Nonlinear Functional Analysis and Applications Vol. 23, No. 3 (2018), pp. 559-573 ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright \odot 2018 Kyungnam University Press

SOME CONVERGENCE RESULTS FOR MIXED TYPE TOTAL ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN BANACH SPACES

G. S. Saluja¹, J. K. Kim² and H. G. Hyun³

¹Department of Mathematics Govt. Kaktiya P. G. College, Jagdalpur - 494001 Chhattisgarh, India e-mail: saluja1963@gmail.com

²Department Mathematics Education, Kyungnam University Changwon, Gyeongnam, 51767, Korea e-mail: jongkyuk@kyungnam.ac.kr

³Department Mathematics Education, Kyungnam University Changwon, Gyeongnam, 51767, Korea e-mail: hyunhg8285@kyungnam.ac.kr

Abstract. In this paper, we study a new two-step iteration scheme of mixed type for two total asymptotically nonexpansive self-mappings and two total asymptotically nonexpansive non-self mappings and establish some strong convergence theorems in the framework of Banach spaces. Our results extend and generalize several results from the current existing literature.

1. INTRODUCTION

Let C be a nonempty subset of a real Banach space E. Let $T: C \to C$ be a nonlinear mapping. Then we denote the set of all fixed points of T by $F(T)$. The set of common fixed points of four mappings S_1 , S_2 , T_1 and T_2 will be denoted by $F = F(S_1) \bigcap F(S_2) \bigcap F(T_1) \bigcap F(T_2)$. Throughout this paper N

⁰Received February 17, 2018. Revised April 26, 2018.

⁰2010 Mathematics Subject Classification: 47H09, 47H10, 47J25.

 0 Keywords: Total asymptotically nonexpansive self and non-self mappings, mixed type iteration scheme, common fixed point, Banach space, strong convergence.

 0^0 Corresponding author: H.G. Hyun(hyunhg8285@kyungnam.ac.kr).

denotes the set of all positive integers and \mathbb{R}^+ denotes the set of all positive real numbers.

Definition 1.1. A mapping $T: C \to C$ is said to be asymptotically nonexpansive [6] if there exists a positive sequence $\{k_n\}$ in $[1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$
||T^n(x) - T^n(y)|| \le k_n ||x - y|| \tag{1.1}
$$

for all $x, y \in C$ and $n \in \mathbb{N}$.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [6] as a generalization of the class of nonxpansive mappings. They proved that if C is a nonempty closed convex subset of a real uniformly convex Banach space and T is an asymptotically nonexpansive mapping on C , then T has a fixed point.

Definition 1.2. A mapping $T: C \to C$ is said to be asymptotically nonexpansive in the intermediate sense if it is continuous and the following inequality holds:

$$
\limsup_{n \to \infty} \sup_{x, y \in C} \left(\|T^n(x) - T^n(y)\| - \|x - y\| \right) \le 0.
$$
\n(1.2)

Observe that if we define

$$
c_n = \limsup_{n \to \infty} \sup_{x, y \in C} \left(\|T^n(x) - T^n(y)\| - \|x - y\| \right) \text{ and } \nu_n = \max\{0, c_n\},\
$$

then $\nu_n \to 0$ as $n \to \infty$. It follows that (1.2) is reduced to

$$
||T^{n}(x) - T^{n}(y)|| \le ||x - y|| + \nu_{n}
$$
\n(1.3)

for all $x, y \in C$ and $n \in \mathbb{N}$.

The class of mappings which are asymptotically nonexpansive in the intermediate sense was introduced by Bruck, Kuczumow and Reich [2]. It is known [9], that if C is a nonempty closed convex bounded subset of a uniformly convex Banach space E and T is asymptotically nonexpansive in the intermediate sense mapping, T has a fixed point. It is worth mentioning that the class of mapping which are asymptotically nonexpansive in the intermediate sense contains properly the class of asymptotically nonexpansive mappings.

Albert et al. [1] introduced the concept of total asymptotically nonexpansive mappings in 2006.

