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Abstract. By using the fixed point index theorem and the first eigenvalue, we establish the

existence of one or two positive solutions for the impulsive singular Sturm-Liouville boundary

value problem. In particular, we give a number of corollaries and an example to demonstrate

the applications of the developed theory.

1. Introduction and Preliminaries

Sturm-Liouville boundary value problems play a very important role in both
theory and application, which have been widely studied by many authors (see
[1], [6],[8], [9],[13] and references therein). For example, Zhang and Liu [12]
have established unique solution of initial value problems of nonlinear second
order impulsive integral differential in Banach spaces. Sun and Zhang [8] have
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applied the fixed point index theorem and the first eigenvalue to establish the
existence of positive solutions.

Recently, in [7], Lin and Jiang studied the following second-order impulsive
differential equation with no singularity





u′′ + f(t, u) = 0, 0 < t < 1,

−∆u′t=tk
= Ik(u(tk)), k = 1, 2, · · ·m,

u(0) = u(1) = 0,

and obtained two positive solutions by using the fixed point index theorems
in cone.

Motivated by the work mentioned above, we study the positive solutions
of nonlinear singular boundary value problems for impulsive Sturm-Liouville
differential equation





(p(t)u′(t))′ + a(t)f(u(t)) = 0, t ∈ J ′,
−∆u′|t=tk = Ik(u(tk)),
∆u|t=tk = Īk(u(tk)), k = 1, 2, · · · ,m,
α1u(0)− β1 limt→0+ p(t)u′(t) = 0,
α2u(1) + β2 limt→1− p(t)u′(t) = 0,

(1)

where J = (0, 1), 0 < t1 < t2 < · · · < tm < 1, J ′ = J \ {t1, t2, · · · , tm}, J̄ =
[0, 1], J0 = (0, t1], J1 = (t1, t2], · · · , JM = (tm, 1).Ik, Īk ∈ C(R+,R+),∆u′|t=tk =
u′(t+k ) − u′(t−k ),∆u|t=tk = u(t+k ) − u(t−k ), u′(t+k ), u(t+k ), (u′(t−k ), u(t−k )) denote
the right limit (left limit) of u′(t) and u(t) at t = tk, respectively.

αi ≥ 0, βi ≥ 0 (i = 1, 2), f ∈ C(R+,R+), a(t) ∈ C(J,R+) is allowed to be
singular at t = 0 or t = 1, R+ = [0, +∞), p(t) ∈ C([0, 1],R+)

⋂
C1(J,R+) and∫ 1

0
ds

p(s) < +∞, ρ = α2β1 + α1β2 + α1α2

∫ 1
0

ds
p(s) > 0.

By applying the fixed point index theorem, we shall establish the existence
of one or two positive solutions for the above problems, which improve and
generalize the corresponding results of papers [1]-[13].

The rest of this paper is organized as follows. In Section 1, we provide some
preliminaries and establish several lemmas. In Section 2, the main results are
formulated and proved and we give a number of corollaries, In Section 3, we
give an example to demonstrate the application of the developed theory.

Now we denote the Green’s functions for the following boundary value prob-
lems 




(p(t)u′(t))′ = 0, 0 ≤ t ≤ 1,
α1u(0)− β1 limt→0+ p(t)u′(t) = 0,
α2u(1) + β2 limt→1− p(t)u′(t) = 0,
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by G(t, s). It is well known that G(t, s) can be written by

G(t, s) =
1
ρ

{
(β1 + α1B(0, s)) (β2 + α2B(t, 1)) , 0 ≤ s ≤ t ≤ 1,
(β1 + α1B(0, t)) (β2 + α2B(s, 1)) , 0 ≤ t ≤ s ≤ 1,

(2)

where B(t, s) =
∫ s
t

dτ
p(τ) , ρ = α2β1 + α1β2 + α1α2B(0, 1). It is easy to verify

the following properties of G(t, s)

(I) G(t, s) ≤ G(s, s) ≤ 1
ρ (β1 + α1B(0, 1)) (β2 + α2B(0, 1)) < +∞,

(II) G(t, s) ≥ σG(s, s), for any t ∈ [a, b], s ∈ [0, 1], where a ∈ (0, t1], b ∈
[tm, 1) and

0 < σ = min
{

β2 + α2B(b, 1)
β2 + α2B(0, 1)

,
β1 + α1B(0, a)
β1 + α1B(0, 1)

}
< 1. (3)

We denote the first eigenvalue and the corresponding eigenfunction of

−(p(t)φ′(t))′ = λφ(t)a(t), α1φ(0)− β1 lim
t→0+

p(t)u′(t) = 0,

α2φ(1) + β2 lim
t→1−

p(t)u′(t) = 0,

by λ1, φ1(t). It is well known that λ1 > 0 and φ1(t) does not change sign in
(0,1) and therefore, without loss of generality, we assume that φ1(t) > 0 for
0 < t < 1 and ‖φ1‖ = max

0≤t≤1
|φ1(t)| = 1.

