x1, ...} with the property
A(xj , xj , ..., xj , xi) ≥ ε, i 6= j. Then {xn} cannot contain any convergent
sequence. Hence X is not sequentially compact. �

Below we give a theorem in an A-metric space without proof, since its proof
is similar to ordinary metric space case with appropriate modifications.

Theorem 3.31. For an A-metric space (X,A), the following are equivalent:

(1) X is compact,
(2) X is countably compact,
(3) X has Bolzano-Weierstrass property,
(4) X is sequentially compact.

Before stating our main result, we recall the following definitions which will
be useful later.

Definition 3.32. ([8]) A pair of maps f and g is called weakly compatible if
they commute at coincidence points.

Example 3.33. Let (X = [0, 1] , d) be a metric space with d(x, y) = |x − y|.
Define f, g : [0, 1]→ [0, 1] by

f(x) = x, g(x) = 1− x if x ∈
[
0,

1

2

]
,
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and

f(x) = g(x) =
1

2
if x ∈

[
1

2
, 1

]
.

Then, for any x ∈
[

1
2 , 1
]
, fg(x) = gf(x), therefore f, g are weakly compatible

maps on [0, 1].

Example 3.34. Let X = R. Define f, g : R → R by f(x) = x2 − 1, x ∈ R
and g(x) = x − 1, x ∈ R. 0 a nd 1 are two coincidence points for the maps
f, g. We have fg(1) = gf(1) = −1, but fg(0) = 0 and gf(0) = −2. Hence f
and g are not weakly compatible maps on R.

Now,we present the concept of weaklyA-contractive for mapping f : X → X
as follows:

Definition 3.35. Let (X,A) be an A-metric space. A mapping f : X → X is
said to be weakly A-contractive type if for all xi ∈ X, i = 1, ..., n, the following
inequality holds :

A(fx1, fx2, ..., fxn) ≤ 1

2n
A(x1, ..., x1, fx2) +

1

2n
A(x2, ..., x2, fx3)

+ ...+
1

2n
A(xn−1, ..., xn−1, fxn) +

1

2n
A(xn, ..., xn, fx1)

− φ (A(x1, ..., fx2), ..., A(xn−1, ..., fxn), A(xn, ..., fx1)) ,

where φ : [0,+∞)n → [0,+∞) is a continuous function with φ(α1, α2, ..., αn) =
0 if and only if αi = 0 for all i = 1, ..., n.

The following definition of the altering distance function was introduced in
([9]).

Definition 3.36. The function ψ : [0,+∞) → [0,+∞) is called an altering
distance function if the following properties are satisfied :

(1) ψ is continuous and increasing;
(2) ψ(t) = 0 if and only if t = 0.

4. Main Results

Let (X,A) be an A-metric space and f, g : X −→ X be two mappings.
We say that f is a generalized weakly contraction mapping (g.w.c.m.) with
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respect to g if for all x, y ∈ X, the following inequality holds:

ψ (A(fx, ..., fx, fy))

≤ ψ
(

1

2n
[(n− 2)A(gx, ..., fx) +A(gx, ..., fy) +A(gy, ..., fx)]

)
− φ (A(gx, ..., fx), ..., A(gx, ..., fx), A(gx, ..., fy), A(gy, ..., fx)) ,

(4.1)

where

(1) ψ is an altering distance function;
(2) φ : [0,+∞)n −→ [0,+∞) is a continuous function with φ(x1, x2, ..., xn)

= 0 if and only if xi = 0, for all i = 1, ..., n.

Theorem 4.1. Let (X,A) be an A-metric space and f, g : X −→ X be two
mappings such that f is a g.w.c.m. with respect to g. Assume that

(i) f(X) ⊂ g(X),
(ii) g(X) is a complete subset of (X,A),

(iii) f and g are weakly compatible maps.

Then f and g have a unique common fixed point.

