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Abstract. In this paper, three results concerning the existence and uniqueness of common

fixed point for four mappings satisfying contractive inequalities of integral type in metric

spaces are introduced and proved. And also, we give the three examples.

1. Introduction and preliminaries

In 2008, Dutta and Choudhuty [4] proved the following result for (ψ, ϕ)-
weakly contractive mappings in a complete metric space.
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Theorem 1.1. ([4]) Let T be a mapping from a complete metric space (X, d)
into itself satisfying

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)), ∀x, y ∈ X, (1.1)

where ψ,ϕ : R+ → R+ are both continuous and monotone nondecreasing func-
tions with ψ(t) = ϕ(t) = 0 if and only if t = 0. Then T has a unique fixed
point a ∈ X such that limn→∞ T

nx = a for each x ∈ X.

In 2002, Branciari [3] was the first to introduce the concept of contractive
mapping of integral type and proved the following result, which generalizes
the Banach fixed point theorem.

Theorem 1.2. ([3]) Let T be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(Tx,Ty)

0
ϕ(t)dt 6 c

∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (1.2)

where c ∈ (0, 1) is a constant and ϕ : R+ → R+ is Lebesgue integrable, sum-
mable on each compact subset of R+ and

∫ ε
0 ϕ(t)dt > 0 for each ε > 0. Then

T has a unique fixed point a ∈ X such that limn→∞ T
nx = a.

In recent years, the researchers [1, 2, 5, 6, 8-16] proved some fixed and com-
mon fixed point theorems involving a lot of (ψ, ϕ)-weakly contractive map-
pings and contractive mappings of integral type. In particular, Liu et al. [9]
and Hosseini [6] certified the following theorems, which extend the results of
Branciari [3] and Dutta and Choudhuty [4].

Theorem 1.3. ([9]) Let T be a mapping from a complete metric space (X, d)
into itself satisfying

ψ

(∫ d(Tx,Ty)

0
ϕ(t)dt

)
6 ψ

(∫ d(x,y)

0
ϕ(t)dt

)
− φ

(∫ d(x,y)

0
ϕ(t)dt)

)
, ∀x, y ∈ X,

(1.3)

where ϕ : R+ → R+ is Lebesgue integrable, summable on each compact sub-
set of R+ and

∫ ε
0 ϕ(t)dt > 0 for each ε > 0, φ : R+ → R+ satisfies that

lim infn→∞ φ(an) > 0 if and only if lim infn→∞ an > 0 for each {an}n∈N ⊂
R+, ψ : R+ → R+ is continuous and monotone nondecreasing function with
ψ(t) = 0 if and only if t = 0. Then T has a unique fixed point a ∈ X such
that limn→∞ T

nx = a.
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Theorem 1.4. ([6]) Let T and S be two mappings from a complete metric
space (X, d) into itself satisfying

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
6 ψ

(∫ M(x,y)

0
ϕ(t)dt

)
− φ

(∫ M(x,y)

0
ϕ(t)dt)

)
, ∀x, y ∈ X,

(1.4)

where ϕ : R+ → R+ is Lebesgue integrable, summable on each compact subset
of R+ and

∫ ε
0 ϕ(t)dt > 0 for each ε > 0, φ : R+ → R+ is semi-continuous

and φ(t) = 0 if and only if t = 0, ψ : R+ → R+ is continuous and monotone
nondecreasing function with ψ(t) = 0 if and only if t = 0 and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Sy),

1

2
[d(y, Tx) + d(x, Sy)]

}
, ∀x, y ∈ X.

(1.5)

Then T and S have a unique common fixed point a ∈ X.

The purpose of this paper is both to study the existence and uniqueness of
common fixed point for certain four mappings satisfying contractive inequal-
ities of integral type in metric spaces, and to construct three examples to
illustrate that our results are proper generalizations of Theorem 1.2 and are
different from Theorems 1.1, 1.3 and 1.4.

Throughout this paper, we assume that R+ = [0,+∞),N0 = N ∪ {0}, N
denotes the set of all positive integers and

Φ1 =

{
ϕ : ϕ : R+ → R+ is Lebesgue integrable, summable on each

compact subset of R+ and

∫ ε

0
ϕ(t)dt > 0 for each ε > 0

}
,

Φ2 =
{
ϕ : ϕ : R+ → R+ satisfies that lim inf

n→∞
ϕ(an) > 0⇔ lim inf

n→∞
an > 0

for each {an}n∈N ⊂ R+
}
,

Φ3 = {ϕ : ϕ : R+ → R+ is continuous },
Φ4 = {ϕ : ϕ : R+ → R+ is semi-continuous and ϕ(t) = 0

if and only if t = 0},
Φ5 = {ϕ : ϕ : R+ → R+ is nondecreasing and continuous and

ϕ(t) = 0⇔ t = 0}.
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Definition 1.5. ([7]) A pair of self mappings f and g in a metric space (X, d)
is said to be weakly compatible if for all t ∈ X the equality ft = gt implies
fgt = gft.

Lemma 1.6. ([10]) Let ϕ ∈ Φ1 and {rn}n∈N be a nonnegative sequence with
limn→∞ rn = a. Then

lim
n→∞

∫ rn

0
ϕ(t)dt =

∫ a

0
ϕ(t)dt.

Lemma 1.7. ([9]) Let ϕ ∈ Φ2. Then ϕ(t) > 0 if and only if t > 0.

2. Common fixed point theorems

In this section, we show three common fixed point theorems for contractive
mappings of integral type (2.4), (2.15) and (2.19).

Theorem 2.1. Let A,B, S and T be mappings from a metric space (X, d)
into itself such that

{A, T} and {B,S} are weakly compatible; (2.1)

T (X) ⊆ B(X) and S(X) ⊆ A(X); (2.2)

one of A(X), B(X), S(X) and T (X) is complete; (2.3)

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
6 ψ

(∫ M1(x,y)

0
ϕ(t)dt

)
− φ

(∫ M1(x,y)

0
ϕ(t)dt

)
, ∀x, y ∈ X,

(2.4)

where (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and

M1(x, y)

=

{
d(Ax,By), d(Ax, Tx), d(By, Sy),

1

2
[d(Ax, Sy) + d(Tx,By)],

1 + d(Ax,By)

1 + d(By, Sy)
d(Ax, Tx),

1 + d(Ax,By)

1 + d(Ax, Tx)
d(By, Sy)

d2(Ax, Tx)

1 + d(Tx, Sy)
,
d2(By, Sy)

1 + d(Tx, Sy)

}
, ∀x, y ∈ X.