For convenience and simplicity in the following discussion, we denote

f0 = lim inf
x→0+

min
t∈[a,b]

f(t, x)
x

, I0(k) = lim inf
x→0+

Ik(x)
x

, I0(k) = lim inf
x→0+

Ik(x)
x

,

f∞ = lim inf
x→∞ min

t∈[a,b]

f(t, x)
x

, I∞(k) = lim inf
x→∞

Ik(x)
x

, I∞(k) = lim inf
x→∞

Ik(x)
x

,

f∞ = lim sup
x→∞

max
t∈[a,b]

f(t, x)
x

, I∞(k) = lim sup
x→∞

Ik(x)
x

, I
∞(k) = lim sup

x→∞
Ik(x)

x
,

f0 = lim sup
x→0+

max
t∈[a,b]

f(t, x)
x

, I0(k) = lim sup
x→0+

Ik(x)
x

, I
0(k) = lim sup

x→0+

Ik(x)
x

.

(H1)

f0 +
σ

m∑
k=1

(I0(k)φ1(tk) + I0(k)φ′1(tk))p(tk)
∫ 1
0 φ1(t)a(t)dt

> λ1,

f∞ +
σ

m∑
k=1

(I∞(k)φ1(tk) + I∞(k)φ′1(tk))p(tk)
∫ 1
0 φ1(t)a(t)dt

> λ1.
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(H2)

f0 +

m∑
k=1

(I0(k)φ1(tk) + I
0(k)φ′1(tk))p(tk)

σ
∫ 1
0 φ1(t)a(t)dt

< λ1,

f∞ +

m∑
k=1

(I∞(k)φ1(tk) + I
∞(k)φ′1(tk))p(tk)

σ
∫ 1
0 φ1(t)a(t)dt

< λ1.

(H3) There exist p > 0, η, ηk, ηk ≥ 0 such that for all 0 < x ≤ p and
0 ≤ t ≤ 1, f(t, x) ≤ ηp, Ik(x) ≤ ηkp, Ik(x) ≤ ηkp, and

η +
m∑

k=1

(ηk + ηk) > 0, η

∫ 1

0
G(s, s)a(s)ds +

m∑

k=1

G(tk, tk)(ηk + ηk) < 1.

(H4) There exist p > 0, λ, λk, λk ≥ 0 such that for all σp ≤ x ≤ p and
0 ≤ t ≤ 1, f(t, x) ≥ λp, Ik(x) ≥ λkp, Ik(x) ≥ λkp, and

λ +
∑

0<tk< 1
2

(λk + λk) > 0, λ

∫ b

a
G(

1
2
, s)a(s)ds +

∑

0<tk< 1
2

G(
1
2
, tk)(λk + λk) > 1.

(H5) 0 <
∫ 1
0 G(s, s)a(s)ds < ∞.

LetX = C[J̄ ,R+] denote the Banach space of all continuous mapping x :
J̄ → R+ with norm ‖x‖ = supt∈J̄ |x(t)|, for k = 1, 2, · · · ,m. Let

PC[J̄ ,R+] = {x : x is a map from J̄ into R+ s.t. x(t) is continuous
at t 6= tk, left continuous at t = tk and its right limit exists },

PC1[J̄ ,R+] = {x : x is a map from J̄ into R+ such that x
′
(t)

is continuous at t 6= tk, left continuous at t = tk

and its right limit x
′
(t+k ) exists at t = tk}.

Then they are Banach spaces with the norm ‖x‖PC = supt∈J̄ |x(t)|, and
‖x‖PC′ = max{‖x‖PC , ‖x′‖PC}.

Let K be a cone in X = PC[J̄ ,R+] defined by

K = {x ∈ PC[J̄ ,R+] : x(t) ≥ 0, t ∈ [0, 1], and x(t) ≥ σ‖x‖PC , t ∈ [a, b]}
Definition 1.1. A function

x(t) ∈ PC1[J̄ ,R+] ∩ C2(J
′
,R), p(t)x′(t) ∈ C1([0, 1],R),

is called a solution of BV P (1) if it satisfies BV P (1).
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Next, let us define an operator Φ : X → X by

Φ(u)(t) =
∫ 1

0
G(t, s)a(s)f(s, u(s))ds

+
∑

0<tk<t

G(t, tk)(Ik(u(tk)) + Īk(u(tk))), t ∈ [0, 1].

Clearly, by (H1) and (H5), we know that the operator Φ is well defined, and
u is a positive solution of the BV P (1) if and only if u is a positive fixed point
of the operator Φ.

Lemma 1.1. Φ(K) ⊂ K. K is a cone defined before.

Proof. We show that for any u ∈ K

Φu(t) ≥ σ‖Φu(t)‖PC , t ∈ [a, b].

For any u ∈ K, from the property (I) of G(t, s), we know that

‖Φ‖PC ≤
∫ 1

0
G(s, s)a(s)f(u(s))ds +

∑

0<tk<t

G(tk, tk)(Ik(u(tk)) + Īk(u(tk))).

