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Abstract. Let Iµ(f1, f2, ...fl, g1, g2, ...gl)(z) be the integral operator defined by generalized

hypergeometric functions where each of the functions fm and gm are, respectively, analytic

functions in the open unit disk for all m = 1, ..., l. The object of this paper is to obtain several

univalence conditions for this integral operator. Our main results contain some interesting

corollaries as special cases.

1. Introduction

The study of hypergeometric functions plays a vital role in mathematics.
Hypergeometric functions had been extensively studied (for example) by Eu-
ler, Gauss, Riemann and of course many others. They obtained many inter-
esting results associated with this type of functions, these results could be
attributed to the applications of the hypergeometric theory along with its
beautiful structure. It is applicable in many subjects such as combinatorics,
numerical analysis, dynamical analysis and mathematical physics. Basically,
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q−hypergeometric functions are a generalization of the classical hypergeomet-
ric functions, in the sense of taking the (formal) limit q → 1, it will return to
the classical hypergeometric setting. The q−hypergeometric level can general-
ize many results for the classical hypergeometric functions. The generalization
q−Taylor’s formula in fractional q−caluculs introduced by Purohit and Raina
[17], where certain q−generating functions for q−hypergeometric functions are
derived.

Let A denote the class of functions of the form

f(z) = z +
∞∑
k=2

akz
k, (1.1)

which are analytic and normalized in the open unit disk U = {z : |z| < 1} .
q−hypergeometric function is a power series in one complex variable z with

power series coefficients which depend, apart from q on r complex upper pa-
rameters a1, a2, ..., ar and s complex lower b1, b2, ...bs as follows (See Gasper
and Rahman [8])

rΩs (a1, ...ar; b1, ...bs, q, z)=

∞∑
k=0

(a1, q)k...(ar, q)k
(q, q)k(b1, q)k...(bs, q)k

(−1)kq

(
k
2

)
1+s−r

zk,

(1.2)

with

(
k
2

)
= k(k−1)

2 , where q 6= 0 when r > s+1, (r, s ∈ N0 = N ∪ {0}; z ∈ U) ,

N denote the set of positive integers and (a, q)k is the q−shifted factorial de-
fined by

(a, q)k =

{
1, k = 0;
(1− a)(1− aq)(1− aq2)...(1− aqk−1), k ∈ N.

By using the ratio test, one recognize that, if |q| < 1, the series (1.2) con-
verges absolutely (see Gasper and Rahman [8]) and Ghany [9]) for all z if r ≤ s
and for |z| < 1 if r = s+ 1. For brief survey on q−hypergeometric functions,
one may refer to [2, 4, 10] also see [11, 12].

Now for z ∈ U, |q| < 1, and r = s + 1, the q−hypergeometric function
defined in (1.2) takes the form

rυs (a1, ..., ar; b1, ..., bs, q, z) =
∞∑
k=0

(a1, q)k...(ar, q)k
(q, q)k(b1, q)k...(bs, q)k

zk,

which converges absolutely in the open unit disk U .
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Corresponding to a function rΛs(ai; bj ; q, z) defined by

rΛs(ai; bj ; q, z) = z rυs(ai; bj ; q, z) = z +

∞∑
k=2

(a1, q)k−1...(ar, q)k−1
(q, q)k−1(b1, q)k−1...(bs, q)k−1

zk,

where i = 1, ..., r, j = 1, ..., s, ai, bj ∈ C, bj ∈ C\{0,−1,−2, ...}.
We will use the following operator which defined and studied by the authors

(see [1] ).

M0
r,s,λ(ai, bj ; q)f(z) =f(z) ∗ rΛs(ai, bj ; q; z),

M1
r,s,λ(ai, bj ; q)f(z) =(1− λ)f(z) ∗ rΛs(ai, bj ; q; z) + λz (f(z) ∗ rΛs(ai, bj ; q; z)) ,

...

Mn
r,s,λ(ai, bj ; q)f(z) =M1

r,s,λ

(
Mn−1

r,s,λ(f(z))
)

= z +
∞∑
k=2

[1 + (k − 1)λ]n Υkakz
k,

(1.3)

where ∗ denotes the usual Hadamard product of analytic functions and

Υk =
(a1, q)k−1...(ar, q)k−1

(q, q)k−1(b1, q)k−1...(bs, q)k−1
. (1.4)

In the following definitions, we introduce new subclasses of analytic func-
tions defined by a linear operator Mn

r,s,λ(ai, bj ; q)f(z).