(2.5)

Then A,B, S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X. (2.2) guarantee that there are two sequences {xn}n∈N0

and {yn}n∈N in X such that

y2n+1 = Bx2n+1 = Tx2n, y2n+2 = Ax2n+2 = Sx2n+1, ∀n ∈ N0. (2.6)
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Put dn = d(yn, yn+1) for all n ∈ N. Suppose that d2n < d2n+1 for some n ∈ N.
Because of (2.4)-(2.6), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.2, we obtain
that

M1(x2n, x2n+1)

= max

{
d(Ax2n, Bx2n+1), d(Ax2n, Tx2n), d(Bx2n+1, Sx2n+1),

1

2
[d(Ax2n, Sx2n+1) + d(Tx2n, Bx2n+1)],

1 + d(Ax2n, Bx2n+1)

1 + d(Bx2n+1, Sx2n+1)
d(Ax2n, Tx2n),

1 + d(Ax2n, Bx2n+1)

1 + d(Ax2n, Tx2n)
d(Bx2n+1, Sx2n+1),

d2(Ax2n, Tx2n)

1 + d(Tx2n, Sx2n+1)
,
d2(Bx2n+1, Sx2n+1)

1 + d(Tx2n, Sx2n+1)

}
= max

{
d(y2n, y2n+1), d(y2n, y2n+1), d(y2n+1, y2n+2),

1

2
[d(y2n, y2n+2) + d(y2n+1, y2n+1)],

1 + d(y2n, y2n+1)

1 + d(y2n+1, y2n+2)
d(y2n, y2n+1),

1 + d(y2n, y2n+1)

1 + d(y2n, y2n+1)
d(y2n+1, y2n+2),

d2(y2n, y2n+1)

1 + d(y2n+1, y2n+2)
,

d2(y2n+1, y2n+2)

1 + d(y2n+1, y2n+2))

}
= max

{
d2n, d2n, d2n+1,

1

2
d(y2n, y2n+2),

1 + d2n
1 + d2n+1

d2n,

1 + d2n
1 + d2n

d2n+1,
d22n

1 + d2n+1
,

d22n+1

1 + d2n+1

}
= max{d2n, d2n+1} = d2n+1

and

ψ

(∫ d2n+1

0
ϕ(t)dt

)
= ψ

(∫ d(Tx2n,Sx2n+1)

0
ϕ(t)dt

)
6 ψ

(∫ M1(x2n,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M1(x2n,x2n+1)

0
ϕ(t)dt

)
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= ψ

(∫ d2n+1

0
ϕ(t)dt

)
− φ

(∫ d2n+1

0
ϕ(t)dt

)
< ψ

(∫ d2n+1

0
ϕ(t)dt

)
,

which is a contradiction. Hence

d2n+1 6 d2n = M1(x2n, x2n+1), ∀n ∈ N.
In the same way,

d2n 6 d2n−1 = M1(x2n, x2n−1), ∀n ∈ N.
That is,

dn+1 6 dn, d2n = M1(x2n, x2n+1),

d2n−1 = M1(x2n, x2n−1), ∀n ∈ N,
(2.7)

which implies that {dn}n∈N is nonincreasing sequence. Therefore, there exists
c ∈ R+ such that limn→∞ dn = c. Suppose that c > 0. In light of (2.4), (2.7),
(ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.1, we get that

ψ

(∫ c

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d2n+1

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tx2n,Sx2n+1)

0
ϕ(t)dt

)
6 lim sup

n→∞

[
ψ

(∫ M1(x2n,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M1(x2n,x2n+1)

0
ϕ(t)dt

)]
= lim sup

n→∞

[
ψ

(∫ d2n

0
ϕ(t)dt

)
− φ

(∫ d2n

0
ϕ(t)dt

)]
6 lim sup

n→∞
ψ

(∫ d2n

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ d2n

0
ϕ(t)dt

)
< ψ

(∫ c

0
ϕ(t)dt

)
,

which is absurd. Thus c = 0, which means that

lim
n→∞

dn = 0. (2.8)

In order to prove that {yn}n∈N is a Cauchy sequence, according to (2.8),
we need to prove that {y2n}n∈N is a Cauchy sequence. Otherwise, {y2n}n∈N is
not a Cauchy sequence. That is, there exists ε > 0 such that for each k ∈ N
there exist 2m(k), 2n(k) ∈ N with 2m(k) > 2n(k) > 2k satisfying

d(y2n(k), y2m(k)) ≥ ε. (2.9)
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For each k ∈ N, 2m(k) is the least integer exceeding 2n(k) satisfying (2.9). It
follows that

d(y2n(k), y2m(k)−2) < ε, ∀k ∈ N, (2.10)

which together with (2.9) and the triangle inequality give that

ε ≤ d(y2n(k), y2m(k))

≤ d(y2n(k), y2m(k)−2) + d(y2m(k)−2, y2m(k)−1) + d(y2m(k)−1, y2m(k))

< ε+ d2m(k)−2 + d2m(k)−1, ∀k ∈ N
(2.11)

and

|d(y2n(k), y2m(k)−1)− d(y2n(k), y2m(k))| ≤ d2m(k)−1, ∀k ∈ N;

|d(y2n(k)+1, y2m(k))− d(y2n(k), y2m(k))| ≤ d2n(k), ∀k ∈ N;

|d(y2n(k)+1, y2m(k)−1)− d(y2n(k), y2m(k)−1)| ≤ d2n(k), ∀k ∈ N.
(2.12)

Letting k →∞ in (2.11) and (2.12) and using (2.8), we have

lim
k→∞

d(y2n(k), y2m(k)) = lim
k→∞

d(y2n(k), y2m(k)−1)

= lim
k→∞

d(y2n(k)+1, y2m(k))

= lim
k→∞

d(y2n(k)+1, y2m(k)−1)

= ε.

(2.13)

In view of (2.4), (2.5), (2.13), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.1, we
claim that

M1(x2n(k), x2m(k)−1)

= max

{
d(Ax2n(k), Bx2m(k)−1), d(Ax2n(k), Tx2n(k)),

d(Bx2m(k)−1, Sx2m(k)−1),

1

2
[d(Ax2n(k), Sx2m(k)−1) + d(Tx2n(k), Bx2m(k)−1)],

1 + d(Ax2n(k), Bx2m(k)−1)

1 + d(Bx2m(k)−1, Sx2m(k)−1)
d(Ax2n(k), Tx2n(k)),

1 + d(Ax2n(k), Bx2m(k)−1)

1 + d(Ax2n(k), Tx2n(k))
d(Bx2m(k)−1, Sx2m(k)−1),

d2(Ax2n(k), Tx2n(k))

1 + d(Tx2n(k), Sx2m(k)−1)
,
d2(Bx2m(k)−1, Sx2m(k)−1)

1 + d(Tx2n(k), Sx2m(k)−1)

}
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= max

{
d(y2n(k), y2m(k)−1), d(y2n(k), y2n(k)+1), d(y2m(k)−1, y2m(k)),

1

2
[d(y2n(k), y2m(k)) + d(y2n(k)+1, y2m(k)−1)],

1 + d(y2n(k), y2m(k)−1)

1 + d(y2m(k)−1, y2m(k))
d(y2n(k), y2n(k)+1),

1 + d(y2n(k), y2m(k)−1)

1 + d(y2n(k), y2n(k)+1)
d(y2m(k)−1, y2m(k)),

d2(y2n(k), y2n(k)+1)

1 + d(y2n(k)+1, y2m(k))
,
d2(y2m(k)−1, y2m(k))

1 + d(y2n(k)+1, y2m(k))

}
→ max

{
ε, 0, 0,

1

2
(ε+ ε), 0, 0, 0, 0

}
= ε as k →∞

and

ψ

(∫ ε

0
ϕ(t)dt

)
= lim sup

k→∞
ψ

(∫ d(y2n(k)+1,y2m(k))

