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Abstract. In 2011, Wang and Guo introduced the c-distance in a cone metric spaces and

proved common fixed point results. The purpose of this paper is to extend and generalize

some common fixed point results in literature for c-distance in tvs-cone metric spaces (with

the underlying cone which is not normal) by replacing the constants in contractive conditions

with functions.

1. Introduction

In 2007, Huang and Zhang [10] first introduced the concept of cone metric
spaces which is more general than the concept of metric space. They also es-
tablished the Banach contraction mapping principle in this space. Afterwards,
several authors have studied fixed point theorems in cone metric spaces (see
[1, 2, 4, 8, 9, 11, 16]).
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Du in [8], introduced the concept of tvs-cone metric spaces which is to be
improved and extended form of cone metric spaces in the sense of Huang and
Zhang [10]. Later on, many authors (See [3, 5, 7, 13, 14, 17]) have generalized
and proved fixed point results in tvs-cone metric spaces. However, it should
be noted that an old result shows that if the underlying cone of an ordered tvs
is solid and normal, then such tvs must be an ordered normed space. Thus,
proper generalizations when passing from norm-valued cone metric spaces to
tvs-valued cone metric spaces can be obtained only in the case of non-normal
cones (for more detail see [13]).

Recently, Wang and Guo [20] introduced the concept of c-distance in a cone
metric spaces (also see[6]) and proved common fixed point results in ordered
cone metric spaces, which is cone metric version of w-distance of Kada et
al. [12]. Then in this direction several authors have proved common fixed
point theorems in cone metric spaces as well as in tvs-cone metric spaces (see
[7, 16, 18, 19]).

In this paper, we prove some common fixed point results for mapping in
tvs-cone metric spaces (with the underlying cone which is not normal) under
contractive conditions (in which constants are replaced by functions) expressed
in the terms of c-distance. We obtained the result which extend and generalize
the main results of Dordevic et al. [7] and Fadail et al. [9].

2. Preliminaries

We recall some definitions and results from [5, 6, 7, 8, 13, 15], which will be
needed in the sequel.

Let E be a tvs with the zero vector θ. A nonempty and closed subset P of
E is called a cone if P +P ⊆ P and λP ⊆ P for λ ≥ 0. A cone P is said to be
proper if P ∩ (−P ) = {θ}.

For a given cone P ⊆ E, we define a partial ordering � with respect to P
by x � y if and only if y − x ∈ P ;x ≺ y will stand for x ≺ y and x 6= y, while
x � y stand for y − x ∈ intP, where intP denotes the interior of P . The
cone P is said to be solid if it has a nonempty interior. The pair (E,P ) is an
ordered topological vector space.

Definition 2.1. ([5, 8, 13]) Let X be a nonempty set and (E,P ) an ordered
tvs. A vector-valued function d : X ×X → E is said to be a tvs-cone metric,
if the following conditions hold:

(C1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
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(C2) d(x, y) = d(y, x) for all x, y ∈ X;
(C3) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.

Then the pair (X, d) is called a tvs-cone metric space.

Definition 2.2. ([5, 8, 13]) Let (X, d) be a tvs-cone metric space, x ∈ X and
let {xn} be a sequence in X. Then

(i) {xn} tvs-cone converges to x whenever for every c ∈ E with θ � c,
there is a natural number n0 such that d(xn, x) � c for all n > n0.
We denote this by limn→∞ xn = x;

(ii) {xn} is a tvs-cone Cauchy sequence whenever for every c ∈ E with
θ � c, there is a natural number n0 such that d(xn, xm) � c for all
n,m > n0;

(iii) (X, d) is tvs-cone complete if every tvs-cone Cauchy sequence in X is
tvs-cone convergent.

Let (X, d) be a tvs-cone metric space. The following properties are often
used, particularly in the case when the underlying cone is non-normal.

(P1) If u, v, w ∈ E, u � v and v � w then u� w.
(P2) If u ∈ E and θ � u� c for each c ∈ int P then u = θ.
(P3) If un, vn, u, v ∈ E, θ � un � vn for each n ∈ N, and un → u, vn →

v(n→∞), then θ � u � v.
(P4) If xn, x ∈ X,un ∈ E, d(xn, x) � un and un → θ(n → ∞), then xn →

x(n→∞).
(P5) If u � λu and 0 ≤ λ < 1, then u = θ.
(P6) If c � θ and un ∈ E, un → θ(n → ∞), then there exists n0 such that

un � c for all n ≥ n0.