(4)
On the other hand, by the property (II) of G(t, s), for any t ∈ [a, b], we have

Φu(t)
=

∫ 1
0 G(t, s)a(s)f(u(s))ds +

∑
0<tk<t

G(t, tk)(Ik(u(tk)) + Īk(u(tk)))

≥ σ
∫ 1
0 G(s, s)a(s)f(u(s))ds + σ

∑
0<tk<t

G(tk, tk)(Ik(u(tk)) + Īk(u(tk)))

= σ

{
∫ 1
0 G(s, s)a(s)f(u(s))ds +

∑
0<tk<t

G(tk, tk)(Ik(u(tk)) + Īk(u(tk)))

}
.

(5)
It follows from (4) and (5) that for any u ∈ K,

Φu(t) ≥ σ‖Φu(t)‖PC , t ∈ [a, b].

Thus, Φu ∈ K. Therefore, Φ(K) ⊂ K. ¤

Lemma 1.2. Φ : K → K is a completely continuous operator.

Proof. For any n ≥ 2, we defined a continuous function an by

an(t) =





inf
{
a(t), a( 1

n)
}

, 0 < t ≤ 1
n ,

a(t), 1
n ≤ t ≤ 1− 1

n ,
inf

{
a(t), a(1− 1

n)
}

, 1− 1
n ≤ t ≤ 1.
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Next, for n ≥ 2, we define an operator Φn : K → K by

Φnu(t) =
∫ 1

0
G(t, s)an(s)f(u(s))ds

+
∑

0<tk<t

G(t, tk)(Ik(u(tk)) + Īk(u(tk))), t ∈ [0, 1].

Obviously, for any n ≥ 2, Φn is completely continuous on K by an application
of the Ascoli-Arzela theorem (see [3]). Then ‖Φn − Φ‖PC → 0, as n → +∞.
In fact, for any u ∈ B1 = {u ∈ K : ‖u‖PC ≤ 1}, from (H1), (H5) and the
property (I) of G(t, s), we obtain

‖Φnu− Φu‖PC = max
t∈[0,1]

∣∣∣∣
∫ 1

0
G(t, s)[a(s)− an(s)]f(u(s))ds

∣∣∣∣

≤
∫ 1

n

0
G(s, s)|a(s)− an(s)|f(u(s))ds

+
∫ 1

1− 1
n

G(s, s)|a(s)− an(s)|f(u(s))ds

≤ M

∫ 1
n

0
G(s, s)|a(s)− an(s)|ds

+M

∫ 1

1− 1
n

G(s, s)|a(s)− an(s)|ds

→ 0, n → +∞,

where M = max
0≤x≤1

f(x). Hence ‖Φn−Φ‖PC → 0, as n → +∞. Therefore, Φ is

completely continuous. This completes the proof of Lemma 2.2. ¤

For r > 0, let Kr = {x ∈ K : ‖x‖ < r} and ∂Kr = {x ∈ K : ‖x‖ = r}. The
following lemma is needed in this paper.

Lemma 1.3. [3] Let Φ : K → K be a completely continuous operator, assume
Φx 6= x for every x ∈ ∂Kr. Then the following conclusions hold.

(i) if ‖x‖ ≤ ‖Φx‖ for x ∈ ∂Kr, then i(Φ,Kr,K) = 0;
(ii) if ‖x‖ ≥ ‖Φx‖ for x ∈ ∂Kr, then i(Φ,Kr,K) = 1.

Lemma 1.4. ([2],[3]) Let Φ : K → K be a completely continuous mapping
and µΦx 6= x for x ∈ ∂Kr and 0 < µ ≤ 1. Then i(Φ, Kr,K) = 1.

Lemma 1.5. ([2],[3]) Let Φ : K → K be a completely continuous mapping.
Suppose the following two conditions are satisfied.

(i) infx∈∂Kr ‖Φx‖ > 0



Second order singular impulsive Sturm-Liouville BVP 235

(ii) µΦx 6= x for every x ∈ ∂Kr and µ ≥ 1.
Then i(Φ,Kr,K) = 0.

2. Existence of positive solutions and some corollaries

Theorem 2.1 Suppose that (H1) and (H3) hold. Then BV P (1) has at least
two positive solutions u1 and u2, such that 0 ≤ ‖u1‖pc ≤ p ≤ ‖u2‖pc.

Proof. The first step, suppose that (H3) holds, then i(Φ,Kp,K) = 1.
In fact let u ∈ K with ‖u‖pc = p. From (H3) we have

‖Φu‖pc ≤
∫ 1

0
G(s, s)a(s)f(s, u(s))ds +

m∑

k=1

G(tk, tk)(Ik(u(tk)) + Īk(u(tk)))

≤ p

(
η

∫ 1

0
G(s, s)a(s)ds +

m∑

k=1

G(tk, tk)(ηk) + η̄k)

)

< p

= ‖u‖pc.

That is ‖u‖pc ≥ ‖Φu‖pc for u ∈ ∂Kp. Therefore, by Lemma 1.3, we obtain

i(Φ,Kp,K) = 1. (6)

The second step, we prove that there exists 0 < r < p such that

i(Φ,Kr, K) = 0.

