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Abstract. The existence and uniqueness of stationary points for certain multi-valued con-

tractive mappings of integral type with δ-distance in complete metric spaces are established

and three illustrative examples are provided. The results presented in this paper extend or

differ from several known results in the literature.

1. Introduction and preliminaries

Branciari [2] generalized the Banach fixed point theorem and proved the
following fixed point theorem for the contractive mapping of integral type.
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Theorem 1.1. ([2]) Let f be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(fx,fy)

0
ϕ(t)dt ≤ c

∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (1.1)

where c ∈ [0, 1) is a constant and ϕ ∈ Φ1 =
{
ϕ : ϕ : [0,+∞) → [0,+∞) is

Lebesgue integrable, summable on each compact subset of [0,+∞) and
∫ ε
0 ϕ(t)dt

> 0 for each ε > 0
}

. Then f has a unique fixed point a ∈ X such that
limn→∞ f

nx = a for each x ∈ X.

Afterwards the authors [1–4, 9, 10, 13–18, 20] and others continued the study
of Branciari and obtained a lot of fixed point and common fixed point the-
orems for various single-valued and multi-valued contractive mappings of in-
tegral type. In particular, Liu et al. [13] extended the result of Branciari
and established the following fixed point theorems for some new contractive
mappings of integral type.

Theorem 1.2. ([13]) Let f be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(fx,fy)

0
ϕ(t)dt ≤ α(d(x, y))

∫ m(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (1.2)

where ϕ ∈ Φ1, α ∈ Θ = {α : α : [0,+∞) → [0, 1) is a function with
lim sups→t α(s) < 1 for each t ∈ [0,+∞)} and

m(x, y) = max
{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2

}
. (1.3)

Then f has a unique fixed point a ∈ X such that limn→∞ f
nx = a for each

x ∈ X.

Theorem 1.3. ([13]) Let f be a mapping from a complete metric space (X, d)
into itself satisfying∫ d(fx,fy)

0
ϕ(t)dt ≤ α(m(x, y))

∫ m(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (1.4)

where ϕ ∈ Φ1, α ∈ Θ and m is defined by (1.3). Then f has a unique fixed
point a ∈ X such that limn→∞ f

nx = a for each x ∈ X.

Jachymski [10] proved the following fixed point theorem for the multi-valued
contractive mapping of integral type with the Hausdorff metric H.
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Theorem 1.4. ([10]) Let (X, d) be a bounded complete metric space, F : X →
K(X), which is the family of all nonempty compact subsets of X, be a multi-
valued mapping satisfying∫ H(Fx,Fy)

0
ϕ(t)dt ≤ c

∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (1.5)

where ϕ ∈ Φ1 and c ∈ [0, 1) is a constant. Then F has a fixed point.

On the other hand, Stojakovic et al. [20] deduced the following fixed point
theorem for the multi-valued contractive mapping of integral type with the
δ-distance.

Theorem 1.5. ([20]) Let (X, d) be a bounded complete metric space, F : X →
B(X), which is the family of all nonempty bounded subsets of X, be a multi-
valued mapping satisfying, for all x, y ∈ X with x 6= y,

φ

(∫ δ(Fx,Fy)

0
ϕ(t)dt

)
≤ α(d(x, y))φ

(∫ d(x,y)

0
ϕ(t)dt

)
, (1.6)

where ϕ ∈ Φ1, α ∈ Θ and φ ∈ Φ2 =
{
φ : φ : [0,+∞) → [0,+∞) is upper

semicontinuous and nondecreasing and φ(t) < t for each t > 0
}

. Then F has
a fixed point.

Motivated and inspired by the results in [1–20], in this paper we introduce
a few new multi-valued contractive mappings of integral type with δ-distance,
establish the existence and uniqueness of common stationary points for these
contractive mappings of integral type with δ-distance and construct three ex-
amples to illustrate that the results obtained generalize or differ from a few
results in [2, 3, 7, 10–14, 17, 20].

Throughout this paper, N denotes the set of all positive integers, N0 =
N ∪ {0}, R+ = [0,+∞) and

Φ3 =
{
φ : φ : (R+)5 → R+ is upper semicontinuous and nondecreasing in

each coordinate variable and φ(t, t, t, t, t) < t for each t > 0
}
.

Let (X, d) be a metric space and CB(X) denote the family of all nonempty
closed and bounded subsets of X. The Hausdorff metric H : CB(X) ×
CB(X)→ R+ is defined by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
, ∀A,B ∈ CB(X),

where d(x,B) = inf{d(x, y) : y ∈ B}. For A,B ⊆ X, define

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B} and δ(A,A) = δ(A).

If A is singleton {a}, we write δ(A,B) = δ(a,B). Let F,G : X → B(X) and
f : X → X. A point x ∈ X is called a stationary point of F if Fx = {x}. Note
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that every stationary point of F is a fixed point of F , but not conversely. A
point x ∈ X is called a common stationary point of F andG if Fx = Gx = {x}.
F and G are said to be commuting if FGx = GFx for all x ∈ X. F and f are
said to be commuting if Ffx = fFx for all x ∈ X. Define

CF = {T : T : X → B(X) satisfies that T and F are commuting }
and

CCF = {f : f : X → X is continuous and F and f are commuting }.
It is clear that CF ⊇ {Fn : n ∈ N0}, where F 0x = {x} for x ∈ X.

Definition 1.6. ([8]) Let {An}n∈N be a sequence of sets in B(X) and A ∈
B(X). The sequence {An}n∈N is said to converge to the set A if

(1) each point a ∈ A is the limit of some convergent sequence {an}n∈N,
where an ∈ An for n ∈ N;

(2) for arbitrary ε > 0, there exists k ∈ N such that An ⊆ Aε for n > k,
where Aε is the union of all open spheres with centers in A and radius
ε.

Lemma 1.7. ([14]) Let ϕ ∈ Φ1 and {rn}n∈N be a nonnegative sequence. Then
limn→∞

∫ rn
0 ϕ(t)dt = 0 if and only if limn→∞ rn = 0.

Lemma 1.8. ([19]) Let ψ : R+ → R+ be upper semicontinuous and nonde-
creasing. Then for every t > 0, ψ(t) < t if and only if limn→∞ ψ

n(t) = 0,
where ψn denotes the composition of ψ with itself n-times.

Lemma 1.9. ([5]) If {An}n∈N and {Bn}n∈N are sequences of bounded subsets
of a complete metric space (X, d) which converge to the bounded subsets A and
B, respectively, then the sequence {δ(An, Bn)}n∈N converges to δ(A,B).