Proof. By using the assumption (i), we can construct a sequence {xm} in X
such that gxm+1 = fxm, for any m ∈ N . If for some m, gxm+1 = gxm, we
obtain gxm = fxm and then f and g have a common fixed point. Assume
that gxm+1 6= gxm for any m ∈ N . For m ∈ N and by (4.1) and (A3), we get

ψ (A(gxm, ..., gxm, gxm+1))

= ψ (A(fxm−1, ..., fxm−1, fxm))

≤ ψ
(

1

2n
[(n−2)A(gxm−1, ..., gxm)+A(gxm−1, ..., gxm+1)+A(gxm, ..., gxm)]

)
− φ (A(gxm−1, ..., gxm), .., A(gxm−1, .., gxm+1), A(gxm, ..., gxm))

≤ ψ
(

1

2n
[(2n− 3)A(gxm−1, ..., gxm−1, gxm) +A(gxm+1, ..., gxm+1, gxm)]

)
.

Since ψ is increasing, by (4.2) and Lemma 2.5 we obtain

A(gxm, ..., gxm+1)

≤ 1

2n
[(n− 2)A(gxm−1, ..., gxm) +A(gxm−1, ..., gxm+1)]

≤ 1

2n
[(2n− 3)A(gxm−1, ..., gxm) +A(gxm, ..., gxm+1)] .

(4.2)



424 Z. I. AL-Muhiameed, G. Benhamida and M. Bousselsal

Then we have

(1− 1

2n
)A(gxm, ..., gxm, gxm+1) ≤ 2n− 3

2n
A(gxm−1, ..., gxm−1, gxm)

≤ 2n− 1

2n
A(gxm−1, ..., gxm−1, gxm),

it implies that

A(gxm, ..., gxm, gxm+1) ≤ A(gxm−1, ..., gxm−1, gxm)

for any n ≥ 1. Therefore {A(gxm, ..., gxm, gxm+1), n ∈ N} is a non-increasing
sequence. Hence there exists % ≥ 0 such that

lim
m→∞

A(gxm, ..., gxm, gxm+1) = %. (4.3)

Letting m→ +∞ in (4.2), we obtain

lim
m→∞

A(gxm−1, ..., gxm−1, gxm+1) = n%. (4.4)

We also have from (4.2)

ψ (A(gxm, ..., gxm+1))

≤ ψ
(

1

2n
[(n− 2)A(gxm−1, ..., gxm) +A(gxm−1, ..., gxm+1)]

)
− φ (A(gxm−1, ..., gxm), ..., A(gxm−1, ..., gxm), A(gxm−1, ..., gxm+1), 0) .

Letting m→ +∞ and using (4.3), (4.4) and the continuity of ψ and φ, we get

ψ(%) ≤ ψ(%)− φ(%, ..., %, n%, 0),

hence φ(%, %, ..., %, n%, 0) = 0. By a property of φ, we deduce that % = 0, that
is

lim
m→∞

A(gxm, ..., gxm, gxm+1) = 0. (4.5)

To prove that {gxm} is a Cauchy sequence, we proceed as follows : Suppose
{gxm} is not a Cauchy sequence, then there exists ε > 0 such that, for all
i ∈ N , there exists two subsequences

{
gxp(i)

}
and

{
gxq(i)

}
of {gxm} such

that q(i) is the smallest index for which q(i) > p(i) > i,

A(gxp(i), ..., gxp(i), gxq(i)) ≥ ε. (4.6)

Therefore we have

A(gxp(i), ..., gxp(i), gxq(i)−1) < ε. (4.7)
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Using (4.6), (4.7) and the condition (A3), we have

ε ≤ A(gxp(i), ..., gxp(i), gxq(i))

≤ (n− 1)A(gxp(i), ..., gxp(i), gxp(i)−1) +A(gxq(i), ..., gxq(i), gxp(i)−1)

≤ (n− 1)A(gxp(i), ..., gxp(i), gxp(i)−1) + (n− 1)A(gxq(i), ..., gxq(i), gxq(i)−1)

+A(gxp(i)−1, ..., gxp(i)−1, gxq(i)−1)

≤ (n− 1)A(gxp(i), ..., gxp(i), gxp(i)−1) + (n− 1)A(gxq(i), ..., gxq(i), gxq(i)−1)

+ (n− 1)A(gxp(i)−1, ..., gxp(i)−1, gxp(i)) +A(gxq(i)−1, ..., gxq(i)−1, gxp(i))

< (n− 1)A(gxp(i), ..., gxp(i), gxp(i)−1) + (n− 1)A(gxq(i), ..., gxq(i), gxq(i)−1)

+ (n− 1)A(gxp(i)−1, ..., gxp(i)−1, gxp(i)) + ε.