We first show infu∈∂Kr ‖Φu‖ > 0. By (H1), there exists 0 < ε0 < 1 such
that

(1− ε0)


f0 +

σ
∞∑

k=1
(I0(k)φ1(tk)+I0(k)φ′1(tk))p(tk)

∫ 1
0 φ1(t)a(t)dt


 > λ1,

(1− ε0)


f∞ +

σ
m∑

k=1
(I∞(k)φ1(tk)+I∞(k)φ′1(tk))p(tk)

∫ 1
0 φ1(t)a(t)dt


 > λ1.

(7)

By the definitions of f0, I0 and I0, there exists 0 < r0 < p such that for any
t ∈ [a, b], 0 ≤ x ≤ r0,

f(t, x) ≥ f0(1− ε0)x, Ik(x) ≥ I0(k)(1− ε0)x, Ik(x) ≥ I0(k)(1− ε0)x. (8)

Let r ∈ (0, r0). Then for u ∈ ∂Kr, we have

r0 > ‖u‖pc ≥ u(t) ≥ σ‖u‖pc = σr > 0, t ∈ [a, b]. (9)
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So, by (8)and (9) we get

‖Φu‖pc ≥ Φu(1
2) =

∫ 1
0 G(1

2 , s)a(s)f(s, u(s))ds
+

∑
0<tk< 1

2

G(1
2 , tk)(Ik(u(tk)) + Īk(u(tk)))

≥ ∫ b
a G(1

2 , s)a(s)f(s, u(s))ds
+

∑
0<tk< 1

2

G(1
2 , tk)(Ik(u(tk)) + Īk(u(tk)))

≥ f0(1− ε0)
∫ b
a G(1

2 , s)a(s)u(s)ds
+(1− ε0)

∑
0<tk< 1

2

G(1
2 , tk) (I0(k)(u(tk))

+Ī0(k)(u(tk)))
≥ (1− ε0)σr(f0

∫ b
a G(1

2 , s)a(s)ds
+

∑
0<tk< 1

2

G(1
2 , tk)(I0(k) + Ī0(k))) > 0,

(10)

this implies that infu∈∂Kr ‖Φu‖ > 0.
Next we show µΦu 6= u for every u ∈ ∂Kr and µ ≥ 1. If it is not true, then

there exist u0 ∈ ∂Kr and µ0 ≥ 1 such that µ0Φu0 = u0. It is easy to see that
u0(t) satisfies





(p(t)u′0(t))
′ + µ0a(t)f(u0(t)) = 0, t ∈ J ′,

−∆u′0|t=tk = Ik(u0(tk)),
∆u0|t=tk = Īk(u0(tk)), k = 1, 2, · · · ,m,
α1u0(0)− β1 limt→0+ p(t)u′0(t) = 0,
α2u0(1) + β2 limt→1− p(t)u′0(t) = 0.

(11)

Multiplying (p(t)u′0(t))
′ by φ1(t) and integrating the product from a to b with

respect to t, then we get
∫ b
a (p(t)u′0(t))

′φ1(t)dt

=
∫ t1
a φ1(t)d(p(t)u′0(t)) +

m−1∑
k=1

∫ tk+1

tk
φ1(t)d(p(t)u′0(t))

+
∫ b
tm

φ1(t)d(p(t)u′0(t))
= φ1(t1)p(t1)u′0(t1 − 0)− ∫ t1

a φ′1(t)p(t)u′0(t)dt

+
m−1∑
k=1

(φ1(tk+1)p(tk+1)u′0(tk+1 − 0)− φ1(tk)p(tk)u′0(tk + 0))

−
m−1∑
k=1

∫ tk+1

tk
φ′1(t)p(t)u′0(t)dt− φ1(tm)p(tm)u′0(tm + 0)

− ∫ b
tm

φ′1(t)p(t)u′0(t)dt

= −
m∑

k=1

∆u′0(tk)φ1(tk)p(tk)−
∫ b
a p(t)u′0(t)φ

′
1(t)dt.

(12)
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Similarly, we have
∫ b
a p(t)u′0(t)φ

′
1(t)dt

=
∫ t1
a φ′1(t)p(t)du0(t) +

m−1∑
k=1

∫ tk+1

tk
φ′1(t)p(t)du0(t) +

∫ b
tm

φ′1(t)p(t)du0(t)

= −
m∑

k=1

∆u0(tk)φ′1(tk)p(tk)−
∫ b
a (p(t)φ′1(t))

′u0(t)dt

= −
m∑

k=1

∆u0(tk)φ′1(tk)p(tk) + λ1

∫ b
a a(t)φ1(t)u0(t)dt.

(13)
Then, from (12) and (13), we get

∫ b
a (p(t)u′0(t))

′φ1(t)dt

= −
m∑

k=1

∆u′0(tk)φ1(tk)p(tk) +
m∑

k=1

∆u0(tk)φ′1(tk)p(tk)

−λ1

∫ b
a a(t)φ1(t)u0(t)dt

= µ0

m∑
k=1

(
Ik(u0(tk))φ1(tk) + Ik(u0(tk))φ′1(tk)

)
p(tk)

−λ1

∫ b
a a(t)φ1(t)u0(t)dt.