Definition 1.3. A mapping $T: C \rightarrow C$ is said to be total asymptotically nonexpansive [1] if

$$
||T^{n}(x) - T^{n}(y)|| \le ||x - y|| + \mu_{n}\psi(||x - y||) + \nu_{n}, \qquad (1.4)
$$

for all $x, y \in C$ and $n \in \mathbb{N}$, where $\{\mu_n\}$ and $\{\nu_n\}$ are nonnegative real sequences such that $\mu_n \to 0$ and $\nu_n \to 0$ as $n \to \infty$ and a strictly increasing continuous function $\psi: [0, \infty) \to [0, \infty)$ with $\psi(0) = 0$.

From the above definition, we see that the class of total asymptotically nonexpansive mappings include the class of asymptotically nonexpansive mappings as a special case; see also [5] for more details.

Remark 1.4. From the above definition, it is clear that each asymptotically nonexpansive mapping is a total asymptotically nonexpansive with $\nu_n = 0$, $\mu_n = k_n - 1$ for all $n \ge 1$, $\psi(t) = t$, $t \ge 0$.

Definition 1.5. A subset C of a Banach space E is said to be a retract of E if there exists a continuous mapping $P: E \to C$ (called a retraction) such that $P(x) = x$ for all $x \in C$. If, in addition P is nonexpansive, then P is said to be a nonexpansive retract of E.

If $P: E \to C$ is a retraction, then $P^2 = P$. A retract of a Hausdorff space must be a closed subset. Every closed convex subset of a uniformly convex Banach space is a retract.

In 2003, Chidume et al. [3] defined non-self asymptotically nonexpansive mappings.

Definition 1.6. A non-self mapping $T: C \rightarrow E$ is said to be asymptotically nonexpansive [3] if there exists a positive sequence $\{k_n\}$ in $[1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$
||T(PT)^{n-1}(x) - T(PT)^{n-1}(y)|| \le k_n ||x - y|| \tag{1.5}
$$

for all $x, y \in C$ and $n \in \mathbb{N}$.

Recently, Yolacan and Kiziltunc [18] defined non-self total asymptotically nonexpansive mappings.

Definition 1.7. Let C be a nonempty closed and convex subset of a Banach space E. A non-self mapping $T: C \to E$ is said to be total asymptotically nonexpansive [18] if there exist sequences $\{\mu_n\}$ and $\{\nu_n\}$ in $[0,\infty)$ with $\mu_n \to 0$ and $\nu_n \to 0$ as $n \to \infty$ and a strictly increasing continuous function $\psi: [0, \infty) \to [0, \infty)$ with $\psi(0) = 0$

$$
||T(PT)^{n-1}(x) - T(PT)^{n-1}(y)|| \le ||x - y|| + \mu_n \psi(||x - y||) + \nu_n,
$$
 (1.6)

for all $x, y \in C$ and $n \in \mathbb{N}$.

Chidume et al. [3] studied the following iteration process for non-self asymptotically nonexpansive mappings:

$$
x_1 = x \in C,
$$

\n
$$
x_{n+1} = P(\alpha_n T(PT)^{n-1} x_n + (1 - \alpha_n) x_n), n \ge 1,
$$
\n(1.7)

where $\{\alpha_n\}$ is a sequence in $(0, 1)$.

Chidume et al. [4] studied the following iteration scheme:

$$
x_1 = x \in C,
$$

\n
$$
x_{n+1} = P(\alpha_n T(PT)^{n-1} x_n + (1 - \alpha_n) x_n), n \ge 1,
$$
\n(1.8)

where $\{\alpha_n\}$ is a sequence in $(0, 1)$, and C is a nonempty closed convex subset of a real uniformly convex Banach space E, P is a nonexpansive retraction of E onto C, and proved some strong and weak convergence theorems for asymptotically nonexpansive non-self mappings in the intermediate sense in the framework of uniformly convex Banach spaces.

In 2006, Wang [16] generalized the iteration process (1.8) as follows:

$$
x_1 = x \in C,
$$

\n
$$
x_{n+1} = P((1 - \alpha_n)x_n + \alpha_n T_1 (PT_1)^{n-1} y_n),
$$

\n
$$
y_n = P((1 - \beta_n)x_n + \beta_n T_2 (PT_2)^{n-1} x_n), n \ge 1,
$$
\n(1.9)

where $T_1, T_2: C \to E$ are two asymptotically nonexpansive non-self mappings and $\{\alpha_n\}$, $\{\beta_n\}$ are real sequences in [0, 1), and proved some strong and weak convergence theorems for asymptotically nonexpansive non-self mappings.