Letting i→ +∞ in the precedent inequalities and using (4.5), we obtain

lim
i→+∞

A(gxp(i), ..., gxp(i), gxq(i))

= lim
i→+∞

A(gxq(i), ..., gxq(i), gxp(i)−1)

= lim
i→+∞

A(gxp(i)−1, ..., gxp(i)−1, gxq(i)−1)

= ε.

(4.8)

Now, by (4.1) we have

ψ
(
A(gxq(i), ..., gxq(i), gxp(i))

)
= ψ

(
A(fxq(i)−1, ..., fxq(i)−1, fxp(i)−1)

)
≤ ψ

(
n− 2

2n
A(gxq(i)−1, ..., fxq(i)−1) +

1

2n
A(gxq(i)−1, ..., fxp(i)−1)

+
1

2n
A(gxp(i)−1, ..., fxq(i)−1)

)
− φ

(
A(gxq(i)−1, ..., fxq(i)−1), ...,

A(gxq(i)−1, ..., fxp(i)−1), A(gxp(i)−1, ..., fxq(i)−1)
)

= ψ

(
1

2n

[
(n− 2)A(gxq(i)−1, .., gxq(i)) +A(gxq(i)−1, .., gxp(i))

+A(gxp(i)−1, .., gxq(i))
])
− φ

(
A(gxq(i)−1, ..., gxq(i)), ...,

A(gxq(i)−1, ..., gxp(i)), A(gxp(i)−1, ..., gxq(i))
)

≤ ψ
(

1

2n

[
(n− 2)A(gxq(i)−1, .., gxq(i)) +A(gxq(i)−1, .., gxp(i))

+A(gxp(i)−1, .., gxq(i))
])

.

(4.9)
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Since ψ is increasing and by (A3), we obtain

A(gxq(i), ..., gxq(i), gxp(i)) ≤
n− 2

2n
A(gxq(i)−1, ..., gxq(i)−1, gxq(i))

+
1

2n
A(gxq(i)−1, ..., gxq(i)−1, gxp(i))

+
1

2n
A(gxp(i)−1, ..., gxp(i)−1, gxq(i))

≤ n− 2

2n
A(gxq(i)−1, ..., gxq(i)−1, gxq(i))

+
n− 1

2n
A(gxq(i)−1, ..., gxq(i)−1, gxp(i)−1)

+
1

2n
A(gxp(i), ..., gxp(i), gxp(i)−1)

+
n− 1

2n
A(gxp(i)−1, ..., gxp(i)−1, gxq(i)−1)

+
1

2n
A(gxq(i)−1, ..., gxq(i)−1, gxq(i)).

Letting i→∞ in the precedent inequalities and using (4.5) and (4.8), we get

ε ≤ 1

2n

[
lim

i→+∞
A(gxq(i)−1, ..., gxq(i)−1, gxp(i)) + ε

]
≤ 1

2n
[2(n− 1)ε] .

It implies that

lim
i→+∞

A(gxq(i)−1, ..., gxq(i)−1, gxp(i)) = 2nε− ε. (4.10)

Letting i → +∞ in (4.9) and by (4.5), (4.8), (4.10) and the continuity of ψ
and φ, we get

ψ(ε) ≤ ψ
(

1

2n
[2nε− ε+ ε]

)
− φ (0, ..., 0, 2nε− ε, ε) .

Therefore ε = 0, this is a contradiction. We deduce that {gxm} is a Cauchy
sequence in g(X), which is a complete subset of (X,A). So we obtain the
existence of t, u ∈ X such that {gxm} converges to t = gu and then

lim
m→+∞

A(gxm, ..., gxm, gu) = 0. (4.11)

By using Lemma 3.17 we have

lim
m→+∞

A(gxm, ..., gxm, fu) = A(gu, ..., gu, fu). (4.12)
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Now, we show that fu = t. By (4.1), we get

ψ (A(gxm+1, ..., fu))

= ψ (A(fxm, ..., fu))

≤ ψ
(
n− 2

2n
A(gxm, ..., fxm) +

1

2n
A(gxm, ..., fu) +

1

2n
A(gu, ..., fxm)

)
− φ (A(gxm, ..., fxm), ..., A(gxm, ..., fu), A(gu, ..., fxm))

= ψ

(
n− 2

2n
A(gxm, ..., gxm+1) +

1

2n
A(gxm, ..., fu) +

1

2n
A(gu, ..., fxm+1)

)
− φ (A(gxm, ..., gxm+1), ..., A(gxm, ..., fu), A(gu, ..., gxm+1)) .