0
ϕ(t)dt

)
= lim sup

k→∞
ψ

(∫ d(Tx2n(k),Sx2m(k)−1)

0
ϕ(t)dt

)
6 lim sup

k→∞

[
ψ

(∫ M1(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
− φ

(∫ M1(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)]
6 lim sup

k→∞
ψ

(∫ M1(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
− lim inf

k→∞
φ

(∫ M1(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
< ψ

(∫ ε

0
ϕ(t)dt

)
,

which is impossible. Hence {yn}n∈N is a Cauchy sequence.
Assume that A(X) is complete. Obviously, {y2n}n∈N is a Cauchy sequence

in A(X). Therefore, there exists (z, w) ∈ A(X)×X such that limn→∞ y2n =
z = Aw. It is easy to see that

z = lim
n→∞

yn = lim
n→∞

Tx2n = lim
n→∞

Bx2n+1

= lim
n→∞

Sx2n−1 = lim
n→∞

Ax2n.
(2.14)
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Suppose that Tw 6= z. Taking account of (2.4), (2.5), (2.14), (ϕ, φ, ψ) ∈
Φ1 × Φ2 × Φ3 and Lemma 1.1, we derive that

M1(w, x2n+1)

= max

{
d(Aw,Bx2n+1), d(Aw, Tw), d(Bx2n+1, Sx2n+1),

1

2
[d(Aw,Sx2n+1) + d(Tw,Bx2n+1)],

1 + d(Aw,Bx2n+1)

1 + d(Bx2n+1, Sx2n+1)
d(Aw, Tw),

1 + d(Aw,Bx2n+1)

1 + d(Aw, Tw)
d(Bx2n+1, Sx2n+1),

d2(Aw, Tw)

1 + d(Tw, Sx2n+1)
,
d2(Bx2n+1, Sx2n+1)

1 + d(Tw, Sx2n+1)

}
→ max

{
d(Aw, z), d(Aw, Tw), d(z, z),

1

2
[d(Aw, z) + d(Tw, z)],

1 + d(Aw, z)

1 + d(z, z)
d(Aw, Tw),

1 + d(Aw, z)

1 + d(Aw, Tw)
d(z, z),

d2(Aw, Tw)

1 + d(Tw, z)
,

d2(z, z)

1 + d(Tw, z)

}
= max

{
0, d(z, Tw), 0,

1

2
d(Tw, z), d(z, Tw), 0,

d2(z, Tw)

1 + d(Tw, z)
, 0

}
= d(Tw, z) as n→∞

and

ψ

(∫ d(Tw,z)

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tw,Sx2n+1)

0
ϕ(t)dt

)
6 lim sup

n→∞

[
ψ

(∫ M1(w,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M1(w,x2n+1)

0
ϕ(t)dt

)]
6 lim sup

n→∞
ψ

(∫ M1(w,x2n+1)

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ M1(w,x2n+1)

0
ϕ(t)dt

)
< ψ

(∫ d(Tw,z)

0
ϕ(t)dt

)
,

which is a contradiction. Hence Tw = z. Making use of (2.2), we get that
there exists a point u ∈ X with z = Bu = Tw. Suppose that Su 6= z. In terms
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of (2.4), (2.5), (2.14), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.1, we deduce
that

M1(x2n, u)

= max

{
d(Ax2n, Bu), d(Ax2n, Tx2n), d(Bu, Su),

1

2
[d(Ax2n, Su) + d(Tx2n, Bu)],

1 + d(Ax2n, Bu)

1 + d(Bu, Su)
d(Ax2n, Tx2n),

1 + d(Ax2n, Bu)

1 + d(Ax2n, Tx2n)
d(Bu, Su),

d2(Ax2n, Tx2n)

1 + d(Tx2n, Su))
,

d2(Bu, Su)

1 + d(Tx2n, Su))

}
→ max

{
d(z,Bu), d(z, z), d(Bu, Su),

1

2
[d(z, Su) + d(z,Bu)],

1 + d(z,Bu)

1 + d(Bu, Su)
d(z, z),

1 + d(z,Bu)

1 + d(z, z)
d(Bu, Su),

d2(z, z)

1 + d(z, Su))
,
d2(Bu, Su)

1 + d(z, Su)

}
= max

{
0, 0, d(z, Su),

1

2
d(z, Su), 0, d(z, Su), 0,

d2(z, Su)

1 + d(z, Su)

}
= d(z, Su) as n→∞

and

ψ

(∫ d(z,Su)

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tx2n,Su)

0
ϕ(t)dt

)
6 lim sup

n→∞

[
ψ

(∫ M1(x2n,u)

0
ϕ(t)dt

)
− φ

(∫ M1(x2n,u)

0
ϕ(t)dt

)]
6 lim sup

n→∞
ψ

(∫ M1(x2n,u)

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ M1(x2n,u)

0
ϕ(t)dt

)
< ψ

(∫ d(z,Su)

0
ϕ(t)dt

)
,

which is absurd. Hence Su = z. By means of (2.1), we know that Az =
ATw = TAw = Tz and Bz = BSu = SBu = Sz. Suppose that Tz 6= Sz.
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Using (2.4), (2.5), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.2, we have

M1(z, z)

= max

{
d(Az,Bz), d(Az, Tz), d(Bz, Sz),

1

2
[d(Az, Sz) + d(Tz,Bz)],

1 + d(Az,Bz)

1 + d(Bz, Sz)
d(Az, Tz),

1 + d(Az,Bz)

1 + d(Az, Tz)
d(Bz, Sz),

d2(Az, Tz)

1 + d(Tz, Sz))
,

d2(Bz, Sz)

1 + d(Tz, Sz))

}
= max

{
d(Tz, Sz), 0, 0,

1

2
[d(Tz, Sz) + d(Tz, Sz)], 0, 0, 0, 0

}
= d(Tz, Sz)

and

ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
6 ψ

(∫ M1(z,z)

0
ϕ(t)dt

)
− φ

(∫ M1(z,z)

0
ϕ(t)dt

)
= ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
− φ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
< ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
,

which is impossible. Hence Tz = Sz. That is, Az = Tz = Bz = Sz.
Suppose that Tz 6= z. On account of (2.4), (2.5), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3

and Lemma 1.2, we attain that

M1(z, u)

= max

{
d(Az,Bu), d(Az, Tz), d(Bu, Su),

1

2
[d(Az, Su) + d(Tz,Bu)],

1 + d(Az,Bu)

1 + d(Bu, Su)
d(Az, Tz),

1 + d(Az,Bu)

1 + d(Az, Tz)
d(Bu, Su),

d2(Az, Tz)

1 + d(Tz, Su))
,

d2(Bu, Su)

1 + d(Tz, Su))

}
= max

{
d(Tz, z), 0, 0,

1

2
[d(Tz, z) + d(Tz, z)], 0, 0, 0, 0

}
= d(Tz, z)
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and

ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
= ψ

(∫ d(Tz,Su)

0
ϕ(t)dt

)
6 ψ

(∫ M1(z,u)

0
ϕ(t)dt

)
− φ

(∫ M1(z,u)

0
ϕ(t)dt

)
= ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
− φ

(∫ d(Tz,z)

0
ϕ(t)dt

)
< ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
,

which is ridiculous. Therefore, Tz = z, which implies that z is a common fixed
point of A,B, S and T .