In 2012, Guo *et al.* [7] generalized the iteration process (1.9) as follows:

$$
x_1 = x \in C,
$$

\n
$$
x_{n+1} = P((1 - \alpha_n)S_1^n x_n + \alpha_n T_1 (PT_1)^{n-1} y_n),
$$

\n
$$
y_n = P((1 - \beta_n)S_2^n x_n + \beta_n T_2 (PT_2)^{n-1} x_n), n \ge 1,
$$
\n(1.10)

where $S_1, S_2: C \to C$ are two asymptotically nonexpansive self mappings and $T_1, T_2: C \to E$ are two asymptotically nonexpansive non-self mappings and ${\{\alpha_n\}}$, ${\{\beta_n\}}$ are real sequences in [0, 1], and proved some strong and weak convergence theorems for mixed type asymptotically nonexpansive mappings.

Now, we define the mixed type iteration scheme.

Let E be a real Banach space, C be a nonempty closed convex subset of E and $P: E \to C$ be a nonexpansive retraction of E onto C. Let $S_1, S_2: C \to C$ be two total asymptotically nonexpansive self mappings and $T_1, T_2: C \to E$

are two total asymptotically nonexpansive non-self mappings. Then the mixed type iteration scheme for the mentioned mappings is as follows:

$$
x_1 = x \in C,
$$

\n
$$
x_{n+1} = P((1 - \alpha_n)S_1^n x_n + \alpha_n T_1 (PT_1)^{n-1} y_n),
$$

\n
$$
y_n = P((1 - \beta_n)S_2^n x_n + \beta_n T_2 (PT_2)^{n-1} x_n), n \ge 1,
$$
\n(1.11)

where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in [0, 1).

The purpose of this paper is to study newly defined mixed type iteration scheme (1.11) and establish some strong convergence theorems in the setting of real Banach spaces.

2. Preliminaries

A mapping $T: C \to C$ with $F(T) \neq \emptyset$ is said to satisfy *condition* (A) [14] if there is a nondecreasing function $f : [0, \infty) \to [0, \infty)$ with $f(0) = 0, f(t) > 0$ for all $t \in (0,\infty)$ such that $||x - Tx|| \ge f(d(x, F(T)))$ for all $x \in C$, where

$$
d(x, F(T)) = \inf \{ ||x - p|| : p \in F(T) \}.
$$

A mapping $T: C \to C$ is called:

- (1) demicompact if any bounded sequence $\{x_n\}$ in C such that $\{x_n-Tx_n\}$ is convergent, then it has a convergent subsequence $\{x_{n_i}\};$
- (2) semi-compact (or hemicompact) if any bounded sequence $\{x_n\}$ in C such that $\{x_n - Tx_n\} \to 0$ as $n \to \infty$ has a convergent subsequence.

Every demicompact mapping is semi-compact but the converse is not true in general.

Senter and Dotson [14] have approximated fixed point of a nonexpansive mapping T by Mann iterates whereas Maiti and Ghosh [10] and Tan and Xu [15] have approximated the fixed points using Ishikawa iterates under condition (A) of [14]. Tan and Xu [15] pointed out that *condition* (A) is weaker than the compactness of C.

Proposition 2.1. Let C be a nonempty subset of a Banach space E which is also a nonexpansive retract of E, and $T_1, T_2 \colon C \to E$ be two total asymptotically nonexpansive non-self mappings. Then there exist nonnegative real sequences $\{\mu_n\}$ and $\{\nu_n\}$ in $[0,\infty)$ with $\mu_n \to 0$ and $\nu_n \to 0$ as $n \to \infty$ and a strictly increasing continuous function $\psi \colon \mathbb{R}^+ \to \mathbb{R}^+$ with $\psi(0) = 0$ such that

$$
||T_1(PT_1)^{n-1}(x) - T_1(PT_1)^{n-1}(y)|| \le ||x - y|| + \mu_n \psi(||x - y||) + \nu_n, \quad (2.1)
$$

and

$$
||T_2(PT_2)^{n-1}(x) - T_2(PT_2)^{n-1}(y)|| \le ||x - y|| + \mu_n \psi(||x - y||) + \nu_n, \quad (2.2)
$$

for all $x, y \in C$ and $n \in \mathbb{N}$.