In [20], Wang and Guo introduced the notion of c-distance on a cone metric
space, which is a generalization of w-distance of Kada et al. [12]. Then Cho
et al. [6] converted it in to the setting of ordered cone metric spaces.

Definition 2.3. ([6]) Let (X, d) be a tvs-cone metric space. A function q :
X ×X → E is called a c-distance in X if:

(q1) θ � q(x, y) for all x, y ∈ X;
(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X;
(q3) if a sequence {yn} in X converges to a point y ∈ X, and for some x ∈ X

and u = ux ∈ P, q(x, yn) � u holds for each n ∈ N, then q(x, y) � u;
(q4) for each c ∈ E with θ � c, there exists e ∈ E with θ � e, such that

q(z, x)� e and q(z, y)� e implies d(x, y)� c.
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Example 2.4. ([7]) Let (X, d) be a tvs-cone metric space such that the metric
d(.,.) is a continuous function in second variable. Then q(x, y) = d(x, y)
is a c-distance. Indeed, only property (q3) is non-trivial and it follows from
q(x, yn) = d(x, yn) ≤ u, passing to the limit when n→∞ and using continuity
of d.

A sequence {un} in P a c-sequence if for each c � θ there exists n0 ∈ N
such that un � c for n ≥ n0. It is easy to show that if {un} and {vn} are
c-sequences in E and α, β > 0, then {αun + βvn} is a c-sequence.

The following lemma is a tvs-cone metric version of lemmas from [6, 12].

Lemma 2.5. ([7]) Let (X, d) be a tvs-cone metric space and let q be a c-
distance on X. Let {xn} and {yn} be sequences in X and x, y, z ∈ X. Suppose
that {un} and {vn} are c-sequences in P. Then the following hold:

(1) If q(xn, y) � un and q(xn, z) � vn for n ∈ N, then y = z. In particular,
if q(x, y) = θ and q(x, z) = θ, then y = z.

(2) If q(xn, yn) � un and q(xn, z) � vn for n ∈ N, then {yn} converges to
z.

(3) If q(xn, xm) � un for m > n > n0, then {xn} is a Cauchy sequence in
X.

(4) If q(y, xn) � un for n ∈ N, then {xn} is a Cauchy sequence in X.

Remark 2.6. ([20])

(1) q(x, y) = q(y, x) does not necessarily for all x, y ∈ X;
(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Now we are ready to state and prove our main results.

3. Main Results

Theorem 3.1. Let (X, d) be a complete tvs-cone metric space and q is a c-
distance on X. Let f, g : X → X be two continuous self-maps and suppose
that there exist mappings k, l : X → [0, 1) such that the following conditions
hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x), k(gx) ≤ k(x), l(gx) ≤ l(x) for all x ∈ X;
(b) (k + 2l)(x) < 1 for all x ∈ X;
(c) (i) q(fx, gy) � k(x)q(x, y) + l(x)[q(fx, y) + q(x, gy)]

(ii) q(gy, fx) � k(y)q(y, x) + l(y)[q(y, fx) + q(gy, x)] for all x, y ∈ X.
Then f and g have a common fixed point in X. If fu = gu = u, then q(u, u) =
θ.
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Proof. Let x0 ∈ X be arbitrary and form the sequence {xn} such that x2n+1 =
fx2n and x2n+2 = gx2n+1 for n ≥ 0. Denote

un = q(x2n, x2n+1) + q(x2n+1, x2n)

and
vn = q(x2n+1, x2n+2) + q(x2n+2, x2n+1).

Putting x = x2n+2, y = x2n+1 in (c)-(i), we get

q(fx2n+2, gx2n+1) = q(x2n+3, x2n+2)

� k(x2n+2)q(x2n+2, x2n+1) + l(x2n+2)[q(fx2n+2, x2n+1)

+ q(x2n+2, gx2n+1)]

= k(gx2n+1)q(x2n+2, x2n+1) + l(gx2n+1)[q(x2n+3, x2n+1)

+ q(x2n+2, x2n+2)]

� k(x2n+1)q(x2n+2, x2n+1) + l(x2n+1)[q(x2n+3, x2n+2)

+ q(x2n+2, x2n+1)].