2. Common stationary point theorems

In this section, we give five common stationary point theorems for the fol-
lowing multi-valued contractive mappings of integral type (2.1), (2.9), (2.11),
(2.13) and (2.14).

Theorem 2.1. Let (X, d) be a bounded complete metric space, F,G : X →
B(X) be continuous and commuting mappings satisfying∫ δ(F pGqx,F iGjy)

0
ϕ(t)dt ≤ φ

(∫ δ(∪D∈CFG
D{x,y})

0
ϕ(t)dt

)
, ∀x, y ∈ X, (2.1)

where p, q, i, j ∈ N and (ϕ, φ) ∈ Φ1 × Φ2. Then

(a) F and G have a unique common stationary point z ∈ X;
(b) The sequence {FnGnx}n∈N converges to {z} for all x ∈ X.
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Proof. Let M = δ(X), l1 = max{p, q}, l2 = max{i, j}, k = l1 + l2, Xn =
FnGnX and δn = δ(Xn) for each n ∈ N. Clearly,

Xn+1 ⊆ Xn, ∀n ∈ N (2.2)

and for all (n,D) ∈ N× CFG,

DXn = DFnGnX = FnGnDX ⊆ FnGnX = Xn. (2.3)

Let A, B ∈ X. It follows from (2.1) and (ϕ, φ) ∈ Φ1 × Φ2 that∫ δ(F pGqa,F iGjb)

0
ϕ(t)dt ≤ φ

(∫ δ(∪D∈CFG
D{a,b})

0
ϕ(t)dt

)
≤ φ

(∫ δ(∪D∈CFG
(DA∪DB))

0
ϕ(t)dt

)
, ∀(a, b) ∈ A×B,

which yields that∫ δ(F pGqA,F iGjB)

0
ϕ(t)dt ≤ φ

(∫ δ(∪D∈CFG
(DA∪DB))

0
ϕ(t)dt

)
. (2.4)

Put n ∈ N. It is clear that there exist an, bn ∈ N0 with 0 ≤ bn < k satisfying

n = kan + bn and n→∞ if and only if an →∞. (2.5)

It follows from (2.1)-(2.5) and (ϕ, φ) ∈ Φ1 × Φ2 that

δn = δ(F l1Gl1(F l2+bnGl2+bnXk(an−1)), F
l2Gl2(F l1+bnGl1+bnXk(an−1)))

= δ(F pGq(F l1+l2+bn−pGl1+l2+bn−qXk(an−1)),

F iGj(F l1+l2+bn−iGl1+l2+bn−jXk(an−1))),

δ(∪D∈CFG
D(F l1+l2+bn−pGl1+l2+bn−qXk(an−1)

∪ F l1+l2+bn−iGl1+l2+bn−jXk(an−1)))

= δ(∪D∈CFG
F k(an−1)Gk(an−1)(DF l1+l2+bn−pGl1+l2+bn−qX

∪DF l1+l2+bn−iGl1+l2+bn−jX))

≤ δ(Xk(an−1)) = δk(an−1)

and ∫ δn

0
ϕ(t)dt =

∫ N1

0
ϕ(t)dt ≤ φ

(∫ N2

0
ϕ(t)dt

)
≤ φ

(∫ δk(an−1)

0
ϕ(t)dt

)
,

where
N1 = δ(F pGq(F l1+l2+bn−pGl1+l2+bn−qXk(an−1)),

F iGj(F l1+l2+bn−iGl1+l2+bn−jXk(an−1)))
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and

N2 = δ(∪D∈CFG
D(F l1+l2+bn−pGl1+l2+bn−qXk(an−1)

∪ F l1+l2+bn−iGl1+l2+bn−jXk(an−1))),

which implies that∫ δn

0
ϕ(t)dt ≤ φ

(∫ δk(an−1)

0
ϕ(t)dt

)
≤ φ2

(∫ δk(an−2)

0
ϕ(t)dt

)
≤ · · · ≤ φan−1

(∫ δk

0
ϕ(t)dt

)
≤ φan

(∫ M

0
ϕ(t)dt

)
.

That is, ∫ δn

0
ϕ(t)dt ≤ φan

(∫ M

0
ϕ(t)dt

)
, (2.6)

where {an}n∈N is defined by (2.5).
Choose xn ∈ Xn for each n ∈ N. By (2.2), (2.5) and (2.6), we get that∫ d(xn,xm)

0
ϕ(t)dt ≤

∫ δ(Xn,Xm)

0
ϕ(t)dt ≤

∫ δn

0
ϕ(t)dt

≤ φan
(∫ M

0
ϕ(t)dt

)
, ∀m,n ∈ N with m > n.

(2.7)

Consequently, {xn}n∈N is a Cauchy sequence by (2.7), Lemmas 1.7 and 1.8.
Since X is complete, it follows that there exists a point z in X such that
xn → z as n→∞. From (2.2), we have

δ(z,Xn) ≤ d(z, xm) + δ(xm, Xn)

≤ d(z, xm) + δ(Xm, Xn)

≤ d(z, xm) + δn, ∀m,n ∈ N with m > n.

Letting m tend to infinity, we obtain that

δ(z,Xn) ≤ δn, ∀n ∈ N.

Since F and G are continuous and xn → z as n→∞, it follows that {Fxn}n∈N
and {Gxn}n∈N converge to {Fz} and {Gz}, respectively. Note that

Fxn ⊆ F (FnGnX) = FnGn(FX) ⊆ Xn, ∀n ∈ N,

Gxn ⊆ G(FnGnX) = FnGn(GX) ⊆ Xn, ∀n ∈ N,

which yield that

max{δ(z, Fxn), δ(z,Gxn)} ≤ δ(z,Xn) ≤ δn, ∀n ∈ N. (2.8)
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By virtue of (2.5), (2.6), (2.8), Lemmas 1.8 and 1.9, we have

0 ≤
∫ max{δ(z,Fxn),δ(z,Gxn)}

0
ϕ(t)dt ≤

∫ δn

0
ϕ(t)dt

≤ φan
(∫ M

0
ϕ(t)dt

)
→ 0 as n→∞,

which together with Lemma 1.7 and the continuity of F and G means that∫ max{δ(z,Fz),δ(z,Gz)}

0
ϕ(t)dt = 0,

that is, max{δ(z, Fz), δ(z,Gz)} = 0. Consequently, we conclude immediately
that Fz = Gz = {z}.