Suppose that A,B, S and T have a common fixed point b ∈ X \ {z}. Using
(2.4), (2.5), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.2, we arrive at

M1(b, z)

= max

{
d(Ab,Bz), d(Ab, Tb), d(Bz, Sz),

1

2
[d(Ab, Sz) + d(Tb,Bz)],

1 + d(Ab,Bz)

1 + d(Bz, Sz)
d(Ab, Tb),

1 + d(Ab,Bz)

1 + d(Ab, Tb)
d(Bz, Sz),

d2(Ab, Tb)

1 + d(Tb, Sz))
,

d2(Bz, Sz)

1 + d(Tb, Sz))

}
= max

{
d(b, z), 0, 0,

1

2
[d(b, z) + d(b, z)], 0, 0, 0, 0

}
= d(b, z)

and

ψ

(∫ d(b,z)

0
ϕ(t)dt

)
= ψ

(∫ d(Tb,Sz)

0
ϕ(t)dt

)
6 ψ

(∫ M1(b,z)

0
ϕ(t)dt

)
− φ

(∫ M1(b,z)

0
ϕ(t)dt

)
= ψ

(∫ d(b,z)

0
ϕ(t)dt

)
− φ

(∫ d(b,z)

0
ϕ(t)dt

)
< ψ

(∫ d(b,z)

0
ϕ(t)dt

)
,

which is a contradiction. Hence A,B, S and T have a unique common fixed
point in X. Analogously we infer that A,B, S and T have a unique common
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fixed point in X if one of B(X), S(X) and T (X) is complete. This completes
the proof. �

Theorem 2.2. Let A,B, S and T be mappings from a metric space (X, d)
into itself satisfying (2.1)-(2.3) and

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
6 ψ

(∫ M2(x,y)

0
ϕ(t)dt

)
− φ

(∫ M2(x,y)

0
ϕ(t)dt

)
, ∀x, y ∈ X,

(2.15)

where (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and

M2(x, y) =

{
d(Ax,By), d(Ax, Tx), d(By, Sy),

1

2
[d(Ax, Sy) + d(Tx,By)],

1 + d(Ax, Sy)

2 + d(Tx, Sy)
d(Tx,By),

1 + d(Tx,By)

2 + d(Tx, Sy)
d(Ax, Sy),

1 + d(Ax, Sy)

1 + 2d(Tx, Sy)
d(Ax,By),

1 + d(Tx,By)

1 + 2d(Tx, Sy)
d(Ax,By)

}
, ∀x, y ∈ X.

(2.16)

Then A,B, S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X. By virtue of (2.2), we get that there are two sequences
{xn}n∈N0 and {yn}n∈N in X such that (2.6) holds. Put dn = d(yn, yn+1) for
all n ∈ N. Suppose that d2n < d2n+1 for some n ∈ N. Apparently,

d2n+1 −
d(y2n, y2n+2)

2 + d2n+1
>

2d2n+1 + d22n+1 − d2n − d2n+1

2 + d2n+1
> 0 (2.17)

and

d2n+1 −
1 + d(y2n, y2n+2)

1 + 2d2n+1
d2n >

d2n+1 + 2d22n+1 − d2n − d2nd2n+1 − d22n
1 + 2d2n+1

> 0,
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which together with (2.6), (2.15)-(2.17), (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3 and Lemma
1.2 ensure that

M2(x2n, x2n+1)

= max

{
d(Ax2n, Bx2n+1), d(Ax2n, Tx2n), d(Bx2n+1, Sx2n+1),

1

2
[d(Ax2n, Sx2n+1) + d(Tx2n, Bx2n+1)]

1 + d(Ax2n, Sx2n+1)

2 + d(Tx2n, Sx2n+1)
d(Tx2n, Bx2n+1),

1 + d(Tx2n, Bx2n+1)

2 + d(Tx2n, Sx2n+1)
d(Ax2n, Sx2n+1),

1 + d(Ax2n, Sx2n+1)

1 + 2d(Tx2n, Sx2n+1)
d(Ax2n, Bx2n+1),

1 + d(Tx2n, Bx2n+1)

1 + 2d(Tx2n, Sx2n+1)
d(Ax2n, Bx2n+1)

}
= max

{
d(y2n, y2n+1), d(y2n, y2n+1), d(y2n+1, y2n+2),

1

2
[d(y2n, y2n+2) + d(y2n+1, y2n+1)],

1 + d(y2n, y2n+2)

2 + d(y2n+1, y2n+2)
d(y2n+1, y2n+1),

1 + d(y2n+1, y2n+1)

2 + d(y2n+1, y2n+2)
d(y2n, y2n+2),

1 + d(y2n, y2n+2)

1 + 2d(y2n+1, y2n+2)
d(y2n, y2n+1),

1 + d(y2n+1, y2n+1)

1 + 2d(y2n+1, y2n+2)
d(y2n, y2n+1)

}
= max

{
d2n, d2n, d2n+1,

1

2
d(y2n, y2n+2), 0,

d(y2n, y2n+2)

2 + d2n+1

1 + d(y2n, y2n+2)

1 + 2d2n+1
d2n,

d2n
1 + 2d2n+1

}
= max{d2n, d2n+1} = d2n+1

and

ψ

(∫ d2n+1

0
ϕ(t)dt

)
= ψ

(∫ d(Tx2n,Sx2n+1)

0
ϕ(t)dt

)
6 ψ

(∫ M2(x2n,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M2(x2n,x2n+1)

0
ϕ(t)dt

)
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= ψ

(∫ d2n+1

0
ϕ(t)dt

)
− φ

(∫ d2n+1

0
ϕ(t)dt

)
< ψ

(∫ d2n+1

0
ϕ(t)dt

)
,

which is impossible. Hence

d2n+1 6 d2n = M2(x2n, x2n+1), ∀n ∈ N.

In the same manner, we get that

d2n 6 d2n−1 = M2(x2n, x2n−1), ∀n ∈ N.

That is,

dn+1 6 dn, d2n = M2(x2n, x2n+1),

d2n−1 = M2(x2n, x2n−1), ∀n ∈ N,
(2.18)

which implies that {dn}n∈N is nonincreasing sequence. Observe that there
exists c ∈ R+ such that limn→∞ dn = c. Suppose that c > 0. In virtue of
(2.15), (2.18), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.1, we claim that

ψ

(∫ c

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d2n+1

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tx2n,Sx2n+1)

0
ϕ(t)dt

)
6 lim sup

n→∞

[
ψ

(∫ M2(x2n,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M2(x2n,x2n+1)

0
ϕ(t)dt

)]
= lim sup

n→∞

[
ψ

(∫ d2n

0
ϕ(t)dt

)
− φ

(∫ d2n

0
ϕ(t)dt

)]
6 lim sup

n→∞
ψ

(∫ d2n

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ d2n

0
ϕ(t)dt

)
< ψ

(∫ c

0
ϕ(t)dt

)
,

which is a contradiction. Thus c = 0, that is, (2.8) holds.
Now we assert that {yn}n∈N is a Cauchy sequence. Due to (2.8), we need

to prove that {y2n}n∈N is a Cauchy sequence. On the contrary, {y2n}n∈N is
not a Cauchy sequence. That is, there exists ε > 0 such that for each k ∈ N
there exist 2m(k), 2n(k) ∈ N with 2m(k) > 2n(k) > 2k satisfying (2.9)-(2.13).
It follows from (2.13), (2.15), (2.16), (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3 and Lemma 1.1
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that