Continuing in this manner, we can get

q(x2n+3, x2n+2) � k(x0)q(x2n+2, x2n+1) + l(x0)[q(x2n+3, x2n+2)

+q(x2n+2, x2n+1)]. (3.1)

Similarly, putting y = x2n+1 and x = x2n+2 in (c)-(ii), we obtain

q(gx2n+1, fx2n+2) = q(x2n+2, x2n+3)

� k(x2n+1)q(x2n+1, x2n+2) + l(x2n+1)[q(x2n+1, fx2n+2)

+ q(gx2n+1, x2n+2)]

= k(fx2n)q(x2n+1, x2n+2) + l(fx2n)[q(x2n+1, x2n+3)

+ q(x2n+2, x2n+2)]

� k(x2n)q(x2n+1, x2n+2) + l(x2n)[q(x2n+1, x2n+2)

+ q(x2n+2, x2n+3)].

Continuing in this manner, we can get

q(x2n+2, x2n+3) � k(x0)q(x2n+1, x2n+2) + l(x0)[q(x2n+1, x2n+2)

+q(x2n+2, x2n+3)]. (3.2)

By adding up (3.1) and (3.2), we get

un+1 � (k(x0) + l(x0))vn + l(x0)un+1,

i.e. un+1 � hvn, for all n ∈ N, where 0 < h = k(x0)+l(x0)
1−l(x0)

< 1, since (k +

2l)(x) < 1 for all x ∈ X.
By a similar procedure, starting with x = x2n and y = x2n+1, one can

get vn � hun, n ∈ N. Combining the last two inequalities, it follows that
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un+1 � h2un and vn � h2vn−1, and we obtain that {un} and {vn} are c-
sequences.

We have that q(x2n, x2n+1) � un, q(x2n+1, x2n+2) � vn, and it follows that
q(xn, xn+1) � un + vn, where un + vn is a c-sequence. Using Lemma 2.5(3),
we get that {xn} is a Cauchy sequence in X. Hence xn → x∗ ∈ X(n → ∞).
Since f and g are continuous, it easily follows from the definition of {xn} that
fx∗ = gx∗ = x∗. Thus, mappings f and g have a common fixed point.

Suppose that u ∈ X is another point satisfying fu = gu = u. Then, (c)-(i)
implies that

q(fu, gu) = q(u, u) � k(u)q(u, u) + l(u)[q(u, u) + q(u, u)] = (k + 2l)(u)q(u, u)

and since 0 < (k + 2l)(x) < 1, property (P5) implies that q(u, u) = θ. �

As corollary, we obtain common fixed point result for self maps f and g
satisfying

(i) q(fx, gy) � k(x)q(x, y) + l(x)[q(x, fx) + q(y, gy)],
(ii) q(gy, fx) � k(y)q(y, x) + l(y)[q(fx, x) + q(gy, y)]

for all x, y ∈ X and (k + 2l)(x) < 1.

Theorem 3.2. Let (X, d) be a complete tvs-cone metric space and q is a c-
distance on X. Let f, g : X → X be two continuous self-maps and suppose
that there exists mapping k, l, r : X → [0, 1)such that the following conditions
hold:

(a) k(fx) ≤ k(x), l(fx) ≤ l(x), r(fx) ≤ r(x) and
k(gx) ≤ k(x), l(gx) ≤ l(x), r(gx) ≤ r(x) for all x ∈ X;

(b) (k + 2l + 2r)(x) < 1 for all x ∈ X;
(c) (i) q(fx, gy) � k(x)q(x, y)+ l(x)[q(x, gy)+q(y, fx)]+r(x)[q(x, fx)+

q(y, gy)]
(ii) q(gy, fx) � k(y)q(y, x)+ l(y)[q(gy, x)+ q(fx, y)]+ r(y)[q(fx, x)+

q(gy, y)]
for all x, y ∈ X.

Then f and g have a common fixed point in X. If fu = gu = u, then q(u, u) =
θ.