Letting m → +∞ and using (4.5), (4.11), (4.12) and the continuity of ψ and
φ and the fact that ψ is increasing, we get

ψ (A(gu, ..., gu, fu))

≤ ψ
(

1

2n
[A(gu, ..., gu, fu)]

)
− φ (0, ..., 0, A(gu, ..., gu, fu), 0) .

(4.13)

Then, A(gu, ..., gu, fu) = 0 and hence fu = gu = t. Therefore, u is a coin-
cidence point of f and g. And since the pair {f, g} is weakly compatible, we
have ft = gt.

Now, to prove that t is a common fixed point of f and g, we have by (4.1)

ψ (A(gt, .., gt, gxm+1))

= ψ (A(ft, .., ft, fxm))

≤ ψ
(

1

2n
[(n− 2)A(gt, .., gt, ft) +A(gt, .., gt, fxm) +A(gxm, .., gxm, ft)]

)
− φ (A(gt, .., gt, ft), .., A(gt, ..., gt, fxm), A(gxm, .., gxm, ft))

= ψ

(
1

2n
[(0 +A(gt, .., gt, gxm+1) +A(gxm, .., gxm, gt)]

)
− φ (0, ..., 0, A(gt, .., gt, gxm+1), A(gxm, .., gxm, gt)) .

Letting m → +∞ and by Lemma 2.5 and the fact that ψ is increasing, we
obtain

ψ (A(gt, ..., gt, gu)) ≤ ψ
(

1

2n
[0 +A(gt, ..., gt, gu) +A(gu, ..., gu, gt)]

)
− φ (0, ..., 0, A(gt, ..., gt, gu), A(gu, ..., gu, gt))

< ψ ([A(gt, ..., gu)])− φ (0, ..., 0, A(gt, ..., gu), A(gu, ..., gt)) .

Then φ (0, ..., 0, A(gt, ..., gt, gu), A(gu, ..., gu, gt)) = 0 and with the property of
φ, we obtain A(gt, ..., gt, gu) = 0. Therefore, gt = gu = t. We deduce that
ft = fu = t and then ft = gt = t, so the result follows.
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To prove the uniqueness, suppose that w is another common fixed point of
f and g. Using (4.1), we get

ψ (A(t, ..., w)) = ψ (A(ft, ..., fw))

≤ ψ
(

1

2n
[(n− 2)A(ft, ..., ft) +A(ft, ..., fw) +A(fw, ..., ft)]

)
− φ (A(ft, ..., ft), ..., A(ft, ..., ft), A(ft, ..., fw), A(fw, ..., ft))

≤ ψ
(

1

n
A(ft, ..., fw)

)
− φ (0, ..., 0, A(ft, ..., fw), A(fw, ..., ft))

< ψ (A(t, ..., w))− φ (0, ..., 0, A(t, ..., w), A(w, ..., t)) .

Then by the property of φ, we have φ (0, ..., 0, A(t, ..., t, w), A(w, ..., w, t)) = 0.
This implies that A(t, ..., t, w) = 0 and then t = w. �

Corollary 4.2. Let (X,A) be an A-metric space and f, g : X → X be two
mappings. Suppose that g(X) is a complete subspace of (X,A), f(X) ⊂ g(X)
and the pair {f, g} is weakly compatible. By putting

ψ(t) = t, φ(t1, t2, ..., tn) =

(
1

2n
− β

) n∑
i=1

ti,

where β ∈
[
0, 1

2n

)
in the inequality (4.1) and by Theorem 4.1, we conclude that

f and g have a unique common fixed point.