Suppose that F and G have a second common stationary point ω ∈ X−{z}.
Obviously {u} = FnGnu ⊆ Xn for each u ∈ {z, ω} and n ∈ N. In view of
(2.2), (2.5), (2.6), Lemmas 1.7 and 1.8, we infer that

0 ≤
∫ d(z,ω)

0
ϕ(t)dt ≤

∫ δn

0
ϕ(t)dt ≤ φan

(∫ M

0
ϕ(t)dt

)
→ 0 as n→∞,

which yields that z = ω. Hence F and G have a unique common stationary
point z.

Choose yn ∈ FnGnx for each (x, n) ∈ X × N. By means of (2.2), (2.5),
(2.6), Definition 1.6, Lemmas 1.7 and 1.8, we have

0 ≤
∫ d(yn,z)

0
ϕ(t)dt ≤

∫ δ(FnGnx,z)

0
ϕ(t)dt ≤

∫ δ(Xn,z)

0
ϕ(t)dt

≤
∫ δn

0
ϕ(t)dt ≤ φan

(∫ M

0
ϕ(t)dt

)
→ 0 as n→∞,

which means that {FnGnx}n∈N converges to {z}. This completes the proof.
�

Theorem 2.2. Let (X, d) be a bounded complete metric space, F,G : X →
B(X) be continuous and commuting mappings satisfying∫ δ(F pGqx,F iy)

0
ϕ(t)dt ≤ φ

(∫ δ(∪D∈CFG
D{x,y})

0
ϕ(t)dt

)
, ∀x, y ∈ X, (2.9)

where p, q, i ∈ N and (ϕ, φ) ∈ Φ1×Φ2. Then (a) and (b) of Theorem 2.1 hold.

Proof. Let M = δ(X), l = max{p, q}, k = l+i, Xn = FnGnX and δn = δ(Xn)
for each n ∈ N. Clearly, (2.2), (2.3) and (2.5) hold. Let A, B ∈ X. It follows
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from (2.9) and (ϕ, φ) ∈ Φ1 × Φ2 that∫ δ(F pGqa,F ib)

0
ϕ(t)dt ≤ φ

(∫ δ(∪D∈CFG
D{a,b})

0
ϕ(t)dt

)
≤ φ

(∫ δ(∪D∈CFG
(DA∪DB))

0
ϕ(t)dt

)
, ∀(a, b) ∈ A×B,

which yields that∫ δ(F pGqA,F iy)

0
ϕ(t)dt) ≤ φ

(∫ δ(∪D∈CFG
(DA∪DB))

0
ϕ(t)dt

)
. (2.10)

In view of (2.2), (2.3), (2.5), (2.9), (2.10) and (ϕ, φ) ∈ Φ1 × Φ2, we get that

δn = δ(F lGl(F i+bnGi+bnXk(an−1)), F
i(F l+bnGl+i+bnXk(an−1)))

= δ(F pGq(F l+i+bn−pGl+i+bn−qXk(an−1)), F
i(F l+bnGl+i+bnXk(an−1))),

δ(∪D∈CFG
D(F l+i+bn−pGl+i+bn−qXk(an−1) ∪ F

l+bnGl+i+bnXk(an−1)))

= δ(∪D∈CFG
F k(an−1)Gk(an−1)(DF l+i+bn−pGl+i+bn−qX ∪DF l+bnGl+i+bnX))

≤ δk(an−1)
and∫ δn

0
ϕ(t)dt

=

∫ δ(F pGq(F l+i+bn−pGl+i+bn−qXk(an−1)),F
i(F l+bnGl+i+bnXk(an−1)))

0
ϕ(t)dt

≤ φ
(∫ δ(∪D∈CFG

D(F l+i+bn−pGl+i+bn−qXk(an−1)∪F l+bnGl+i+bnXk(an−1)))

0
ϕ(t)dt

)
≤ φ

(∫ δk(an−1)

0
ϕ(t)dt

)
,

which implies that∫ δn

0
ϕ(t)dt ≤ φ

(∫ δk(an−1)

0
ϕ(t)dt

)
≤ φ2

(∫ δk(an−2)

0
ϕ(t)dt

)
≤ · · · ≤ φan−1

(∫ δk

0
ϕ(t)dt

)
≤ φan

(∫ M

0
ϕ(t)dt

)
.

That is, ∫ δn

0
ϕ(t)dt ≤ φan

(∫ M

0
ϕ(t)dt

)
,
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where {an}n∈N is defined by (2.5). That is, (2.6) holds. The remaining portion
of the proof can be derived as in that of Theorem 2.1. This completes the
proof. �

Theorem 2.3. Let (X, d) be a bounded complete metric space, F,G : X →
B(X) be continuous and commuting mappings satisfying

∫ δ(F px,Gjy)

0
ϕ(t)dt ≤ φ

(∫ δ(∪D∈CFG
D{x,y})

0
ϕ(t)dt

)
, ∀x, y ∈ X, (2.11)

where p, j ∈ N and (ϕ, φ) ∈ Φ1 × Φ2. Then (a) and (b) of Theorem 2.1 hold.

Proof. Let M = δ(X), k = p + j, Xn = FnGnX and δn = δ(Xn) for each
n ∈ N. Clearly, (2.2), (2.3) and (2.5) hold. Let A, B ∈ X. It follows from
(2.11) and (ϕ, φ) ∈ Φ1 × Φ2 that∫ δ(F pa,Gjb)

0
ϕ(t)dt ≤ φ

(∫ δ(∪D∈CFG
D{a,b})

0
ϕ(t)dt

)
≤ φ

(∫ δ(∪D∈CFG
(DA∪DB))

0
ϕ(t)dt

)
, ∀(a, b) ∈ A×B,

which yields that∫ δ(F pA,GjB)

0
ϕ(t)dt) ≤ φ

(∫ δ(∪D∈CFG
(DA∪DB))

0
ϕ(t)dt

)
. (2.12)

By virtue of (2.2), (2.3), (2.5), (2.11) and (2.12), we deduce that

δ(∪D∈CFG
D(F j+bnGk+bnXk(an−1) ∪ F

k+bnGp+bnXk(an−1)))

= δ(∪D∈CFG
F k(an−1)Gk(an−1)(DF j+bnGk+bnX ∪DF k+bnGp+bnX))

≤ δk(an−1)
and ∫ δn

0
ϕ(t)dt

=

∫ δ(F p(F j+bnGk+bnXk(an−1)),G
j(Fk+bnGp+bnXk(an−1)))

0
ϕ(t)dt

≤ φ
(∫ δ(∪D∈CFG

D(F j+bnGk+bnXk(an−1)∪Fk+bnGp+bnXk(an−1)))

0
ϕ(t)dt

)
≤ φ

(∫ δk(an−1)

0
ϕ(t)dt

)
,
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which implies that∫ δn

0
ϕ(t)dt ≤ φ

(∫ δk(an−1)

0
ϕ(t)dt

)
≤ φ2

(∫ δk(an−2)

0
ϕ(t)dt

)
≤ · · · ≤ φan−1

(∫ δk

0
ϕ(t)dt

)
≤ φan

(∫ M

0
ϕ(t)dt

)
.