M2(x2n(k), x2m(k)−1)

= max

{
d(Ax2n(k), Bx2m(k)−1), d(Ax2n(k), Tx2n(k)),

d(Bx2m(k)−1, Sx2m(k)−1),

1

2
[d(Ax2n(k), Sx2m(k)−1) + d(Tx2n(k), Bx2m(k)−1)],

1 + d(Ax2n(k), Sx2m(k)−1)

2 + d(Tx2n(k), Sx2m(k)−1)
d(Tx2n(k), Bx2m(k)−1),

1 + d(Tx2n(k), Bx2m(k)−1)

2 + d(Tx2n(k), Sx2m(k)−1)
d(Ax2n(k), Sx2m(k)−1),

1 + d(Ax2n(k), Sx2m(k)−1)

1 + 2d(Tx2n(k), Sx2m(k)−1)
d(Ax2n(k), Bx2m(k)−1),

1 + d(Tx2n(k), Bx2m(k)−1)

1 + 2d(Tx2n(k), Sx2m(k)−1)
d(Ax2n(k), Bx2m(k)−1)

}
= max

{
d(y2n(k), y2m(k)−1), d(y2n(k), y2n(k)+1), d(y2m(k)−1, y2m(k)),

1

2
[d(y2n(k), y2m(k)) + d(y2n(k)+1, y2m(k)−1)],

1 + d(y2n(k), y2m(k))

2 + d(y2n(k)+1, y2m(k))
d(y2n(k)+1, y2m(k)−1),

1 + d(y2n(k)+1, y2m(k)−1)

2 + d(y2n(k)+1, y2m(k))
d(y2n(k), y2m(k)),

1 + d(y2n(k), y2m(k))

1 + 2d(y2n(k)+1, y2m(k))
d(y2n(k), y2m(k)−1),

1 + d(y2n(k)+1, y2m(k)−1)

1 + 2d(y2n(k)+1, y2m(k))
d(y2n(k), y2m(k)−1)

}
→ max

{
ε, 0, 0,

1

2
(ε+ ε),

1 + ε

2 + ε
ε,

1 + ε

2 + ε
ε,

1 + ε

1 + 2ε
ε,

1 + ε

1 + 2ε
ε

}
= ε as k →∞

and

ψ

(∫ ε

0
ϕ(t)dt

)
= lim sup

k→∞
ψ

(∫ d(y2n(k)+1,y2m(k))

0
ϕ(t)dt

)
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= lim sup
k→∞

ψ

(∫ d(Tx2n(k),Sx2m(k)−1)

0
ϕ(t)dt

)
6 lim sup

k→∞

[
ψ

(∫ M2(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
− φ

(∫ M2(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)]
6 lim sup

k→∞
ψ

(∫ M2(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
− lim inf

k→∞
φ

(∫ M2(x2n(k),x2m(k)−1)

0
ϕ(t)dt

)
< ψ

(∫ ε

0
ϕ(t)dt

)
,

which is absurd. Therefore, {yn}n∈N is a Cauchy sequence.
Assume that A(X) is complete. It is clear that {y2n}n∈N is a Cauchy se-

quence in A(X). Therefore, there exists (z, w) ∈ A(X)×X with limn→∞ y2n =
z = Aw. It is obvious that (2.14) holds. Suppose that Tw 6= z. Notice that
(2.14)-(2.16), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.1 yield that

M2(w, x2n+1)

= max

{
d(Aw,Bx2n+1), d(Aw, Tw), d(Bx2n+1, Sx2n+1),

1

2
[d(Aw,Sx2n+1) + d(Tw,Bx2n+1)],

1 + d(Aw,Sx2n+1)

2 + d(Tw, Sx2n+1)
d(Tw,Bx2n+1),

1 + d(Tw,Bx2n+1)

2 + d(Tw, Sx2n+1)
d(Aw,Sx2n+1),

1 + d(Aw,Sx2n+1)

1 + 2d(Tw, Sx2n+1)
d(Aw,Bx2n+1),

1 + d(Tw,Bx2n+1)

1 + 2d(Tw, Sx2n+1)
d(Aw,Bx2n+1)

}
→ max

{
d(Aw, z), d(Aw, Tw), d(z, z),

1

2
[d(Aw, z) + d(Tw, z)],

1 + d(Aw, z)

2 + d(Tw, z)
d(Tw, z),

1 + d(Tw, z)

2 + d(Tw, z)
d(Aw, z),

1 + d(Aw, z)

1 + 2d(Tw, z)
d(Aw, z),

1 + d(Tw, z)

1 + 2d(Tw, z)
d(Aw, z)

}
= max

{
0, d(z, Tw), 0,

1

2
d(Tw, z),

d(Tw, z)

2 + d(Tw, z)
, 0, 0, 0

}
= d(Tw, z) as n→∞
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and

ψ

(∫ d(Tw,z)

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tw,Sx2n+1)

0
ϕ(t)dt

)
6 lim sup

n→∞

[
ψ

(∫ M2(w,x2n+1)

0
ϕ(t)dt

)
− φ

(∫ M2(w,x2n+1)

0
ϕ(t)dt

)]
6 lim sup

n→∞
ψ

(∫ M2(w,x2n+1)

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ M2(w,x2n+1)

0
ϕ(t)dt

)
< ψ

(∫ d(Tw,z)

0
ϕ(t)dt

)
,

which is absurd. Thus Tw = z. By means of (2.2), we gain that there exists
a point u ∈ X with z = Bu = Tw. Suppose that Su 6= z. Taking advantage
of (2.14)-(2.16), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.1, we derive that

M2(x2n, u)

= max

{
d(Ax2n, Bu), d(Ax2n, Tx2n), d(Bu, Su),

1

2
[d(Ax2n, Su) + d(Tx2n, Bu)],

1 + d(Ax2n, Su)

2 + d(Tx2n, Su)
d(Tx2n, Bu),

1 + d(Tx2n, Bu)

2 + d(Tx2n, Su)
d(Ax2n, Su),

1 + d(Ax2n, Su)

1 + 2d(Tx2n, Su)
d(Ax2n, Bu),

1 + d(Tx2n, Bu)

1 + 2d(Tx2n, Su)
d(Ax2n, Bu)

}
→ max

{
d(z,Bu), d(z, z), d(Bu, Su),

1

2
[d(z, Su) + d(z,Bu)],

1 + d(z, Su)

2 + d(z, Su)
d(z,Bu),

1 + d(z,Bu)

2 + d(z, Su)
d(z, Su),

1 + d(z, Su)

1 + 2d(z, Su)
d(z,Bu),

1 + d(z,Bu)

1 + 2d(z, Su)
d(z,Bu)

}
= max

{
0, 0, d(z, Su),

1

2
d(z, Su), 0,

d(z, Su)

1 + d(z, Su)
, 0, 0

}
= d(z, Su) as n→∞
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and

ψ

(∫ d(z,Su)

0
ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ d(Tx2n,Su)