Proof. Let x0 ∈ X be arbitrary and form the sequence {xn} such that x2n+1 =
fx2n and x2n+2 = gx2n+1 for n ≥ 0. Denote

un = q(x2n, x2n+1) + q(x2n+1, x2n)

and

vn = q(x2n+1, x2n+2) + q(x2n+2, x2n+1).
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Putting x = x2n+2, y = x2n+1 in (c)-(i), we get

q(fx2n+2, gx2n+1) = q(x2n+3, x2n+2)

� k(x2n+2)q(x2n+2, x2n+1)

+ l(x2n+2)[q(x2n+2, gx2n+1) + q(x2n+1, fx2n+2)]

+ r(x2n+2)[q(x2n+2, fx2n+2) + q(x2n+1, gx2n+1)]

= k(gx2n+1)q(x2n+2, x2n+1)

+ l(gx2n+1)[q(x2n+2, x2n+2) + q(x2n+1, x2n+3)]

+ r(gx2n+1)[q(x2n+2, x2n+3) + q(x2n+1, x2n+2)]

� k(x2n+1)q(x2n+2, x2n+1)

+ l(x2n+1)[q(x2n+1, x2n+2) + q(x2n+2, x2n+3)]

+ r(x2n+1)[q(x2n+2, x2n+3) + q(x2n+1, x2n+2)].

Continuing in this manner, we can get

q(x2n+3, x2n+2) � k(x0)q(x2n+2, x2n+1)

+ l(x0)[q(x2n+1, x2n+2) + q(x2n+2, x2n+3)]

+ r(x0)[q(x2n+2, x2n+3) + q(x2n+1, x2n+2)].

(3.3)

Similarly, putting y = x2n+1 andx = x2n+2 in (c)-(ii), we get

q(gx2n+1, fx2n+2) = q(x2n+2, x2n+3)

� k(x2n+1)q(x2n+1, x2n+2)

+ l(x2n+1)[q(gx2n+1, x2n+2) + q(fx2n+2, x2n+1)]

+ r(x2n+1)[q(fx2n+2, x2n+2) + q(gx2n+1, x2n+1)]

= k(fx2n)q(x2n+1, x2n+2)

+ l(fx2n)[q(x2n+2, x2n+2) + q(x2n+3, x2n+1)]

+ r(fx2n)[q(x2n+3, x2n+2) + q(x2n+2, x2n+1)]

� k(x2n)q(x2n+1, x2n+2)

+ l(x2n)[q(x2n+3, x2n+2) + q(x2n+2, x2n+1)]

+ r(x2n)[q(x2n+3, x2n+2) + q(x2n+2, x2n+1)].

Continuing in this manner, we can get

q(x2n+2, x2n+3) � k(x0)q(x2n+1, x2n+2)

+ l(x0)[q(x2n+3, x2n+2) + q(x2n+2, x2n+1)]

+ r(x0)[q(x2n+3, x2n+2) + q(x2n+2, x2n+1)].

(3.4)

It follows by adding up (3.3) and (3.4) that

un+1 � (k(x0) + l(x0) + r(x0))vn + (l(x0) + r(x0))un+1,
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i.e un+1 � hvn, n ∈ N, where 0 < h = k(x0)+l(x0)+r(x0)
1−l(x0)−r(x0)

< 1, since (k + 2l +

2r)(x) < 1.
By a similar procedure, starting with x = x2n and y = x2n+1, one can

get vn � hun, n ∈ N. Combining the last two inequalities, it follows that
un+1 � h2un and vn � h2vn−1, and we get that {un} and {vn} are c-sequences.

We have that q(x2n, x2n+1) � un, q(x2n+1, x2n+2) � vn, and it follows that
q(xn, xn+1) � un + vn, where un + vn is a c-sequence. Using Lemma 2.5(3),
we get that {xn} is a Cauchy sequence in X. Hence xn → x∗ ∈ X(n → ∞).
Since f and g are continuous, it easily follows from the definition of {xn} that
fx∗ = gx∗ = x∗. Thus, mappings f and g have a common fixed point.