That is, ∫ δn

0
ϕ(t)dt ≤ φan

(∫ M

0
ϕ(t)dt

)
,

where {an}n∈N is defined by (2.5). That is, (2.6) holds. The remaining portion
of the proof can be derived as in that of Theorem 2.1. This completes the
proof. �

As in the arguments of Theorems 2.1, 2.2 and 2.3, we conclude similarly
the following result and omit its proof.

Theorem 2.4. Let (X, d) be a bounded complete metric space, F : X → B(X)
be a continuous mapping satisfying

∫ δ(F px,F iy)

0
ϕ(t)dt ≤ φ

(∫ δ(∪D∈CF
D{x,y})

0
ϕ(t)dt

)
, ∀x, y ∈ X, (2.13)

where p, i ∈ N and (ϕ, φ) ∈ Φ1 × Φ2. Then

(c) F has a unique stationary point z ∈ X;
(d) The sequence {Fnx}n∈N converges to {z} for all x ∈ X.

Now we give a common fixed point theorem for two pairs of single and
multi-valued contractive mappings of integral type in metric spaces.

Theorem 2.5. Let (X, d) be a bounded complete metric space, F,G : X →
B(X) be commuting, f, g : X → X satisfy that f, g ∈ CCF ∩ CCG and

∫ δ(F px,Gqy)

0
ϕ(t)dt

≤ φ
(∫ δ(fx,F px)

0
ϕ(t)dt,

∫ δ(gy,Gqy)

0
ϕ(t)dt,

∫ δ(fx,Gqy)

0
ϕ(t)dt,∫ δ(gy,F px)

0
ϕ(t)dt,

∫ d(fx,gy)

0
ϕ(t)dt

)
, ∀x, y ∈ X,

(2.14)

where p, q ∈ N and (ϕ, φ) ∈ Φ1×Φ3. Then (b) of Theorem 2.1 and the following
(e) and (f) hold:

(e) f , g, F p and Gq have a unique common fixed point z ∈ X;
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(f) F pz = Gqz = {z}.

Proof. Let r(t) = φ(t, t, t, t, t) for each t ∈ R+, M = δ(X), k = p + q, Xn =
FnGnX and δn = δ(Xn) for each n ∈ N. Clearly, (2.2) and (2.5) hold. As in
the proof of Theorem 2.1, we infer that by (2.14) and (ϕ, φ) ∈ Φ1 × Φ3∫ δ(F pA,GqB)

0
ϕ(t)dt

≤ φ
(∫ δ(fA,F pA)

0
ϕ(t)dt,

∫ δ(gB,GqB)

0
ϕ(t)dt,

∫ δ(fA,GqB)

0
ϕ(t)dt,∫ δ(gB,F pA)

0
ϕ(t)dt,

∫ δ(fA,gB)

0
ϕ(t)dt

)
, ∀A,B ∈ B(X).

(2.15)

Note that f, g ∈ CCF ∩CCG and F and G are commuting. It follows from
(2.2), (2.5), (2.14), (2.15) and ϕ ∈ Φ3 that∫ δn

0
ϕ(t)dt

=

∫ δ(F p(F q+bnGk+bnXk(an−1)),G
q(Fk+bnGp+bnXk(an−1)))

0
ϕ(t)dt

≤ φ
(∫ δ(fF q+bnGk+bnXk(an−1),F

k+bnGk+bnXk(an−1))

0
ϕ(t)dt,∫ δ(gFk+bnGp+bnXk(an−1),F

k+bnGk+bnXk(an−1))

0
ϕ(t)dt,∫ δ(fF q+bnGk+bnXk(an−1),F

k+bnGk+bnXk(an−1))

0
ϕ(t)dt,∫ δ(gFk+bnGp+bnXk(an−1),F

k+bnGk+bnXk(an−1))

0
ϕ(t)dt,∫ δ(fF q+bnGk+bnXk(an−1),gF

k+bnGp+bnXk(an−1))

0
ϕ(t)dt

)
≤ φ

(∫ δ(Xk(an−1),Xn)

0
ϕ(t)dt,

∫ δ(Xk(an−1),Xn)

0
ϕ(t)dt,

∫ δ(Xk(an−1),Xn)

0
ϕ(t)dt,∫ δ(Xk(an−1),Xn)

0
ϕ(t)dt,

∫ δ(Xk(an−1),Xk(an−1))

0
ϕ(t)dt

)
≤ φ

(∫ δk(an−1)

0
ϕ(t)dt,

∫ δk(an−1)

0
ϕ(t)dt,

∫ δk(an−1)

0
ϕ(t)dt,∫ δk(an−1)

0
ϕ(t)dt,

∫ δk(an−1)

0
ϕ(t)dt

)
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= r

(∫ δk(an−1)

0
ϕ(t)dt

)
,

which implies that∫ δn

0
ϕ(t)dt ≤ r

(∫ δk(an−1)

0
ϕ(t)dt

)
≤ r2

(∫ δk(an−2)

0
ϕ(t)dt

)
≤ · · · ≤ ran−1

(∫ δk

0
ϕ(t)dt

)
≤ ran

(∫ M

0
ϕ(t)dt

)
.

That is,

0 ≤
∫ δn

0
ϕ(t)dt ≤ ran

(∫ M

0
ϕ(t)dt

)
, (2.16)

where {an}n∈N is defined by (2.5). Obviously, (2.5), (2.16) and Lemmas 1.7
and 1.8 ensure that

lim
n→∞

δn = 0. (2.17)

For each n ∈ N, choose a point xn ∈ Xn. It follows that

fxn ∈ fFnGnX = FnGnfX ⊆ FnGnX, ∀n ∈ N. (2.18)

Similarly, gxn ∈ FnGnX for each n ∈ N. From (2.2), (2.5) and (2.16), we get
that

0 ≤
∫ d(xn,xm)

0
ϕ(t)dt ≤

∫ δ(FnGnX,GnFnGm−nFm−nX)

0
ϕ(t)dt

≤
∫ δn

0
ϕ(t)dt ≤ ran

(∫ M

0
ϕ(t)dt

)
, ∀m,n ∈ N with m > n.