(14)

From (11), we obtain (p(t)u′0(t))
′ = −µ0a(t)f(u0(t)), so

∫ b

a
(p(t)u′0(t))

′φ1(t)dt = −µ0

∫ b

a
φ1(t)a(t)f(u0(t))dt. (15)

Then, from (14) and (15), we get

λ1

∫ b
a a(t)φ1(t)u0(t)dt = µ0

m∑
k=1

(
Ik(u0(tk))φ1(tk) + Ik(u0(tk))φ′1(tk)

)
p(tk)

+µ0

∫ b
a φ1(t)a(t)f(u0(t))dt

≥ (1− ε0)
m∑

k=1

(
I0(k)φ1(tk) + I0(k)φ′1(tk)

)
u0(tk)p(tk)

+(1− ε0)f0

∫ b
a φ1(t)a(t)u0(t)dt.

(16)
Since u0(t) ≥ σ‖u‖pc > 0 for all t ∈ [a, b], we have

∫ b

a
φ1(t)a(t)u0(t)dt > 0

and
m∑

k=1

(
I0(k)φ1(tk) + I0(k)φ′1(tk)

)
u0(tk)p(tk) > 0.
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By (16) we know λ1 > (1− ε0)f0, and hence we obtain

(λ1 − (1− ε0)f0)
∫ b
a φ1(t)a(t)‖u0(t)‖dt

≥ (λ1 − (1− ε0)f0)
∫ b
a φ1(t)a(t)u0(t)dt

≥ (1− ε0)
m∑

k=1

(
I0(k)φ1(tk) + I0(k)φ′1(tk)

)
u0(tk)p(tk)

≥ (1− ε0)σ‖u0(t)‖
m∑

k=1

(
I0(k)φ1(tk) + I0(k)φ′1(tk)

)
p(tk).

(17)

This implies that

(λ1−(1−ε0)f0)
∫ b

a
φ1(t)a(t)dt ≥ (1−ε0)σ

m∑

k=1

(
I0(k)φ1(tk) + I0(k)φ′1(tk)

)
p(tk).

So,

λ1 ≥ (1− ε0)


f0 +

σ
m∑

k=1

(
I0(k)φ1(tk) + I0(k)φ′1(tk)

)
p(tk)

∫ b
a φ1(t)a(t)dt




which is a contradiction with (7). So we obtain µΦu 6= u for every u ∈ ∂Kr

and µ ≥ 1. Hence, by Lemma 2.5, we get

i(Φ,Kr, K) = 0. (18)

The third step, we prove that there exists large enough R such that

i(Φ,KR,K) = 0.

Firstly, we show infu∈∂KR
‖Φu‖ > 0. From the definitions of f∞, I∞ and I∞,

there exists H > p > 0 such that for any t ∈ [a, b] and x ≥ H,

f(t, x) ≥ f∞(1−ε0)x, Ik(x) ≥ I∞(k)(1−ε0)x, Ik(x) ≥ I∞(k)(1−ε0)x. (19)

Let
c = max

0≤x≤H
max
a≤t≤b

|f(t, x)− f∞(1− ε0)x|

+
m∑

k=1

max
0≤x≤H

|Ik(x)− I∞(k)(1− ε0)x|

+
m∑

k=1

max
0≤x≤H

|Ik(x)− I∞(k)(1− ε0)x|.
(20)

Then, from (19) and (20), we have

f(t, x) ≥ f∞(1− ε0)x− c, Ik(x) ≥ I∞(k)(1− ε0)x− c,
Ik(x) ≥ I∞(k)(1− ε0)x− c, for all t ∈ [a, b], x > 0.

(21)

Choose R > R0 = max{H
σ , p}. Let u ∈ ∂KR. Then u(t) ≥ σ‖u‖pc = σR > H

for all t ∈ [a, b], by (19) and (II) we have

f(t, x) ≥ f∞(1−ε0)σR, Ik(x) ≥ I∞(k)(1−ε0)σR, Ik(x) ≥ I∞(k)(1−ε0)σR.
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Proceeding as in second step, we can get infu∈∂KR
‖Φu‖ > 0.

Secondly, we show that if R is large enough, then we have µΦu 6= u for
every u ∈ ∂KR and µ ≥ 1. In fact, if it is not true, then there exist u0 ∈ ∂KR

and µ0 ≥ 1 such that µ0Φu0 = u0. It is easy to see that u0(t) satisfies (11),
and similar to the analysis in second step, by (24), we obtain

λ1

∫ b
a a(t)φ1(t)u0(t)dt = µ0

m∑
k=1

(
Ik(u0(tk))φ1(tk) + Ik(u0(tk))φ′1(tk)

)
p(tk)

+µ0

∫ b
a φ1(t)a(t)f(u0(t))dt

≥ (1− ε0)
m∑

k=1

(
I∞(k)φ1(tk) + I∞(k)φ′1(tk)

)
u0(tk)p(tk)

+(1− ε0)f∞
∫ b
a φ1(t)a(t)u0(t)dt

−c

(
m∑

k=1

(φ1(tk) + φ′1(tk)) p(tk) +
∫ b
a φ1(t)a(t)dt

)
.