Suppose that u ∈ X is any point satisfying fu = gu = u. Then, (c)-(i)
implies that

q(fu, gu) = q(u, u)

� k(u)q(u, u) + l(u)[q(u, u) + q(u, u)] + r(u)[q(u, u) + q(u, u)]

= (k + 2l + 2r)(u)q(u, u),

and since 0 < (k+ 2l+ 2r)(x) < 1, property (P5) implies that q(u, u) = θ. �

As corollary, we obtain common fixed point result for self-maps f and g
satisfying

(i) q(fx, gy)
� k(x)q(x, y) + l(x)[q(x, fx) + q(x, gy)] + r(x)[q(y, fx) + q(y, gy)],

(ii) q(gy, fx)
� k(y)q(y, x) + l(y)[q(fx, x) + q(gy, x)] + r(y)[q(fx, y) + q(gy, y)],

for all x, y ∈ X and (k + 2l + 2r)(x) < 1.

Theorem 3.3. Let (X, d) be a complete tvs-cone metric space and q is a c-
distance on X. Let f, g : X → X be two continuous self-maps and suppose that
there exist mappings k, r, l, t : X → [0, 1) such that the following conditions
hold:

(a) k(fx) ≤ k(x), r(fx) ≤ r(x), l(fx) ≤ l(x) and t(fx) ≤ t(x);
k(gx) ≤ k(x), r(gx) ≤ r(x), l(gx) ≤ l(x) and t(gx) ≤ t(x) for all
x ∈ X;

(b) (k + r + l + 2t)(x) < 1 for all x ∈ X;
(c) (i) q(fx, gy)

� k(x)q(x, y)+r(x)q(fx, x)+l(x)q(gy, y)+t(x)[q(fx, y)+q(gy, x)]
(ii) q(gy, fx)
� k(y)q(y, x)+r(y)q(x, fx)+l(y)q(y, gy)+t(y)[q(y, fx)+q(x, gy)]

for all x, y ∈ X.
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Then f and g have a common fixed point in X. If fu = gu = u, then q(u, u) =
θ.

Proof. Let x0 ∈ X be arbitrary and form the sequence {xn} such that x2n+1 =
fx2n and x2n+2 = gx2n+1 for n ≥ 0. Denote

un = q(x2n, x2n+1) + q(x2n+1, x2n)

and

vn = q(x2n+1, x2n+2) + q(x2n+2, x2n+1).

Putting x = x2n+2, y = x2n+1 in (c)-(i), we get

q(fx2n+2, gx2n+1) = q(x2n+3, x2n+2)

� k(x2n+2)q(x2n+2, x2n+1)

+ r(x2n+2)q(fx2n+2, x2n+2)

+ l(x2n+2)q(gx2n+1, x2n+1)

+ t(x2n+2)[q(fx2n+2, x2n+1) + q(gx2n+1, x2n+2)]

= k(gx2n+1)q(x2n+2, x2n+1)

+ r(gx2n+1)q(x2n+3, x2n+2)

+ l(gx2n+1)q(x2n+2, x2n+1)

+ t(gx2n+1)[q(x2n+3, x2n+1) + q(x2n+2,x2n+2)]

� k(x2n+1)q(x2n+2, x2n+1)

+ r(x2n+1)q(x2n+3, x2n+2)

+ l(x2n+1)q(x2n+2, x2n+1)

+ t(x2n+1)[q(x2n+3, x2n+2) + q(x2n+2, x2n+1)].

Continuing in this manner, we can get

q(x2n+3, x2n+2) � k(x0)q(x2n+2, x2n+1)

+ r(x0)q(x2n+3, x2n+2) + l(x0)q(x2n+2, x2n+1)

+ t(x0)[q(x2n+3, x2n+2) + q(x2n+2, x2n+1)].

(3.5)

Similarly, putting y = x2n+1 andx = x2n+2 in (c)-(ii), we obtain

q(gx2n+1, fx2n+2) = q(x2n+2, x2n+3)

� k(x2n+1)q(x2n+1, x2n+2) + r(x2n+1)q(x2n+2, fx2n+2)

+ l(x2n+1)q(x2n+1, gx2n+1)

+ t(x2n+1)[q(x2n+1, fx2n+2) + q(x2n+2, gx2n+1)]
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= k(fx2n)q(x2n+1, x2n+2) + r(fx2n)q(x2n+2, x2n+3)

+ l(fx2n)q(x2n+1, x2n+2)

+ t(fx2n)[q(x2n+1, x2n+3) + q(x2n+2,x2n+2)]

� k(x2n)q(x2n+1, x2n+2) + r(x2n)q(x2n+2, x2n+3)

+ l(x2n)q(x2n+1, x2n+2)

+ t(x2n)[q(x2n+1, x2n+2) + q(x2n+2, x2n+3)].