(2.19)

In terms of (2.19), Lemmas 1.7 and 1.8, we conclude that {xn}n∈N is a Cauchy
sequence. Since X is complete, it follows that there exists a point z ∈ X such
that xn → z as n → ∞. The continuity of f and g ensures that fxn → fz
and gxn → gz as n→∞. Consequently, it follows from (2.18) that

0 ≤ d(fz, gz) ≤ d(fz, fxn) + d(fxn, gxn) + d(gxn, gz)

≤ d(fz, fxn) + δn + d(gxn, gz), ∀n ∈ N.

Letting n tend to infinity and using (2.17), we obtain that d(fz, gz) = 0, that
is, fz = gz.

We next show that z is a common fixed point of f , g, F p and Gq. Clearly,
(2.18) yields that

0 ≤ d(z, gz) ≤ d(z, xn) + d(xn, gxn) + d(gxn, gz)

≤ d(z, xn) + δn + d(gxn, gz), ∀n ∈ N.

As n→∞ we conclude that d(z, gz) = 0, that is, z = gz. Similarly, z = fz.
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We now assert that δ(z,Gqz) = 0. Otherwise δ(z,Gqz) > 0. From (2.2)
and (2.18), we have

δ(z,Gqz) ≤ d(z, gxm) + δ(gxm, G
qz)

≤ d(z, gxm) + δ(FmGmX,Gqz)

≤ d(z, gxm) + δ(FnGnX,Gqz), ∀m,n ∈ N with m > n.

Letting m tend to infinity, we obtain that

δ(z,Gqz) ≤ δ(FnGnX,Gqz), ∀n ∈ N. (2.20)

It follows from (2.15), (2.18), (2.20), f, g ∈ CCF ∩CCG, (ϕ, φ) ∈ Φ1×Φ3 and
z = gz that

δ(fFn−pGnX,Gqz) ≤ δ(Fn−pGn−pfGpX, gxn−p) + d(gxn−p, z) + δ(z,Gqz)

≤ δn−p + d(gxn−p, z) + δ(z,Gqz),

δ(gz, F pFn−pGnX) ≤ d(gz, gxn) + δ(gxn, F
nGnX) ≤ d(z, gxn) + δn,

δ(fFn−pGnX, gz) ≤ δ(Fn−pGn−pfGpX, gxn−p) + d(gxn−p, gz)

≤ δn−p + d(gxn−p, z)

and ∫ δ(z,Gqz)

0
ϕ(t)dt ≤

∫ δ(FnGnX,Gqz)

0
ϕ(t)dt

≤ φ
(∫ δ(fFn−pGnX,F pFn−pGnX)

0
ϕ(t)dt,∫ δ(gz,Gqz)

0
ϕ(t)dt,

∫ δ(fFn−pGnX,Gqz)

0
ϕ(t)dt,∫ δ(gz,F pFn−pGnX)

0
ϕ(t)dt,

∫ δ(fFn−pGnX,gz)

0
ϕ(t)dt

)
≤ φ

(∫ δn−p

0
ϕ(t)dt,

∫ δ(z,Gqz)

0
ϕ(t)dt,

∫ δn−p+d(gxn−p,z)+δ(z,Gqz)

0
ϕ(t)dt,∫ d(z,gxn)+δn

0
ϕ(t)dt,

∫ δn−p+d(gxn−p,z)

0
ϕ(t)dt

)
, ∀n > p.

Letting n tend to infinity and using (2.17) and φ ∈ Φ3, we get that∫ δ(z,Gqz)

0
ϕ(t)dt ≤ φ

(
0,

∫ δ(z,Gqz)

0
ϕ(t)dt,

∫ δ(z,Gqz)

0
ϕ(t)dt, 0, 0

)
≤ r
(∫ δ(z,Gqz)

0
ϕ(t)dt

)
<

∫ δ(z,Gqz)

0
ϕ(t)dt,
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which is a contradiction. Hence δ(z,Gqz) = 0. Consequently, Gqz = {z}.
Similarly, F pz = {z}. That is, F pz = Gqz = {z}. For each (x, n) ∈ X × N,
choose yn ∈ FnGnx. It follows from (2.16) that∫ d(yn,z)

0
ϕ(t)dt ≤

∫ δ(FnGnx,z)

0
ϕ(t)dt ≤

∫ δ(Xn,z)

0
ϕ(t)dt

≤
∫ δn

0
ϕ(t)dt ≤ ran

(∫ M

0
ϕ(t)dt

)
,

where {an}n∈N is defined by (2.5). Letting n tend to infinity and using Defi-
nition 1.6, Lemmas 1.7 and 1.8, we conclude that {FnGnx}n∈N converges to
{z}.

We finally show that z is the unique common fixed point of f , g, F p and Gq.
Suppose that f , g, F p and Gq have a second common fixed point ω ∈ X−{z}.
If δ(F pω,Gqω) > 0, from (2.14) and φ ∈ Φ3, we have∫ δ(F pω,Gqω)

0
ϕ(t)dt

≤ φ
(∫ δ(fω,F pω)

0
ϕ(t)dt,

∫ δ(gω,Gqω)

0
ϕ(t)dt,

∫ δ(fω,Gqω)

0
ϕ(t)dt,∫ δ(gω,F pω)

0
ϕ(t)dt,

∫ d(fω,gω)

0
ϕ(t)dt

)
≤ φ

(∫ δ(Gqω,F pω)

0
ϕ(t)dt,

∫ δ(F pω,Gqω)

0
ϕ(t)dt,∫ δ(F pω,Gqω)

0
ϕ(t)dt,

∫ δ(Gqω,F pω)

0
ϕ(t)dt, 0

)
≤ r
(∫ δ(F pω,Gqω)

0
ϕ(t)dt

)
<

∫ δ(F pω,Gqω)

0
ϕ(t)dt,

which is impossible. Therefore δ(F pω,Gqω) = 0. Note that ω ∈ F pω ∩ Gqω.
Consequently, F pω = Gqω = {ω}. Using (2.14) and φ ∈ Φ3, we get that∫ δ(z,ω)