(I) If (1− ε0)f∞ ≤ λ1, then

(λ1 − (1− ε0)f∞)
∫ b
a φ1(t)a(t)u0(t)dt + c

(
m∑

k=1

(φ1(tk) + φ′1(tk)) p(tk)

+
∫ b
a φ1(t)a(t)dt

)
≥ (1− ε0)

m∑
k=1

(
I∞(k)φ1(tk) + I∞(k)φ′1(tk)

)
u0(tk)p(tk),

such that

‖u0‖pc(λ1 − (1− ε0)f∞)
∫ b
a φ1(t)a(t)dt + c(

m∑
k=1

(φ1(tk) + φ′1(tk)) p(tk)

+
∫ b
a φ1(t)a(t)dt

)
≥ (1− ε0)σ‖u0‖pc

m∑
k=1

(
I∞(k)φ1(tk) + I∞(k)φ′1(tk)

)
p(tk).

This implies

‖u0‖pc ≤
c

(
m∑

k=1
(φ1(tk)+φ′1(tk))p(tk)+

∫ b
a φ1(t)a(t)dt

)

(1−ε0)σ
m∑

k=1
(I∞(k)φ1(tk)+I∞(k)φ′1(tk))p(tk)−(λ1−(1−ε0)f∞)

∫ b
a φ1(t)a(t)dt

=: R1.

(II) If (1− ε0)f∞ > λ1, then

c

(
m∑

k=1

(φ1(tk) + φ′1(tk)) p(tk) +
∫ b
a φ1(t)a(t)dt

)

≥ ((1− ε0)f∞ − λ1)
∫ b
a φ1(t)a(t)u0(t)dt

≥ ((1− ε0)f∞ − λ1)σ‖u0‖pc

∫ b
a φ1(t)a(t)dt.

Thus

‖u0‖pc ≤
c

(
m∑

k=1

(φ1(tk) + φ′1(tk)) p(tk) +
∫ b
a φ1(t)a(t)dt

)

((1− ε0)f∞ − λ1)σ
∫ b
a φ1(t)a(t)dt

=: R2.
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Let R > max{R0, R1, R2}. Then for all u ∈ ∂KR and µ ≥ 1, µΦu 6= u. Hence,
by Lemma 2.5, we have

i(Φ,KR,K) = 0. (22)
By (6), (18), (25) and the property of the fixed points index, we obtain
i(Φ,KR\KP ,K) = −1, i(Φ,Kp\Kr, K) = 1. Thus, BV P (1) has at least
two positive solutions u1 and u2 satisfying 0 ≤ ‖u1‖pc ≤ p ≤ ‖u2‖pc. ¤

Theorem 2.2. Suppose that (H2) and (H4) hold. Then BV P (1) has at least
two positive solutions u1 and u2 satisfying 0 ≤ ‖u1‖pc ≤ p ≤ ‖u2‖pc.

Proof. The first step, suppose that (H4) holds, then i(Φ, Kp, K) = 0.
Let u ∈ K with ‖u‖pc = p. From (H4) we have

‖Φu‖pc ≥ Φu(1
2)

=
∫ 1
0 G(1

2 , s)a(s)f(s, u(s))ds +
∑

0<tk< 1
2

G(1
2 , tk)(Ik(u(tk)) + Īk(u(tk)))

≥ ∫ b
a G(1

2 , s)a(s)f(s, u(s))ds +
∑

0<tk< 1
2

G(1
2 , tk)(Ik(u(tk)) + Īk(u(tk)))

≥ p


λ

∫ b
a G(1

2 , s)a(s)ds +
∑

0<tk< 1
2

G(1
2 , tk)

(
λk + λk

)



> p
= ‖u‖pc.

This implies that for any u ∈ ∂Kp, we have ‖u‖ ≤ ‖Φu‖. Therefore, by Lemma
1.3, we obtain

i(Φ,Kp,K) = 0. (23)

The second step, suppose that 0 < r < p holds. Then i(Φ,Kr,K) = 1. In
fact, by (H2), there exists 0 < ε1 < min{λ1 − f0, λ1 − f∞} such that

(λ1 − ε1 − f0)σ
∫ b
a φ1(t)a(t)dt >

m∑
k=1

((
I0(k) + ε1

)
φ1(tk)

+
(
I

0(k) + ε1

)
φ′1(tk)

)
p(tk)

(λ1 − ε1 − f∞)σ
∫ b
a φ1(t)a(t)dt >

m∑
k=1

((I∞(k) + ε1) φ1(tk)

+
(
I
∞(k) + ε1

)
φ′1(tk)

)
p(tk).