Definition 1.1. Let f ∈ A. Then f ∈ Snr,s,λ(α) if and only if∣∣∣∣∣∣∣
z
(
Mn

r,s,λ(ai, bj ; q)f(z)
)′

Mn
r,s,λ(ai, bj ; q)f(z)

− 1

∣∣∣∣∣∣∣ < α, 0 < α ≤ 1, z ∈ U, (1.5)

where Mn
r,s,λ(ai, bj ; q)f(z) is the operator given by (1.3).

Definition 1.2. Let f ∈ A. Then f ∈ Bnr,s,λ(η, β) if and only if∣∣∣∣∣(Mn
r,s,λ(ai, bj ; q)f(z)

)′( z

Mn
r,s,λ(ai, bj ; q)f(z)

)η
− 1

∣∣∣∣∣
< 1− β, 0 ≤ β < 1, η ≥ 0, z ∈ U,

(1.6)

where Mn
r,s,λ(ai, bj ; q)f(z) is the operator given by (1.3).

We present some examples by using specializing the values of r, s, a1, a2...ar,
b1, b2, ...bs and n.
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Example 1.3. For r = 1, s = 0, a1 = q and n = 0 in Definition 1.1, then

S∗α =

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < α, 0 < α ≤ 1, z ∈ U,

where S∗α denote the class of analytic functions (see[6] and [7]).

Example 1.4. For r = 1, s = 0, a1 = q, and n = 0 in Definition 1.2, then

B(η, β) =

∣∣∣∣g′(z)( z

g(z)

)η
− 1

∣∣∣∣ < 1− β,

z ∈ U, 0 ≤ β < 1, η ≥ 0,

where B(η, β) denote the class of analytic functions which has been studied
by Frasin and Jahangiri [5].

Using the operator defined by (1.3), we introduce the following new general
integral operator:

Definition 1.5. For l ∈ N ∪ {0}, fm(z), gm(z) ∈ A and δm, γm, µ ∈ C∗ =
C\{0}. We define the integral operator Iµ(f1, f2, ...fl, g1, g2, ...gl)(z) : An →
An by

Iµ(f1, f2, ...fl, g1, g2, ...gl)(z)

=

µ
∫ z

0
tµ−1

l∏
m=1

(
Mn

r,s,λ(ai, bj ; q)fm(t)

t

)δm (
eM

n
r,s,λ(ai,bj ;q)gm(t)

)γm
dt


1
µ

.

(1.7)

It should be remarked that the integral operator Iµ(f1, f2, ...fn, g1, g2, ...gl)(z)
is a generalization of many other operators considered earlier, for example:

• For n = 0, r = 1, s = 0, a1 = q, and µ = 1, where δm, γm ∈ C, the
integral operator

Fβ(f1, f2, ...fl, g1, g2, ...gl)(z) =

∫ z

0

l∏
m=1

(
fm(t)

t

)δm (
egm(t)

)γm
dt

investigated by Stanciu and Breaz [18].
• For n = 0, r = 1, s = 0, a1 = q, µ = 1 and l = 1, where δ, γ ∈ C, we

have the integral operator (see [18])

F (f1, f2, ...fl, g1, g2, ...gl)(z) =

∫ z

0

(
f(t)

t

)δ (
eg(t)

)γ
dt
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• For n = 0, r = 1, s = 0, a1 = q and γm = 0,where δm ∈ C and
µ ∈ C∗ = C\{0}, the integral operator

Fµ(f1, f2, ...fl)(z) =

{
µ

∫ z

0
tµ−1

l∏
m=1

(
fm(t)

t

)δm
dt

} 1
µ

introduced by Breaz and Breaz [3].
• For n = 0, r = 1, s = 0, a1 = q, γm = 0 and µ = 1, where δm ∈ C, we

obtain the integral operator

Fn(z) =

∫ z

0

l∏
m=1

(
fm(t)

t

)δm
dt

studied by Breaz and Breaz [3].

The following results will be required in our investigation.

Lemma 1.6. ([14, 15]) Let µ ∈ C with Re(µ) > 0. If f ∈ A satisfies

1− |z|2Re(µ)

Re(µ)

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then the integral operator

Fµ(z) =

{
µ

∫ z

0
tµ−1f ′(t)dt

} 1
µ

is in the class S.