0
ϕ(t)dt =

∫ δ(F pz,Gqω)

0
ϕ(t)dt

≤ φ
(∫ δ(fz,F pz)

0
ϕ(t)dt,

∫ δ(gω,Gqω)

0
ϕ(t)dt,

∫ δ(fz,Gqω)

0
ϕ(t)dt,∫ δ(gω,F pz)

0
ϕ(t)dt,

∫ d(fz,gω)

0
ϕ(t)dt

)
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≤ φ
(

0, 0,

∫ δ(z,ω)

0
ϕ(t)dt,

∫ δ(z,ω)

0
ϕ(t)dt,

∫ δ(z,ω)

0
ϕ(t)dt

)
≤ r
(∫ δ(z,ω)

0
ϕ(t)dt

)
<

∫ δ(z,ω)

0
ϕ(t)dt,

which is a contradiction. Therefore z is the unique common fixed point of f ,
g, F p and Gq. This completes the proof. �

3. Remarks and illustrative examples

In this section, we construct three examples to show that Theorems 2.1-2.5
generalize or are different from some results in [2, 3, 7, 10–14, 17, 20].

Remark 3.1. Theorem 2.1 extends Theorem 2.2 in [12]. The following exam-
ple manifests that Theorem 2.1 differs from Theorems 1.4 and 1.5 in the first
section.

Example 3.2. Let X = [0, 1] ∪ {2} be endowed with the Euclidean metric
d = | · |. Define F,G : X → CB(X) and ϕ, φ : R+ → R+ by

Fx =

{[
0, x2

]
, ∀x ∈ [0, 1],

{1}, x = 2,
Gx = {x}, ∀x ∈ X,

ϕ(t) = 2t, ∀t ∈ R+ and φ(t) =
1

2
t, ∀t ∈ R+.

Take p = j = 2 and q = i = 3. Obviously, (X, d) is a bounded complete metric
space, F and G are continuous and commuting, (ϕ, φ) ∈ Φ1 × Φ2 and

F 2x = ∪y∈FxFy = ∪y∈[0,x
2
]

[
0,
y

2

]
=
[
0,
x

4

]
, F 3x =

[
0,
x

8

]
, ∀x ∈ [0, 1],

F 22 = F1 =
[
0,

1

2

]
, F 32 =

[
0,

1

4

]
.

Put x, y ∈ X. In order to verify (2.1), we need to consider four possible cases
as follows:
Case 1. x, y ∈ [0, 1]. It follows that∫ δ(F 2G3x,F 3G2y)

0
ϕ(t)dt =

∫ δ([0,x
4
],[0, y

8
])

0
ϕ(t)dt

=

∫ max{x
4
, y
8
}

0
2tdt = max

{x2
16
,
y2

64

}
≤ 1

2
max{x2, y2} = φ

(∫ δ([0,x
4
]∪[0, y

4
]∪{x,y})

0
ϕ(t)dt

)
≤ φ

(∫ δ(∪D∈CFG
D{x,y})

0
ϕ(t)dt

)
;
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Case 2. x = y = 2. It is clear that∫ δ(F 2G3x,F 3G2y)

0
ϕ(t)dt =

∫ δ([0, 1
2
],[0, 1

4
])

0
ϕ(t)dt =

∫ 1
2

0
2tdt =

1

4

< 2 = φ

(∫ δ([0, 1
2
]∪{2})

0
ϕ(t)dt

)
≤ φ

(∫ δ(∪D∈CFG
D{x,y})

0
ϕ(t)dt

)
;

Case 3. x ∈ [0, 1], y = 2. It is easy to see that∫ δ(F 2G3x,F 3G2y)

0
ϕ(t)dt =

∫ δ([0,x
4
],[0, 1

4
])

0
ϕ(t)dt =

∫ 1
4

0
2tdt =

1

16

< 2 = φ

(∫ δ([0,x
4
]∪[0, 1

2
]∪{x,2})

0
ϕ(t)dt

)
≤ φ

(∫ δ(∪D∈CFG
D{x,y})

0
ϕ(t)dt

)
;

Case 4. x = 2, y ∈ [0, 1]. It is easy to verify that∫ δ(F 2G3x,F 3G2y)

0
ϕ(t)dt =

∫ δ([0, 1
2
],[0, y

8
])

0
ϕ(t)dt =

∫ 1
2

0
2tdt =

1

4

< 2 = φ

(∫ δ([0, 1
2
]∪[0, y

4
]∪{2,y})

0
ϕ(t)dt

)
≤ φ

(∫ δ(∪D∈CFG
D{x,y})

0
ϕ(t)dt

)
.

Hence, (2.1) holds. That is, the conditions of Theorem 2.1 are satisfied. It
follows from Theorem 2.1 that F and G have a unique common stationary
point 0 ∈ X and the sequence {FnGnx}n∈N converges to {0} for all x ∈ X.

However, we don’t invoke Theorems 1.4 and 1.5 in the first section to show
the existence of fixed points of F in X. Suppose that F satisfies the conditions
of Theorem 1.4. That is, there exist ϕ ∈ Φ1 and a constant c ∈ [0, 1) satisfying
(1.5). It follows from (1.5) that∫ 1

0
ϕ(t)dt =

∫ H([0, 1
2
],1)

0
ϕ(t)dt =

∫ H(F1,F2)

0
ϕ(t)dt

≤ c
∫ d(1,2)

0
ϕ(t)dt = c

∫ 1

0
ϕ(t)dt <

∫ 1

0
ϕ(t)dt,

which is a contradiction. Suppose that F satisfies the conditions of Theorem
1.5. That is, there exist (ϕ, φ) ∈ Φ1 × Φ2 and a function α ∈ Θ satisfying
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(1.6). By virtue of (1.6) and (ϕ, φ) ∈ Φ1 × Φ2, we deduce that

φ

(∫ 1

0
ϕ(t)dt

)
= φ

(∫ δ([0, 1
2
],1)

0
ϕ(t)dt

)
= φ

(∫ δ(F1,F2)

0
ϕ(t)dt

)
≤ α(d(1, 2))φ

(∫ d(1,2)

0
ϕ(t)dt

)
= α(1)φ

(∫ 1

0
ϕ(t)dt

)
< φ

(∫ 1

0
ϕ(t)dt

)
,

which is impossible.