(24)

By the definitions of f0, I0 and I
0
, there exists 0 < r0 < p such that for any

t ∈ [a, b], 0 ≤ x ≤ r0, we have

f(t, x) ≤ (f0 + ε1)x, Ik(x) ≤ (I0(k) + ε1)x, Ik(x) ≤ (I0(k) + ε1)x. (25)
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Let r ∈ (0, r0). We now show that µΦu 6= u for u ∈ ∂Kr and 0 < µ ≤ 1. If this
is not true, then there exist u0 ∈ ∂Kr and 0 < µ0 ≤ 1 such that µ0Φu0 = u0.
Then u0(t) satisfies BV P (11). From (25), multiplying (p(t)u′0(t))

′ by φ1(t) and
integrating the product from a to b with respect to t, and proceeding as in the
second step of proof of theorem 2.1, we have

λ1

∫ b
a a(t)φ1(t)u0(t)dt

= µ0

m∑
k=1

(
Ik(u0(tk))φ1(tk) + Ik(u0(tk))φ′1(tk)

)
p(tk)

+µ0

∫ b
a φ1(t)a(t)f(u0(t))dt

≤
m∑

k=1

(
(I0(k) + ε1)φ1(tk) + (I0(k) + ε1)φ′1(tk)

)
u0(tk)p(tk)

+(f0 + ε1)
∫ b
a φ1(t)a(t)u0(t)dt.

Since u0(t) ≥ σ‖u0‖pc = σr for t ∈ [a, b], we have

r(λ1 − f0 − ε1)
∫ b
a σa(t)φ1(t)dt ≤ (λ1 − f0 − ε1)

∫ b
a φ1(t)a(t)u0(t)dt

≤
m∑

k=1

(
(I0(k) + ε1)φ1(tk)

+(I0(k) + ε1)φ′1(tk)
)

u0(tk)p(tk)

≤ r
m∑

k=1

(
(I0(k) + ε1)φ1(tk) + I

0(k)

+ε1φ
′
1(tk)) p(tk).

This is a contradiction with (24). Hence, by Lemma 1.4, we have

i(Φ,Kr, K) = 1. (26)

Thirdly, we prove i(Φ, KR,K) = 1. From the definitions of f∞, I∞ and I
∞

,
there exists H > p > 0 such that for any t ∈ [a, b] and x ≥ H,

f(t, x) ≤ (f∞+ ε1)x, Ik(x) ≤ (I∞(k)+ ε1)x, Ik(x) ≤ (I∞(k)+ ε1)x. (27)

Proceeding as in the third step of proof of theorem 2.1, for any t ∈ [a, b] and
x ≥ H, let

c = max
0≤x≤H

max
a≤t≤b

|f(t, x)− (f∞ + ε1)x|

+
m∑

k=1

max
0≤x≤H

|Ik(x)− (I∞(k) + ε1)x|

+
m∑

k=1

max
0≤x≤H

|Ik(x)− (I∞(k) + ε1)x|.
(28)

Then, from (27), for all t ∈ [a, b], x > 0, we have

f(t, x) ≤ (f∞ + ε1)x + c, Ik(x) ≤ (I∞(k) + ε1)x + c,

Ik(x) ≤ (I∞(k) + ε1)x + c.
(29)
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Then we show that if R is large enough, we have µΦu 6= u for every u ∈ ∂KR

and 0 < µ ≤ 1. In fact, if it is not true, then there exist u0 ∈ ∂KR and µ0 ≥ 1
such that µ0Φu0 = u0. It is easy to see that u0(t) satisfies (11), and similar to
the proof of the third step of Theorem 2.1, we obtain

‖u0‖pc(λ1 − f∞ − ε1)
∫ b
a σa(t)φ1(t)dt

≤ (λ1 − f∞ − ε1)
∫ b
a φ1(t)a(t)u0(t)dt

≤
m∑

k=1

(
(I∞(k) + ε1)φ1(tk) + (I∞(k) + ε1)φ′1(tk)

)
u0(tk)p(tk)

+c

(
m∑

k=1

(φ1(tk) + φ′1(tk)) p(tk) +
∫ b
a φ1(t)a(t)dt

)

≤ ‖u0‖pc

m∑
k=1

(
(I∞(k) + ε1)φ1(tk) + (I∞(k) + ε1)φ′1(tk)

)
p(tk)

+c

(
m∑

k=1

(φ1(tk) + φ′1(tk)) p(tk) +
∫ b
a φ1(t)a(t)dt

)
.

So,

‖u0‖pc ≤
c

(
m∑

k=1
(φ1(tk)+φ′1(tk))p(tk)+

∫ b
a φ1(t)a(t)dt

)

(λ1−f∞−ε1)
∫ b

a σa(t)φ1(t)dt−
m∑

k=1
((I∞(k)+ε1)φ1(tk)+(I

∞
(k)+ε1)φ′1(tk))p(tk)

=: R1.