Corollary 4.3. Let (X,A) be an A-metric space and f : X → X be a mapping
such that

ψ (A(fx, fx, ..., fx, fy))

≤ ψ
(

1

2n
[(n− 2)A(x, ..., x, fx) +A(x, ..., x, fy) +A(y, ..., y, fx)]

)
− φ (A(x, ..., x, fx), ..., A(x, ..., x, fx), A(x, ..., x, fy), A(y, ..., y, fx)) ,

where ψ is an altering distance function and φ : [0,+∞)n −→ [0,+∞) is a
continuous function with φ(x1, x2, ..., xn) = 0 if and only if xi = 0, for all
i = 1, ..., n. Then f has a unique fixed point.

Proof. By taking g = IdX , the identity mapping on X in Theorem 4.1, the
result follows immediately. �

Example 4.4. Let X = [0, 3] and the A-metric on X define by :

A(x1, x2, ..., xn) =

n∑
i=1

∑
i<j

|xi − xj |
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for n ≥ 2 and x1, x2, ..., xn ∈ X. By taking ψ(t) = t, φ(t1, t2, ..., tn) =∑n
i=1 ti
k

, k ≥ 2n, fx = 2 and g = IdX , then we obtain

ψ (A(fx, fx, ..., fx, fy)) = ψ (A(2, 2, ..., 2)) = 0

and
ψ
(

1
2n [(n− 2)A(x, ..., x, 2) +A(x, ..., x, 2) +A(y, ..., y, 2)]

)
= ψ

(
1

2n

[
(n− 1)2|x− 2|+ (n− 1)|y − 2|

])
=

(n− 1)2|x− 2|+ (n− 1)|y − 2|
2n

.

On the other hand, we have

φ (A(x, ..., x, 2), ..., A(x, ..., x, 2), A(y, ..., y, 2))
= φ ((n− 1)|x− 2|, ..., (n− 1)|x− 2|, (n− 1)|y − 2|)

=
(n− 1)2|x− 2|+ (n− 1)|y − 2|

k
,

which means that the condition (4.1) is satisfied. Also we have, f (X) =
{2}, g (X) = [0, 3], f (X) ⊂ g (X), g (X) is a complete subset of (X,A) and
the pair {f, g} is weakly compatible. Then f and g have a unique common
fixed point x = 2.

References

[1] M. Abbas, B. Ali and Y. Suleiman, Generalized coupled common fixed point results in
partially ordered A-metric spaces, Fixed Point Theory and Appl., 64 (2015), 1–24.

[2] B.C. Dhage, Generalized metric spaces and topological structure1, An. Stiint. Univ. ’Al.
I. CUZA.’ IASI, Mat., 46 (2000), 3–24.

[3] S. Gahler, 2-Metrische raume and ihre topologische struktur, Math. Nachr., 26 (1963),
115–148.

[4] S. Gahler, Zur geometric 2-metrische raume, Fund. 11 (1966), 665–667.
[5] K.S. Ha, Y.J. Cho and A. White, Strictly convex and 2-convex 2-normed spaces, Math.

Jpn., 33(3) (1988), 375–384.
[6] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear

Convex Anal., 7 (2012), 289–297.
[7] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric

spaces, Int. J. Math. Sci., 2009 Article ID283028, (2009), 10 pages.
[8] G. Jungck and B.E. Rhoades, Fixed point for set valued functions without continuity,

Indian J. Pure Appl. Math., 29(3)(1998), 227–238.
[9] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between

the points, Bull. Aust. Math. Soc., 30 (1984), 1–9.
[10] M.M. Rezaee and S. Sedghi, Tripled fixed point results in partially ordered S-metric

spaces, Nonlinear Funct. Anal. and Appl., 23(2) (2018), 395-405.
[11] S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D?-metric spaces,

Fixed Point Theory Appl., 2007 Article ID 27906 (2007), 1–13.
[12] S. Sedghi, N. Shobe and T. Dosenovic,Fixed point results in S-metric spaces, Nonlinear

Funct. Anal. and Appl., 20(1) (2015), 55-67.



430 Z. I. AL-Muhiameed, G. Benhamida and M. Bousselsal

[13] A.K. Sharma, A note on fixed ponts in 2-metric spaces, Indian J. Pure Appl. Math.,
11(2) (1980), 1580–1583.

[14] D. Singh, V. Joshi and J. K. Kim, Existence of solution to Bessel-type boundary value
problem via G-l cyclic F-contractive mapping with graphical verification, Nonlinear
Funct. Anal. and Appl., 23(2) (2018), 205-224.