Lemma 1.7. ([16]) Let µ ∈ C with Re(µ) > 0, c ∈ C, with |c| ≤ 1, c 6= −1. If
f ∈ A satisfies ∣∣∣∣c|z|2µ + (1− |z|2µ)

zf ′′(z)

µf ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then the integral operator

Fµ(z) =

{
µ

∫ z

0
tµ−1f ′(t)dt

} 1
µ

is in the class S.

Lemma 1.8. (Generalized Schwarz Lemma, [13]) Let the function f be reg-
ular in the disk UR = {z ∈ C : |z| < R}, with |f(z)| < M for fixed M . If f
has one zero with multiplicity order bigger than m for z = 0, then

|f(z)| ≤ M

Rm
|z|m, (z ∈ UR).
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Equality can hold only if

f(z) = eiθ
(
M

Rm

)
zm,

where θ is constant.

2. Main Results

Theorem 2.1. Let the functions fm, gm ∈ A, for all m ∈ 1, 2, ..., l and suppose
that

|Mn
r,s,λ(ai, bj ; q)gm(z)| ≤Mm, (z ∈ U)

with Mm ≥ 1. If fm ∈ Snr,s,λ(αm), 0 < αm ≤ 1 and gm ∈ Bnr,s,λ(ηm, βm), ηm ≥
0, 0 ≤ βm < 1, then the integral operator Iµ(f1, ..., fl, g1, ...gl)(z) given by (1.7)
is analytic and univalent in U, where

Re(µ) ≥
l∑

m=1

[|δm|αm + |γm|(2− βm)Mηm
m ] . (2.1)

Proof. By setting

w(z) =

∫ z

0

l∏
m=1

(
Mn

r,s,λ(ai, bj ; q)fm(t)

t

)δm (
eM

n
r,s,λ(ai,bj ;q)gm(t)

)γm
dt

and

w′(z) =
l∏

m=1

(
Mn

r,s,λ(ai, bj ; q)fm(z)

z

)δm (
eM

n
r,s,λ(ai,bj ;q)gm(z)

)γm
.

Logarithmic derivative of w′(z) yields

zw′′(z)

w′(z)

=

l∑
m=1

[
δm

(
z(Mn

r,s,λ(ai, bj ; q)fm(z))′

Mn
r,s,λ(ai, bj ; q)fm(z)

− 1

)
+ γmz(Mn

r,s,λ(ai, bj ; q)gm(z))′

]
.

This implies that∣∣∣∣zw′′(z)w′(z)

∣∣∣∣
≤

l∑
m=1

[
|δm|

∣∣∣∣∣z(Mn
r,s,λ(ai, bj ; q)fm(z))′

Mn
r,s,λ(ai, bj ; q)fm(z)

− 1

∣∣∣∣∣+ |γm|
∣∣z(Mn

r,s,λ(ai, bj ; q)gm(z))′
∣∣] ,
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which readily shows that

1− |z|2Re(µ)

Re(µ)

∣∣∣∣zw′′(z)w′(z)

∣∣∣∣ ≤ 1− |z|2Re(µ)

Re(µ)

l∑
m=1

[
|δm|

∣∣∣∣∣z(Mn
r,s,λ(ai, bj ; q)fm(z))′

Mn
r,s,λ(ai, bj ; q)fm(z)

− 1

∣∣∣∣∣
+ |γm|

∣∣z(Mn
r,s,λ(ai, bj ; q)gm(z))′

∣∣ ]
that is,

1− |z|2Re(µ)

Re(µ)

∣∣∣∣zw′′(z)w′(z)

∣∣∣∣
≤ 1− |z|2Re(µ)

Re(µ)

l∑
m=1

[
|δm|

∣∣∣∣∣z(Mn
r,s,λ(ai, bj ; q)fm(z))′

Mn
r,s,λ(ai, bj ; q)fm(z)

− 1

∣∣∣∣∣
+ |γm|

∣∣∣∣∣(Mn
r,s,λ(ai, bj ; q)gm(z))′

(
z

Mn
r,s,λ(ai, bj ; q)gm(z)

)ηm∣∣∣∣∣
×

∣∣∣∣∣Mn
r,s,λ(ai, bj ; q)gm(z)

z

∣∣∣∣∣
ηm

|z|

]
. (2.2)

Since |Mn
r,s,λ(ai, bj ; q)gm(z)| ≤Mm, z ∈ U using the General Schwarz Lemma

for the functions Mn
r,s,λ(ai, bj ; q)gm(z) , we receive

|Mn
r,s,λ(ai, bj ; q)gm(z)| ≤Mm|z|, z ∈ U

for all m ∈ 1, 2, ..., l.