Remark 3.3. The following example reveals that Theorem 2.3 differs from
Theorems 1.1, 1.2 and 1.3 in the first section, Theorem 3.1 in [14] and Theorem
2 in [17].

Example 3.4. Let X =
[
0, 32
]

be endowed with the Euclidean metric d = | · |.
Define F,G : X → CB(X) and ϕ, φ : R+ → R+ by

Fx =

{
{x2}, ∀x ∈ [0, 1],

{x− 1
2}, ∀x ∈ (1, 32 ],

Gx =

{
{x3}, ∀x ∈ [0, 1],

{23(x− 1
2)}, ∀x ∈ (1, 32 ],

ϕ(t) = 2t, ∀t ∈ R+ and φ(t) =
1

2
t, ∀t ∈ R+.

Take p = j = 1. Obviously, (X, d) is a bounded complete metric space, F and
G are continuous and commuting, (ϕ, φ) ∈ Φ1 × Φ2 and

FGx =

{
x
6 , ∀x ∈ [0, 1],
1
3(x− 1

2), ∀x ∈ (1, 32 ].

Put x, y ∈ X. In order to verify (2.11), we need to consider four possible cases
as follows:
Case 1. x, y ∈ [0, 1]. It follows that∫ d(Fx,Gy)

0
ϕ(t)dt =

∫ |x
2
− y

3
|

0
2tdt =

(x
2
− y

3

)2
≤ 1

2
max

{(
x− y

6

)2
,
(
y − x

6

)2}
=

1

2

∫ max{x− y
6
,y−x

6
}

0
2tdt ≤ φ

(∫ δ({x,y,x
6
, y
6
})

0
ϕ(t)

)
dt

≤ φ
(∫ δ(∪D∈CFG

D{x,y})

0
ϕ(t)dt

)
;
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Case 2. x, y ∈ (1, 32 ]. It is clear that

∫ d(Fx,Gy)

0
ϕ(t)dt =

∫ |(x− 1
2
)− 2

3
(y− 1

2
)|

0
2tdt =

((
x− 1

2

)
− 2

3

(
y − 1

2

))2
≤ 1

2
max

{(
x− 1

3

(
y − 1

2

))2
,
(
y − 1

3

(
x− 1

2

))2}
=

1

2

∫ max{x− 1
3
(y− 1

2
),y− 1

3
(x− 1

2
)}

0
2tdt ≤ φ

(∫ δ({x,y, 1
3
(x− 1

2
), 1

3
(y− 1

2
)})

0
ϕ(t)dt

)
≤ φ

(∫ δ(∪D∈CFG
D{x,y})

0
ϕ(t)dt

)
;

Case 3. x ∈ [0, 1], y ∈ (1, 32 ]. It is easy to see that

∫ d(Fx,Gy)

0
ϕ(t)dt =

∫ |x
2
− 2

3
(y− 1

2
)|

0
2tdt =

(1

2
x− 2

3

(
y − 1

2

))2
≤ 1

2
max

{(
x− 1

3

(
y − 1

2

))2
,
(
y − 1

6
x
)2}

=
1

2

∫ max{x− 1
3
(y− 1

2
),y− 1

6
x}

0
2tdt ≤ φ

(∫ δ({x,y, 1
6
x, 1

3
(y− 1

2
)})

0
ϕ(t)dt

)
≤ φ

(∫ δ(∪D∈CFG
D{x,y})

0
ϕ(t)dt

)
;

Case 4. x ∈ (1, 32 ], y ∈ [0, 1]. It is easy to verify that

∫ d(Fx,Gy)

0
ϕ(t)dt =

∫ (x− 1
2
)− y

3

0
2tdt =

((
x− 1

2

)
− y

3

)2
≤ 1

2

(
x− y

6

)2
=

1

2

∫ x− 1
6
y

0
2tdt ≤ φ

(∫ δ({x,y, 1
3
(x− 1

2
), 1

6
y})

0
ϕ(t)dt

)
≤ φ

(∫ δ(∪D∈CFG
D{x,y})

0
ϕ(t)dt

)
.

Hence, (2.11) holds. That is, the conditions of Theorem 2.3 are satisfied. It
follows from Theorem 2.3 that F and G have a unique common stationary
point 0 ∈ X and the sequence {FnGnx}n∈N converges to {0} for all x ∈ X.

Now we claim that Theorems 1.1, 1.2 and 1.3 in the first section, Theorem
3.1 in [14] and Theorem 2 in [17] are useless in proving the existence of fixed
points of F in X. Suppose that F satisfy the conditions of Theorem 1.1. That
is, there exist ϕ ∈ Φ1 and a constant c ∈ [0, 1) satisfying (1.1). It follows from
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(1.1) and ϕ ∈ Φ1 that∫ 1
2

0
ϕ(t)dt =

∫ d(F1,F 3
2
)

0
ϕ(t)dt ≤ c

∫ d(1, 3
2
)

0
ϕ(t)dt

= c

∫ 1
2

0
ϕ(t)dt <

∫ 1
2

0
ϕ(t)dt,

which is impossible. Suppose that F satisfy the conditions of Theorem 1.2.
That is, there exist ϕ ∈ Φ1 and a function α ∈ Θ satisfying (1.2) and (1.3).
By virtue of (1.2), (1.3) and (ϕ, α) ∈ Φ1 ×Θ, we conclude that

m
(

1,
3

2

)
= max

{
d
(

1,
3

2

)
, d(1, F1), d

(3

2
, F

3

2

)
,
d(1, F 3

2) + d(32 , F1)

2

}
= max

{1

2
, d
(

1,
1

2

)
, d
(3

2
, 1
)
,
d(1, 1) + d(32 ,

1
2)

2

}
=

1

2
and ∫ 1

2

0
ϕ(t)dt =

∫ d(F1,F 3
2
)

0
ϕ(t)dt ≤ α

(
d
(

1,
3

2

))∫ m(1, 3
2
)

0
ϕ(t)dt

= α
(1

2

)∫ 1
2

0
ϕ(t)dt <

∫ 1
2

0
ϕ(t)dt,

which is a contradiction.
Suppose that F satisfy the conditions of Theorem 1.3. That is, there exist

ϕ ∈ Φ1 and a function α ∈ Θ satisfying (1.4). It follows from (1.4), (ϕ, α) ∈
Φ1 ×Θ and m(1, 32) = 1

2 that∫ 1
2

0
ϕ(t)dt =

∫ d(F1,F 3
2
)

0
ϕ(t)dt ≤ α

(
m
(

1,
3

2

))∫ m(1, 3
2
)

0
ϕ(t)dt

= α
(1

2

)∫ 1
2

0
ϕ(t)dt <

∫ 1
2

0
ϕ(t)dt,

which is impossible.
Since Theorems 1.2 and 1.3 are generalizations of Theorem 3.1 in [14] and

Theorem 2 in [17], respectively, it follows that Theorem 3.1 in [14] and Theo-
rem 2 in [17] are unapplicable.