0
ϕ(t)dt

)
6 lim sup

n→∞

[
ψ

(∫ M2(x2n,u)

0
ϕ(t)dt

)
− φ

(∫ M2(x2n,u)

0
ϕ(t)dt

)]
6 lim sup

n→∞
ψ

(∫ M2(x2n,u)

0
ϕ(t)dt

)
− lim inf

n→∞
φ

(∫ M2(x2n,u)

0
ϕ(t)dt

)
< ψ

(∫ d(z,Su)

0
ϕ(t)dt

)
,

which is a contradiction. Hence Su = z. Using (2.1), we know that Az =
ATw = TAw = Tz and Bz = BSu = SBu = Sz. Suppose that Tz 6= Sz. It
follows from (2.15), (2.16), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.2 that

M2(z, z)

= max

{
d(Az,Bz), d(Az, Tz), d(Bz, Sz),

1

2
[d(Az, Sz) + d(Tz,Bz)],

1 + d(Az, Sz)

2 + d(Tz, Sz)
d(Tz,Bz),

1 + d(Tz,Bz)

2 + d(Tz, Sz)
d(Az, Sz),

1 + d(Az, Sz)

1 + 2d(Tz, Sz)
d(Az,Bz),

1 + d(Tz,Bz)

1 + 2d(Tz, Sz)
d(Az,Bz)

}
= max

{
d(Tz, Sz), 0, 0,

1

2
[d(Tz, Sz) + d(Tz, Sz)], d(Tz, Sz),

1 + d(Tz, Sz)

2 + d(Tz, Sz)
d(Tz, Sz),

1 + d(Tz, Sz)

2 + d(Tz, Sz)
d(Tz, Sz),

1 + d(Tz, Sz)

1 + 2d(Tz, Sz)
d(Tz, Sz),

1 + d(Tz, Sz)

1 + 2d(Tz, Sz)
d(Tz, Sz)

}
= d(Tz, Sz)

and

ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
6 ψ

(∫ M2(z,z)

0
ϕ(t)dt

)
− φ

(∫ M2(z,z)

0
ϕ(t)dt

)
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= ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
− φ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
< ψ

(∫ d(Tz,Sz)

0
ϕ(t)dt

)
,

which is absurd. Hence Tz = Sz, which yields that Az = Bz = Tz = Sz.
Suppose that Tz 6= z. Taking account of (2.15), (2.16), (ϕ, φ, ψ) ∈ Φ1 ×

Φ2 × Φ3 and Lemma 1.2, we have

M2(z, u)

= max

{
d(Az,Bu), d(Az, Tz), d(Bu, Su),

1

2
[d(Az, Su) + d(Tz,Bu)],

1 + d(Az, Su)

2 + d(Tz, Su)
d(Tz,Bu),

1 + d(Tz,Bu)

2 + d(Tz, Su)
d(Az, Su),

1 + d(Az, Su)

1 + 2d(Tz, Su)
d(Az,Bu),

1 + d(Tz,Bu)

1 + 2d(Tz, Su)
d(Az,Bu)

}
= max

{
d(Tz, z), 0, 0,

1

2
[d(Tz, z) + d(Tz, z)],

1 + d(Tz, z)

2 + d(Tz, z)
d(Tz, z),

1 + d(Tz, z)

2 + d(Tz, z)
d(Tz, z),

1 + d(Tz, z)

1 + 2d(Tz, z)
d(Tz, z),

1 + d(Tz, z)

1 + 2d(Tz, z)
d(Tz, z)

}
= d(Tz, z)

and

ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
= ψ

(∫ d(Tz,Su)

0
ϕ(t)dt

)
6 ψ

(∫ M2(z,u)

0
ϕ(t)dt

)
− φ

(∫ M2(z,u)

0
ϕ(t)dt

)
= ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
− φ

(∫ d(Tz,z)

0
ϕ(t)dt

)
< ψ

(∫ d(Tz,z)

0
ϕ(t)dt

)
,

which is ridiculous. Therefore, Tz = z, that is, z is a common fixed point of
A,B, S and T .

Suppose that A,B, S and T have another common fixed point b ∈ X \ {z}.
Making use of (2.15), (2.16), (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and Lemma 1.2, we
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claim that

M2(b, z)

= max

{
d(Ab,Bz), d(Ab, Tb), d(Bz, Sz),

1

2
[d(Ab, Sz) + d(Tb,Bz)],

1 + d(Ab, Sz)

2 + d(Tb, Sz)
d(Tb,Bz),

1 + d(Tb,Bz)

2 + d(Tb, Sz)
d(Ab, Sz),

1 + d(Ab, Sz)

1 + 2d(Tb, Sz)
d(Ab,Bz),

1 + d(Tb,Bz)

1 + 2d(Tb, Sz)
d(Ab,Bz)

}
= max

{
d(b, z), 0, 0,

1

2
[d(b, z) + d(b, z)], d(b, z),

1 + d(b, z)

2 + d(b, z)
d(b, z),

1 + d(b, z)

2 + d(b, z)
d(b, z),

1 + d(b, z)

1 + 2d(b, z)
d(b, z),

1 + d(b, z)

1 + 2d(b, z)
d(b, z)

}
= d(b, z)

and

ψ

(∫ d(b,z)

0
ϕ(t)dt

)
= ψ

(∫ d(Tb,Sz)

0
ϕ(t)dt

)
6 ψ

(∫ M2(b,z)

0
ϕ(t)dt

)
− φ

(∫ M2(b,z)

0
ϕ(t)dt

)
= ψ

(∫ d(b,z)

0
ϕ(t)dt

)
− φ

(∫ d(b,z)

0
ϕ(t)dt

)
< ψ

(∫ d(b,z)

0
ϕ(t)dt

)
,

which is a contradiction. Hence z is a unique common fixed point of A,B, S
and T in X.

Analogously we conclude that A,B, S and T have a unique common fixed
point in X if one of B(X), S(X) and T (X) is complete. This completes the
proof. �

Similar to the proof of Theorems 2.1 and 2.2, we have the following result
and omit its proof.
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Theorem 2.3. Let A,B, S and T be mappings from a metric space (X, d)
into itself satisfying (2.1)− (2.3) and

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
6 ψ

(∫ M3(x,y)

0
ϕ(t)dt

)
− φ

(∫ M3(x,y)

0
ϕ(t)dt

)
, ∀x, y ∈ X,

(2.19)

where (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ3 and

M3(x, y)

=

{
d(Ax,By), d(Ax, Tx), d(By, Sy),

1

2
[d(Ax, Sy) + d(Tx,By)],

1 + d(Ax, Sy)

1 + 2d(Tx, Sy)
d(By, Sy),

1 + d(Tx,By)

1 + 2d(Tx, Sy)
d(Ax, Tx),

1 + d(Ax, Sy)d(Tx,By)

1 + d(Ax,By)d(Tx, Sy)
d(Ax, Tx),

1 + d(Ax, Sy)d(Tx,By)

1 + d(Ax,By)d(Tx, Sy)
d(By, Sy)

}
, ∀x, y ∈ X.

(2.20)

Then A,B, S and T have a unique common fixed point in X.

3. Remark and examples

Remark 3.1. Theorems 2.1-2.3 generalize Theorem 1.2. Examples 3.1-3.3
show that Theorems 2.1-2.3 extend substantially Theorem 1.2, and differ from
Theorems 1.1, 1.3 and 1.4.