Also, since fm ∈ Snr,s,λ(αm), 0 < αm ≤ 1, applying the relation (1.5) in the

relation (2.2), we have

1− |z|2Re(µ)

Re(µ)

∣∣∣∣zw′′(z)w′(z)

∣∣∣∣
≤ 1− |z|2Re(µ)

Re(µ)

l∑
m=1

[
|δm|αm

+ |γm|

(∣∣∣∣∣(Mn
r,s,λ(ai, bj ; q)gm(z))′

(
z

Mn
r,s,λ(ai, bj ; q)gm(z)

)ηm
− 1

∣∣∣∣∣+ 1

)
Mηm
m

]
.

According to the relation (1.6), we obtain

1− |z|2Re(µ)

Re(µ)

∣∣∣∣zw′′(z)w′(z)

∣∣∣∣ ≤ 1

Re(µ)

l∑
m=1

[|δm|αm + |γm|(2− βm)Mηm
m ] .
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Thus using (8) and applying Lemma 1.6, we obtain that the integral operator
Iµ(f1, f2, ...fl, g1, g2, ...gl)(z) ∈ S. This completes the proof. �

In Theorem 2.1, if we set l = 1, then we have the following corollary.

Corollary 2.2. Let the functions f, g ∈ A and suppose that

|Mn
r,s,λ(ai, bj ; q)g(z)| ≤M, (z ∈ U)

with M ≥ 1. If f ∈ Snr,s,λ(α), 0 < α ≤ 1 and g ∈ Bnr,s,λ(η, β), η ≥ 0, 0 ≤ β < 1,
then the integral operator

Iµ(f, g)(z) =

µ
∫ z

0
tµ−1

(
Mn

r,s,λ(ai, bj ; q)f(t)

t

)δ (
eM

n
r,s,λ(ai,bj ;q)g(t)

)γ
dt


1
µ

,

(2.3)
is analytic and univalent in U, where

Re(µ) ≥ |δ|α+ |γ|(2− β)Mη.

In Theorem 2.1, if we consider M1 = M2 = · · · = Ml = M, then we get the
following corollary.

Corollary 2.3. Let M ≥ 1, each of the functions fm, gm ∈ A for all m ∈
1, 2, ..., l satisfies fm ∈ Snr,s,λ(αm), 0 < αm ≤ 1 and gm ∈ Bnr,s,λ(ηm, βm), ηm ≥
0, 0 ≤ βm < 1 with

Re(µ) ≥
l∑

m=1

[|δm|αm + |γm|(2− βm)Mηm ] .

If
|Mn

r,s,λ(ai, bj ; q)gm(z)| ≤M,

then the integral operator Iµ(f1, f2, ...fl, g1, g2, ...gl)(z) defined by (1.7) is ana-
lytic and univalent in U.

In Corollary 2.3, we consider M = 1, then we have the following corollary.

Corollary 2.4. Let each of the functions fm, gm ∈ A for all m ∈ 1, 2, ..., l
satisfies fm ∈ Snr,s,λ(αm), 0 < αm ≤ 1 and gm ∈ Bnr,s,λ(ηm, βm), ηm ≥ 0, 0 ≤
βm < 1 with

Re(µ) ≥
l∑

m=1

[|δm|αm + |γm|(2− βm)] .

If
|Mn

r,s,λ(ai, bj ; q)gm(z)| ≤ 1,



Univalence preserving integral operator 547

then the integral operator Iµ(f1, f2, ...fl, g1, g2, ...gl)(z) defined by (1.7) is ana-
lytic and univalent in U.