Remark 3.5. Theorem 2.5 extends Theorem 2 in [7] and Theorem 1 in [11].
The following example reveals that Theorem 2.5 is different from Theorems 1
and 2 in [3].

Example 3.6. Let X = {1, 2, 5, 7, 9} be endowed with the Euclidean metric
d = | · |. Define f, g : X → X, F,G : X → B(X), ϕ : R+ → R+ and
φ : (R+)5 → R+ by

f1 = f2 = f5 = f7 = 2, f9 = 1, gx = x, ∀x ∈ X,
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F1 = F2 = F7 = {2}, F5 = {2, 7}, F9 = {5}, G = F,

ϕ(t) =

{
1, ∀t ∈ [0, 5],

et, ∀t ∈ (5,+∞)

and

φ(t1, t2, t3, t4, t5) =
6

7
max{t1, t2, t3, t4, t5}, ∀ti ∈ R+, i ∈ {1, 2, 3, 4, 5}.

Take p = 2 and q = 3. Obviously, (X, d) is a bounded complete metric space,
F and G are commuting, f, g ∈ CCF ∩ CCG and (ϕ, φ) ∈ Φ1 × Φ3. Put
x, y ∈ X. In order to verify (2.14), we need to consider three possible cases as
follows:
Case 1. x ∈ {1, 2, 5, 7}, y ∈ X. It is clear that

∫ δ(F 2x,G3y)

0
ϕ(t)dt =

∫ |2−2|
0

ϕ(t)dt = 0

≤ φ
(∫ δ(fx,F 2x)

0
ϕ(t)dt,

∫ δ(gy,G3y)

0
ϕ(t)dt,

∫ δ(fy,G3y)

0
ϕ(t)dt,∫ δ(gy,F 2x)

0
ϕ(t)dt,

∫ d(fx,gy)

0
ϕ(t)dt

)
;

Case 2. x = 9, y ∈ {1, 2, 5, 7}. It follows that

∫ δ(F 29,G3y)

0
ϕ(t)dt =

∫ δ({2,7},2)

0
ϕ(t)dt = 5 ≤ 6

7
(5 + e6 − e5)

=
6

7

(∫ 5

0
dt+

∫ 6

5
etdt

)
=

6

7

∫ δ(1,{2,7})

0
ϕ(t)dt =

6

7

∫ δ(f9,F 29)

0
ϕ(t)dt

≤ φ
(∫ δ(f9,F 29)

0
ϕ(t)dt,

∫ δ(gy,G3y)

0
ϕ(t)dt,

∫ δ(f9,G3y)

0
ϕ(t)dt,∫ δ(gy,F 29)

0
ϕ(t)dt,

∫ d(f9,gy)

0
ϕ(t)dt

)
;
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Case 3. x = y = 9. Notice that∫ δ(F 29,G39)

0
ϕ(t)dt =

∫ δ({2,7},2)
= 5 ≤ 6

7
(5 + e8 − e5)

=
6

7

(∫ 5

0
1dt+

∫ 8

5
etdt

)
=

6

7

∫ d(f9,g9)

0
ϕ(t)dt

≤ φ
(∫ δ(f9,F 29)

0
ϕ(t)dt,

∫ δ(g9,G39)

0
ϕ(t)dt,

∫ δ(f9,G39)

0
ϕ(t)dt,∫ δ(g9,F 29)

0
ϕ(t)dt,

∫ d(f9,g9)

0
ϕ(t)dt

)
.

Hence, (2.14) holds. That is, the conditions of Theorem 2.5 are fulfilled. It
follows from Theorem 2.5 that f , g, F 2 and G3 have a unique common fixed
point 2 ∈ X.

However, Theorems 1 and 2 in [3] cannot be used to prove the existence
of common fixed points of f , g, F and G in X. Suppose that f , g, F and
G satisfy the conditions of Theorem 1 in [3]. That is, there exist ϕ ∈ Φ1,
α ∈ [0, 1) and a ≥ 0, b ≥ 0 with a+ b < 1 satisfying∫ H(Fx,Gy)

0
ϕ(t)dt

≤ α
∫ max{d(fx,gy),d(fx,Fx),d(gy,Gy)}

0
ϕ(t)dt

+ (1− α)

(
a

∫ d(fx,Gy)
2

0
ϕ(t)dt+ b

∫ d(gy,Fx)
2

0
ϕ(t)dt

)
.

(3.1)

It follows from (3.1) and ϕ ∈ Φ1 that∫ 5

0
ϕ(t)dtdt =

∫ H(F5,G2)

0
ϕ(t)dt

≤ α
∫ max{d(f5,g2),d(f5,F5),d(g2,G2)}

0
ϕ(t)dt

+ (1− α)

(
a

∫ d(f5,G2)
2

0
ϕ(t)dt+ b

∫ d(g2,F5)
2

0
ϕ(t)dt

)
= α

∫ 0

0
ϕ(t)dt+ (1− α)

(
a

∫ 0

0
ϕ(t)dt+ b

∫ 0

0
ϕ(t)dt

)
= 0,

which is a contradiction.
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Suppose that f , g, F and G satisfy the conditions of Theorem 2 in [3]. That
is, there exists (ϕ, φ) ∈ Φ1 × Φ2 satisfying∫ H(Fx,Gy)

0
ϕ(t)dt

≤ φ
(∫ max{d(fx,gy),d(fx,Fx),d(gy,Gy), d(fx,Gy)

2
,
d(gy,Fx)

2
}

0
ϕ(t)dt

)
.

(3.2)

By virtue of (3.2) and (ϕ, φ) ∈ Φ1 × Φ2, we conclude that∫ 5

0
ϕ(t)dt =

∫ H(F5,G2)

0
ϕ(t)dt

≤ φ
(∫ max{d(f5,g2),d(f5,F5),d(g2,G2),

d(f5,G2)
2

,
d(g2,F5)

2
}

0
ϕ(t)dt

)
= φ

(∫ 0

0
ϕ(t)dt

)
= φ(0) = 0,

which is impossible.
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