Example 3.2. Let X = R+ be endowed with the Euclidean metric d(x, y) =
|x− y| for all x, y ∈ X. Define A,B, S, T : X → X and ϕ, φ, ψ : R+ → R+ by

Ax = 2x, Bx = x2, Sx = 0, ∀x ∈ X,

Tx =

{
0, ∀x ∈ X \ {18},
1
16 , x = 1

8 ,

ψ(t) = log2(t+ 1), ϕ(t) = 2t ln 2, ∀t ∈ R+,

φ(t) =

{
log256(t+ 1), ∀t ∈ [0,

√
2− 1],

1
16 , ∀t ∈ (

√
2− 1, +∞).

It is easy to see that (2.1)-(2.3) hold, (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3, ψ is increasing,
supφ(R+) 6 1

16 and ψ(t) > 1
2 >

1
16 = φ(t) for each t ∈ (

√
2− 1, +∞), that is,
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ψ(t) > φ(t) for each t ∈ R+. Let x, y ∈ X. In order to prove (2.1), we need to
consider two possible cases as follows:
Case 1. x ∈ X \ {18}. Obviously

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
= 0 6 ψ

(∫ M1(x,y)

0
ϕ(t)dt

)
− φ

(∫ M1(x,y)

0
ϕ(t)dt

)
;

Case 2. x = 1
8 . Clearly

M1(x, y) > d(Ax, Tx) =
1

4
− 1

16
=

3

16

and

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
= ψ

(∫ 1
16

0
ϕ(t)dt

)
= ψ

(
2

1
16 − 1

)
= log2 2

1
16 =

1

16
<

3

16
− 1

16

6 ψ

(∫ 3
16

0
ϕ(t)dt

)
− φ

(∫ M1(x,y)

0
ϕ(t)dt

)
6 ψ

(∫ M1(x,y)

0
ϕ(t)dt

)
− φ

(∫ M1(x,y)

0
ϕ(t)dt

)
.

Thus, (2.1) holds. It follows from Theorem 2.1 that the mappings A,B, S and
T have a unique common fixed point 0 ∈ X. But Theorems 1.1-1.4 are useless
in proving the existence of fixed points of T and common fixed points of T
and S in X.

Suppose that there exist φ and ψ ∈ Φ5 satisfy the conditions of Theorem
1.1. It follows from (1.1) that

ψ

(
1

16

)
= ψ

(
d

(
T

1

8
, T

1

16

))
6 ψ

(
d

(
1

8
,

1

16

))
− φ

(
d

(
1

8
,

1

16

))
= ψ

(
1

16

)
− φ

(
1

16

)
< ψ

(
1

16

)
,

which is absurd.
Suppose that there exist c ∈ (0, 1) and ϕ ∈ Φ1 satisfy the conditions of

Theorem 1.2. By (1.2), we get that

0 <

∫ 1
16

0
ϕ(t)dt =

∫ d(T 1
8
,T 1

16
)

0
ϕ(t)dt 6 c

∫ d( 1
8
, 1
16

)

0
ϕ(t)dt <

∫ 1
16

0
ϕ(t)dt,

which is a contradiction.
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Suppose that there exists (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ5 satisfies the conditions
of Theorem 1.3. Using (1.3), we gain that

ψ

(∫ 1
16

0
ϕ(t)dt

)
= ψ

(∫ d(T 1
8
,T 1

16
)

0
ϕ(t)dt

)
6 ψ

(∫ d( 1
8
, 1
16

)

0
ϕ(t)dt

)
− φ

(∫ d( 1
8
, 1
16

)

0
ϕ(t)dt

)
= ψ

(∫ 1
16

0
ϕ(t)dt

)
− φ

(∫ 1
16

0
ϕ(t)dt

)
< ψ

(∫ 1
16

0
ϕ(t)dt

)
,

which is impossible.
Suppose that there exists (ϕ, φ, ψ) ∈ Φ1 × Φ4 × Φ5 satisfies the conditions

of Theorem 1.4. It follows from (1.4) and (1.5) that

M

(
1

8
,

1

16

)
= max

{
d

(
1

8
,

1

16

)
, d

(
1

8
, T

1

8

)
, d

(
1

16
, S

1

16

)
,

1

2

[
d

(
1

16
, T

1

8

)
+ d

(
1

8
, S

1

16

)]}
=

1

16

and

ψ

(∫ 1
16

0
ϕ(t)dt

)
= ψ

(∫ d(T 1
8
,S 1

16
)

0
ϕ(t)dt

)
6 ψ

(∫ M( 1
8
, 1
16

)

0
ϕ(t)dt

)
− φ

(∫ M( 1
8
, 1
16

)

0
ϕ(t)dt

)
= ψ

(∫ 1
16

0
ϕ(t)dt

)
− φ

(∫ 1
16

0
ϕ(t)dt

)
< ψ

(∫ 1
16

0
ϕ(t)dt

)
,

which is absurd.

Example 3.3. Let X = R+ be endowed with the Euclidean metric d(x, y) =
|x− y| for all x, y ∈ X. Define A,B, S, T : X → X and ϕ, φ, ψ : R+ → R+ by

Ax =

{
0, ∀x ∈ X \ {14},
1
2 , ∀x = 1

4 ,
Tx =

{
0, ∀x ∈ X \ {14},
1
8 , ∀x = 1

4 ,
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Bx = x, Sx = 0, ∀x ∈ X,

ψ(t) = 64t, ϕ(t) = 2t, φ(t) =
t

t+ 1
, ∀t ∈ R+.

It is easy to see that (2.1)-(2.3) hold, (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3, ψ is increasing,
ψ(t) > φ(t) and φ(t) < 1 for each t ∈ R+. Let x, y ∈ X. In order to prove
(2.15), we need to consider two possible cases as follows:
Case 1. x ∈ X \ {14}. It is easy to see that

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
= 0 6 ψ

(∫ M2(x,y)

0
ϕ(t)dt

)
− φ

(∫ M2(x,y)

0
ϕ(t)dt

)
;

Case 2. x = 1
4 . It is clear that

M2(x, y) > d(Ax, Tx) =
1

2
− 1

8
=

3

8

and

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
= ψ

(∫ 1
8

0
ϕ(t)dt

)
= 1 < 9− 1

< ψ

(∫ 3
8

0
ϕ(t)dt

)
− φ

(∫ M2(x,y)

0
ϕ(t)dt

)
6 ψ

(∫ M2(x,y)

0
ϕ(t)dt

)
− φ

(∫ M2(x,y)

0
ϕ(t)dt

)
.

Thus, (2.15) holds. It follows from Theorem 2.2 that the mappings A,B, S
and T have a unique common fixed point 0 ∈ X. But Theorems 1.1-1.4 are
useless in proving the existence of fixed points of T and common fixed points
of T and S in X.