Proof. Since $T_1, T_2 \text{: } C \rightarrow E$ are two total asymptotically nonexpansive nonself mappings, there exist nonnegative real sequences $\{\mu'_n\}$, $\{\mu''_n\}$, $\{\nu'_n\}$ and $\{\nu''_n\}$ in $[0,\infty)$ with $\mu'_n, \mu''_n \to 0$ and $\nu'_n, \nu''_n \to 0$ as $n \to \infty$ and strictly increasing continuous functions $\psi_1, \psi_2 \colon \mathbb{R}^+ \to \mathbb{R}^+$ with $\psi_1(0) = 0$ and $\psi_2(0) = 0$ such that

$$
||T_1(PT_1)^{n-1}(x) - T_1(PT_1)^{n-1}(y)|| \le ||x - y|| + \mu'_n \psi_1(||x - y||) + \nu'_n, \quad (2.3)
$$

and

$$
||T_2(PT_2)^{n-1}(x) - T_2(PT_2)^{n-1}(y)|| \le ||x - y|| + \mu_n'' \psi_2(||x - y||) + \nu_n'', \quad (2.4)
$$

for all $x, y \in C$ and $n \in \mathbb{N}$.

Setting

$$
\mu_n = \max\{\mu'_n, \mu''_n\}, \ \nu_n = \max\{\nu'_n, \nu''_n\}
$$

and

$$
\psi(a) = \max{\psi_1(a), \psi_2(a)}, \text{ for } a \ge 0,
$$

then we get that, there exist nonnegative real sequences $\{\mu_n\}$ and $\{\nu_n\}$ in $[0, \infty)$ with $\mu_n \to 0$ and $\nu_n \to 0$ as $n \to \infty$ and a strictly increasing continuous function $\psi: \mathbb{R}^+ \to \mathbb{R}^+$ with $\psi(0) = 0$ such that

$$
||T_1(PT_1)^{n-1}(x) - T_1(PT_1)^{n-1}(y)|| \le ||x - y|| + \mu'_n \psi_1(||x - y||) + \nu'_n
$$

$$
\le ||x - y|| + \mu_n \psi(||x - y||) + \nu_n
$$

and

$$
||T_2(PT_2)^{n-1}(x) - T_2(PT_2)^{n-1}(y)|| \le ||x - y|| + \mu_n'' \psi_2(||x - y||) + \nu_n''
$$

$$
\le ||x - y|| + \mu_n \psi(||x - y||) + \nu_n,
$$

for all $x, y \in C$ and $n \in \mathbb{N}$. This completes the proof.

Proposition 2.2. Let C be a nonempty subset of a Banach space E and let $S_1, S_2: C \rightarrow C$ be two total asymptotically nonexpansive self mappings. Then there exist nonnegative real sequences $\{\mu_{n_1}\}\$ and $\{\nu_{n_1}\}\$ in $[0,\infty)$ with $\mu_{n_1} \to 0$ and $\nu_{n_1} \to 0$ as $n \to \infty$ and a strictly increasing continuous function $\psi: \mathbb{R}^+ \to \mathbb{R}^+$ with $\psi(0) = 0$ such that

$$
||S_1^n(x) - S_1^n(y)|| \le ||x - y|| + \mu_{n_1}\psi(||x - y||) + \nu_{n_1}, \tag{2.5}
$$

and

$$
||S_2^n(x) - S_2^n(y)|| \le ||x - y|| + \mu_{n_1}\psi(||x - y||) + \nu_{n_1}, \qquad (2.6)
$$

for all $x, y \in C$ and $n \in \mathbb{N}$.