Continuing in this manner, we can get

q(x2n+2, x2n+3) � k(x0)q(x2n+1, x2n+2) + r(x0)q(x2n+2, x2n+3)

+ l(x0)q(x2n+1, x2n+2) + t(x0)[q(x2n+1, x2n+2)

+ q(x2n+2, x2n+3)].

(3.6)

By adding up (3.5) and (3.6), we get

un+1 � (k(x0) + l(x0) + t(x0))vn + (r(x0) + t(x0))un+1,

i.e un+1 � hvn for all n ∈ N, where 0 < h = k(x0)+l(x0)+t(x0)
1−r(x0)−t(x0)

< 1, since

(k + r + l + 2t)(x) < 1 for all x ∈ X.

By a similar procedure, starting with x = x2n and y = x2n+1, one can
get vn � hun, n ∈ N. Combining the last two inequalities, it follows that
un+1 � h2un and vn � h2vn−1, and we obtain that {un} and {vn} are c-
sequences.

We have that q(x2n, x2n+1) � un, q(x2n+1, x2n+2) � vn, and it follows that
q(xn, xn+1) � un + vn, where un + vn is a c-sequence. Using Lemma 2.5(3),
we get that {xn} is a Cauchy sequence in X. Hence xn → x∗ ∈ X(n → ∞).
Since f and g are continuous, it easily follows from the definition of {xn} that
fx∗ = gx∗ = x∗. Thus, mappings f and g have a common fixed point.

Suppose that u ∈ X is another point satisfying fu = gu = u. Then, (c)-(i)
implies that

q(fu, gu) � k(u)q(u, u) + r(u)q(fu, u) + l(u)q(gu, u)

+ t(u)[q(fu, u) + q(gu, u)]

= (k + r + l + 2t)(u)q(u, u)

and since 0 < (k+r+l+2t)(x) < 1, property (P5) implies that q(u, u) = θ. �

Now, we present the following example to demonstrate the use of Theorem
3.1.

Example 3.4. Let E = R, P = {x ∈ E : x ≥ 0}, X = [0, 1] and define a
mapping d : X × X → E by d(x, y) = |x − y| for x, y ∈ X. Then (X, d) is a
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complete cone metric space. Define a mapping q : X ×X → E by q(x, y) = y
for all x, y ∈ X. Then q is c-distance on X.

Define the mappings f, g : X → X by f(x) = x2

16 and g(x) = x
16 for all

x ∈ X. Take k(x) =
(
2x+3
16

)
and l(x) =

(
3x+2
16

)
for all x ∈ X.

We observe that

(a) k(fx) = k(x
2

16 ) =
(
2(x

2

16
)+3

16

)
= 1

16

(
x2

8 +3
)

= 1
8

(
x2+24
16

)
≤ 2x+3

16 = k(x).

Similarly we can get l(fx) ≤ l(x), k(gx) ≤ k(x) and l(gx) ≤ l(x) for all
x ∈ X.

(b) (k + 2l)(x) = k(x) + 2l(x) =
(
2x+3
16

)
+ 2

(
3x+2
16

)
= 8x+7

16 < 1 for all

x ∈ X.
(c) q(fx, gy) = gy = y

16 �
(
(2x+3)y

16

)
=

(
(2x+3)

16 y
)

= k(x)q(x, y)

� k(x)q(x, y) + l(x)[q(fx, y) + q(x, gy)], for all x ∈ X.
Therefore, the conditions of Theorem 3.1 (with c-distance metric version) are
satisfied. Hence f and g have a common fixed point u = 0 and that q(u, u) =
q(0, 0) = θ.

This example can be easily modified to the tvs-cone metric case. We define
tvs-cone metric on X by d(x, y)(t) = |x − y|∅(t) with fixed ∅ ∈ P = {f ∈
C[0, 1] : f(t) ≥ 0 for t ∈ [0, 1]} and take c-distance q1(x, y)(t) = y.∅(t).

Acknowledgments: The authors are thankful to the learned referee for
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