Suppose that there exist φ and ψ ∈ Φ5 satisfy the conditions of Theorem
1.1. It follows from (1.1) that

ψ

(
1

8

)
= ψ

(
d

(
T

1

4
, T

1

8

))
6 ψ

(
d

(
1

4
,
1

8

))
− φ

(
d

(
1

4
,
1

8

))
= ψ

(
1

8

)
− φ

(
1

8

)
< ψ

(
1

8

)
,

which is absurd.
Suppose that there exist c ∈ (0, 1) and ϕ ∈ Φ1 satisfy the conditions of

Theorem 1.2. By (1.2), we get that

0 <

∫ 1
8

0
ϕ(t)dt =

∫ d(T 1
4
,T 1

8
)

0
ϕ(t)dt 6 c

∫ d( 1
4
, 1
8
)

0
ϕ(t)dt <

∫ 1
8

0
ϕ(t)dt,

which is a contradiction.
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Suppose that there exists (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ5 satisfies the conditions
of Theorem 1.3. Using (1.3), we gain that

ψ

(∫ 1
8

0
ϕ(t)dt

)
= ψ

(∫ d(T 1
4
,T 1

8
)

0
ϕ(t)dt

)
6 ψ

(∫ d( 1
4
, 1
8
)

0
ϕ(t)dt

)
− φ

(∫ d( 1
4
, 1
8
)

0
ϕ(t)dt

)
= ψ

(∫ 1
8

0
ϕ(t)dt

)
− φ

(∫ 1
8

0
ϕ(t)dt

)
< ψ

(∫ 1
8

0
ϕ(t)dt

)
,

which is impossible.
Suppose that there exists (ϕ, φ, ψ) ∈ Φ1 × Φ4 × Φ5 satisfies the conditions

of Theorem 1.4. It follows from (1.4) and (1.5) that

M

(
1

4
,
1

8

)
= max

{
d

(
1

4
,
1

8

)
, d

(
1

4
, T

1

4

)
, d

(
1

8
, S

1

8

)
,

1

2

[
d

(
1

8
, T

1

4

)
+ d

(
1

4
, S

1

8

)]}
=

1

8

and

ψ

(∫ 1
8

0
ϕ(t)dt

)
= ψ

(∫ d(T 1
4
,S 1

8
)

0
ϕ(t)dt

)
6 ψ

(∫ M( 1
4
, 1
8
)

0
ϕ(t)dt

)
− φ

(∫ M( 1
4
, 1
8
)

0
ϕ(t)dt

)
= ψ

(∫ 1
8

0
ϕ(t)dt

)
− φ

(∫ 1
8

0
ϕ(t)dt

)
< ψ

(∫ 1
8

0
ϕ(t)dt

)
,

which is absurd.

Example 3.4. Let X = [0, 1] be endowed with the Euclidean metric d(x, y) =
|x− y| for all x, y ∈ X. Define A,B, S, T : X → X and ϕ, φ, ψ : R+ → R+ by

Tx =

{
2
3 , ∀x ∈ [0, 1

3 ],

1, ∀x ∈ (13 , 1],
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Ax = x2, Bx = x, Sx = 1, ∀x ∈ X,

ψ(t) = 9t, ϕ(t) = 1, φ(t) =
t

10t+ 1
, ∀t ∈ R+.

It is easy to see that (2.1)-(2.3) hold, (ϕ, φ, ψ) ∈ Φ1×Φ2×Φ3, ψ is increasing,
ψ(t) > φ(t) for each t ∈ R+ and supφ(R+) 6 1

10 . Let x, y ∈ X. In order to
prove (2.19), we need to consider two possible cases as follows:
Case 1. x ∈ [0, 1

3 ]. It follows that

M3(x, y) > d(Ax, Tx) =

∣∣∣∣x2 − 2

3

∣∣∣∣ > 5

9

and

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
= ψ

(∫ 1
3

0
ϕ(t)dt

)
= 3 < 5− 1

10

6 ψ

(∫ 5
9

0
ϕ(t)dt

)
− φ

(∫ M3(x,y)

0
ϕ(t)dt

)
6 ψ

(∫ M3(x,y)

0
ϕ(t)dt

)
− φ

(∫ M3(x,y)

0
ϕ(t)dt

)
;

Case 2. x ∈ (13 , 1]. Clearly

ψ

(∫ d(Tx,Sy)

0
ϕ(t)dt

)
= 0 6 ψ

(∫ M3(x,y)

0
ϕ(t)dt

)
− φ

(∫ M3(x,y)

0
ϕ(t)dt

)
.

Thus, (2.19) holds. It follows from Theorem 2.3 that the mappings A,B, S
and T have a unique common fixed point 1 ∈ X. But Theorems 1.1-1.4 are
useless in proving the existence of fixed points of T and common fixed points
of T and S in X.

Suppose that there exist φ and ψ ∈ Φ5 satisfy the conditions of Theorem
1.1. It follows from (1.1) that

ψ

(
1

3

)
= ψ

(
d

(
T

2

3
, T

1

3

))
6 ψ

(
d

(
2

3
,
1

3

))
− φ

(
d

(
2

3
,
1

3

))
= ψ

(
1

3

)
− φ

(
1

3

)
< ψ

(
1

3

)
,

which is absurd.
Suppose that there exist c ∈ (0, 1) and ϕ ∈ Φ1 satisfy the conditions of

Theorem 1.2. By (1.2), we get that

0 <

∫ 1
3

0
ϕ(t)dt =

∫ d(T 2
3
,T 1

3
)

0
ϕ(t)dt 6 c

∫ d( 2
3
, 1
3
)

0
ϕ(t)dt <

∫ 1
3

0
ϕ(t)dt,

which is a contradiction.
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Suppose that there exists (ϕ, φ, ψ) ∈ Φ1 × Φ2 × Φ5 satisfies the conditions
of Theorem 1.3. Using (1.3), we gain that

ψ

(∫ 1
3

0
ϕ(t)dt

)
= ψ

(∫ d(T 2
3
,T 1

3
)

0
ϕ(t)dt

)
6 ψ

(∫ d( 2
3
, 1
3
)

0
ϕ(t)dt

)
− φ

(∫ d( 2
3
, 1
3
)

0
ϕ(t)dt

)
= ψ

(∫ 1
3

0
ϕ(t)dt

)
− φ

(∫ 1
3

0
ϕ(t)dt

)
< ψ

(∫ 1
3

0
ϕ(t)dt

)
,

which is impossible.
Suppose that there exists (ϕ, φ, ψ) ∈ Φ1 × Φ4 × Φ5 satisfies the conditions

of Theorem 1.4. It follows from (1.4) and (1.5) that

M

(
1

3
,
2

3

)
= max

{
d

(
1

3
,
2

3

)
, d

(
1

3
, T

1

3

)
, d

(
2

3
, S

2

3

)
,

1

2

[
d

(
2

3
, T

1

3

)
+ d

(
1

3
, S

2

3

)]}
=

1

3

and

ψ

(∫ 1
3

0
ϕ(t)dt

)
= ψ

(∫ d(T 1
3
,S 2

3
)

0
ϕ(t)dt

)
6 ψ

(∫ M( 1
3
, 2
3
)

0
ϕ(t)dt

)
− φ

(∫ M( 1
3
, 2
3
)

0
ϕ(t)dt

)
= ψ

(∫ 1
3

0
ϕ(t)dt

)
− φ

(∫ 1
3

0
ϕ(t)dt

)
< ψ

(∫ 1
3

0
ϕ(t)dt

)
,

which is absurd.
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