Let R > max{H,R1}. Then for all u ∈ ∂KR and 0 < µ ≤ 1, µΦu 6= u. Hence,
by Lemma 2.5, we have

i(Φ,KR,K) = 1. (30)

By (23), (26), (30) and the property of the fixed points index, we obtain
i(Φ,KR\KP ,K) = 1, i(Φ,Kp\Kr,K) = −1. Thus, BV P (1) has at least two
positive solutions u1 and u2 satisfying 0 ≤ ‖u1‖pc ≤ p ≤ ‖u2‖pc. ¤

Corollary 2.1.. Suppose that (A1)

f0 +

m∑
k=1

(I0(k)φ1(tk) + I
0(k)φ′1(tk))p(tk)

σ
∫ 1
0 φ1(t)a(t)dt

< λ1,

f∞ +

m∑
k=1

(I∞(k)φ1(tk) + I
∞(k)φ′1(tk))p(tk)

σ
∫ 1
0 φ1(t)a(t)dt

< λ1.

Then BV P (1) has at least one positive solution.
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Corollary 2.2. Suppose that (A2)

f0 +
σ

m∑
k=1

(I0(k)φ1(tk) + I0(k)φ′1(tk))p(tk)
∫ 1
0 φ1(t)a(t)dt

> λ1,

f∞ +
σ

m∑
k=1

(I∞(k)φ1(tk) + I∞(k)φ′1(tk))p(tk)
∫ 1
0 φ1(t)a(t)dt

> λ1.

Then BV P (1) has at least one positive solution.

Corollary 2.3. Theorem 2.1 is valid if (H1) is replaced by

f0 = ∞, or
m∑

k=1

I0(k)φ1(tk)p(tk) = ∞, or
m∑

k=1

I0(k)φ′1(tk)p(tk) = ∞,

and

f∞ = ∞, or
m∑

k=1

I∞(k)φ1(tk)p(tk) = ∞, or
m∑

k=1

I∞(k)φ′1(tk)p(tk) = ∞.

Corollary 2.4. Theorem 2.2 is valid if (H2) is replaced by

f0 = 0, I0(k) = 0, I
0(k) = 0, or f∞ = 0,

I∞(k) = 0, I
∞(k) = 0, k = 1, 2, · · · ,m.

Corollary 2.5. Corollary 2.1 is valid if (A1) is replaced by

f0 = ∞, or
m∑

k=1

I0(k)φ1(tk)p(tk) = ∞, or
m∑

k=1

I0(k)φ′1(tk)p(tk) = ∞,

and
f∞ = 0, I∞(k) = 0, I

∞(k) = 0, k = 1, 2, · · · ,m.

Corollary 2.6. Corollary 2.2 is valid if (A2) is replaced by

f∞ = ∞, or
m∑

k=1

I∞(k)φ1(tk)p(tk) = ∞, or
m∑

k=1

I∞(k)φ′1(tk)p(tk) = ∞,

and
f0 = 0, I0(k) = 0, I

0(k) = 0, k = 1, 2, · · · ,m.
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3. Example

Example 3.1 Now we give an example




((t− 2)8u′(t))′ + uα + uβ = 0, t ∈ J ′, 0 < α < 1 < β,

−∆u′|t=tk = cku(tk), ck ≥ 0, k = 1, 2, · · · ,m,

∆u|t=tk = dku(tk), dk ≥ 0, k = 1, 2, · · · ,m,

u(0) = 0,
12
7

u(1) +
1
2
u′(1) = 0.

(31)

Then BV P (31) has at least two positive solutions u1 and u2, satisfying

0 ≤ ‖u1‖pc ≤ p ≤ ‖u2‖pc.

Where

β1 = 0, α1 = β2 =
1
2
, α2 =

12
7

,
m∑

k=1

G(tk, tk)ck <
1
5
,

m∑

k=1

G(tk, tk)dk <
1
5
.

(32)
By (32), choose η > 0 such that

2 < η < 5

(
1−

m∑

k=1

G(tk, tk)ck −
m∑

k=1

G(tk, tk)ck

)
.

Since f(t, u) = uα + uβ, f0 = ∞, f∞ = ∞, so (H1) holds.
From B(t, s) =

∫ s
t

dτ
p(τ) , and ρ = α2β1 + α1β2 + α1α2B(0, 1),

G(s, s) =
1
ρ

(β1 + α1B(0, s)) (β2 + α2B(s, 1))

≤ (β1 + α1B(0, 1)) (β2 + α2B(0, 1))
α2β1 + α1β2 + α1α2B(0, 1)

=
1
6
.

So, we have
∫ 1

0
G(s, s)ds ≤

∫ 1

0

(β1 + α1B(0, 1)) (β2 + α2B(0, 1))
α2β1 + α1β2 + α1α2B(0, 1)

ds =
1
6
.

Let ηk = ck, ηk = dk such that η, ηk, ηk satisfying

η +
m∑

k=1

(ηk + ηk) > 0, η

∫ 1

0
G(s, s)a(s)ds +

m∑

k=1

G(tk, tk)(ηk + ηk) < 1.
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Let p = 1 for every 0 < u ≤ p. Then, we have

f(t, u) = uα + uβ ≤ pα + pβ = 2 < ηp,

Ik(u) = cku = ηku ≤ ηkp,

Ik(u) = dku = ηk)u ≤ ηkp.

So (H3) hlods. From Theorem 2.1, the conclusion is established.
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