Theorem 2.5. Let the functions fm, gm ∈ A for all m ∈ 1, 2, ..., l and suppose
that

|Mn
r,s,λ(ai, bj ; q)gm(z)| ≤Mm, (z ∈ U)

with Mm ≥ 1. If fm ∈ Snr,s,λ(αm), 0 < αm ≤ 1 and gm ∈ Bnr,s,λ(ηm, βm), ηm ≥
0, 0 ≤ βm < 1, then the integral operator Iµ(f1, ..., fl, g1, ...gl)(z) given by (1.7)
is analytic and univalent in U, where

1− |c| ≥ 1

µ

l∑
m=1

[|δm|αm + |γm|(2− βm)Mηm
m ] . (2.4)

Proof. From the proof of Theorem 2.1, we have

zw′′(z)

w′(z)
=

l∑
m=1

[
δm

(
z(Mn

r,s,λ(ai, bj ; q)fm(z))′

Mn
r,s,λ(ai, bj ; q)fm(z)

−1

)
+γmz(Mn

r,s,λ(ai, bj ; q)gm(z))′

]
.

Then we find∣∣∣∣c|z|2µ + (1− |z|2µ)
zw′′(z)

µw′(z)

∣∣∣∣
=

∣∣∣∣∣c|z|2µ +
(1− |z|2µ)

µ

l∑
m=1

[
δm

(
z(Mn

r,s,λ(ai, bj ; q)fm(z))′

Mn
r,s,λ(ai, bj ; q)fm(z)

− 1

)

+ γmz(Mn
r,s,λ(ai, bj ; q)gm(z))′

]∣∣∣∣∣
≤ |c|+ 1

µ

l∑
m=1

[
|δm|

∣∣∣∣∣z(Mn
r,s,λ(ai, bj ; q)fm(z))′

Mn
r,s,λ(ai, bj ; q)fm(z)

− 1

∣∣∣∣∣
+ |γm||z||(Mn

r,s,λ(ai, bj ; q)gm(z))′|
]
. (2.5)

From the result in (2.5) and using the proof of Theorem 2.1, we impose∣∣∣∣c|z|2µ + (1− |z|2µ)
zw′′(z)

µw′(z)

∣∣∣∣ ≤ |c|+ 1

µ

l∑
m=1

|δm|αm + |γm|(2− βm)Mηm
m .

According to the hypothesis (2.4) and by Lemma 1.7, we obtain that
Iµ(f1, ..., fl, g1, ...gl)(z) ∈ S. �
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In Theorem 2.5, we put l = 1. Then we have:

Corollary 2.6. Let the functions f, g ∈ A and suppose that

|Mn
r,s,λ(ai, bj ; q)g(z)| ≤M, (z ∈ U)

with M ≥ 1. If f ∈ Snr,s,λ(α), 0 < α ≤ 1 and g ∈ Bnr,s,λ(η, β, η ≥ 0, 0 ≤ β < 1,

then the integral operator Iµ(f, g)(z) given by (2.3) is analytic and univalent
in U, where

1− |c| ≥ 1

µ
[|δ|α+ |γ|(2− β)Mη] .

In Theorem 2.5, we consider M1 = M2 = · · · = Ml = M, then we have the
following corollary.

Corollary 2.7. Let M ≥ 1, each of the functions fm, gm ∈ A for all m ∈
1, 2, ..., l satisfies fm ∈ Snr,s,λ(αm), 0 < αm ≤ 1 and gm ∈ Bnr,s,λ(ηm, βm), ηm ≥
0, 0 ≤ βm < 1 with

1− |c| ≥ 1

µ

l∑
m=1

[|δm|αm + |γm|(2− βm)Mηm ] .

If
|Mn

r,s,λ(ai, bj ; q)gm(z)| ≤M,

then the integral operator Iµ(f1, f2, ...fl, g1, g2, ...gl)(z) defined by (1.7) is ana-
lytic and univalent in U.

In Corollary 2.7, we consider M = 1, the we have:

Corollary 2.8. Each of the functions fm, gm ∈ A for all m ∈ 1, 2, ..., l satisfies
fm ∈ Snr,s,λ(αm), 0 < αm ≤ 1 and gm ∈ Bnr,s,λ(ηm, βm), ηm ≥ 0, 0 ≤ βm < 1
with

1− |c| ≥ 1

µ

l∑
m=1

[|δm|αm + |γm|(2− βm)] .

If
|Mn

r,s,λ(ai, bj ; q)gm(z)| ≤ 1,

then the integral operator Iµ(f1, f2, ...fl, g1, g2, ...gl)(z) defined by (1.7) is ana-
lytic and univalent in U.
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