Proof. Since $S_1, S_2 \text{: } C \rightarrow C$ are two total asymptotically nonexpansive self mappings, there exist nonnegative real sequences $\{\mu'_{n_1}\}, \{\mu''_{n_1}\}, \{\nu'_{n_1}\}\$ and $\{\nu''_{n_1}\}\$ in $[0,\infty)$ with $\mu'_{n_1}, \mu''_{n_1} \to 0$ and $\nu'_{n_1}, \nu''_{n_1} \to 0$ as $n \to \infty$ and strictly increasing continuous functions $\psi_3, \psi_4 \colon \mathbb{R}^+ \to \mathbb{R}^+$ with $\psi_3(0) = 0$ and $\psi_4(0) =$ 0 such that

$$
||S_1^n(x) - S_1^n(y)|| \le ||x - y|| + \mu'_{n_1} \psi_3(||x - y||) + \nu'_{n_1}
$$
 (2.7)

and

$$
||S_2^n(x) - S_2^n(y)|| \le ||x - y|| + \mu_{n_1}'' \psi_4(||x - y||) + \nu_{n_1}'', \tag{2.8}
$$

for all $x, y \in C$ and $n \in \mathbb{N}$.

Setting

$$
\mu_{n_1} = \max\{\mu'_{n_1}, \mu''_{n_1}\}, \ \nu_{n_1} = \max\{\nu'_{n_1}, \nu''_{n_1}\}\
$$

and

$$
\psi(a) = \max{\psi_3(a), \psi_4(a)}, \text{ for } a \ge 0,
$$

then we get that, there exist nonnegative real sequences $\{\mu_{n_1}\}\$ and $\{\nu_{n_1}\}\$ in $[0, \infty)$ with $\mu_{n_1} \to 0$ and $\nu_{n_1} \to 0$ as $n \to \infty$ and a strictly increasing continuous function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\psi(0) = 0$ such that

$$
||S_1^n(x) - S_1^n(y)|| \le ||x - y|| + \mu'_{n_1}\psi_3(||x - y||) + \nu'_{n_1}
$$

\n
$$
\le ||x - y|| + \mu_{n_1}\psi(||x - y||) + \nu_{n_1}
$$

and

$$
||S_2^n(x) - S_2^n(y)|| \le ||x - y|| + \mu_{n_1}'' \psi_4(||x - y||) + \nu_{n_1}''
$$

\n
$$
\le ||x - y|| + \mu_{n_1} \psi(||x - y||) + \nu_{n_1},
$$

for all $x, y \in C$ and $n \in \mathbb{N}$. This completes the proof.

Next, we need the following useful lemma to prove our main results.

Lemma 2.3. ([15]) Let $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{r_n\}_{n=1}^{\infty}$ be sequences of nonnegative numbers satisfying the inequality

$$
\alpha_{n+1} \le (1 + \beta_n)\alpha_n + r_n, \ \forall \, n \ge 1.
$$

If $\sum_{n=1}^{\infty} \beta_n < \infty$ and $\sum_{n=1}^{\infty} r_n < \infty$, then

- (i) $\lim_{n\to\infty} \alpha_n$ exists;
- (ii) In particular, if $\{\alpha_n\}_{n=1}^{\infty}$ has a subsequence which converges strongly to zero, then $\lim_{n\to\infty} \alpha_n = 0$.

3. Main results

In this section, we prove some strong convergence theorems of iteration scheme (1.11) for two total asymptotically nonexpansive self mappings and two total asymptotically nonexpansive non-self mappings in the framework of real Banach spaces. First, we shall need the following lemma.

Lemma 3.1. Let E be a real Banach space, C be a nonempty closed convex subset of E. Let $S_1, S_2 \colon C \to C$ be two total asymptotically nonexpansive self mappings with sequences $\{\mu_{n_1}\}\$ and $\{\nu_{n_1}\}\$ as defined in Proposition 2.2 and $T_1, T_2: C \to E$ are two total asymptotically nonexpansive non-self mappings with sequences $\{\mu_n\}$ and $\{\nu_n\}$ as defined in Proposition 2.1 and

$$
F = F(S_1) \cap F(S_2) \cap F(T_1) \cap F(T_2) \neq \emptyset.
$$

Let $\{x_n\}$ be the iteration scheme defined by (1.11), where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in $[0, 1)$ and the following conditions are satisfied:

(i) $\sum_{n=1}^{\infty} \mu_{n_1} < \infty$, $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} \nu_{n_1} < \infty$, $\sum_{n=1}^{\infty} \nu_{n_1} < \infty$; (ii) there exists a constant $M > 0$ such that $\psi(t) \leq M t$, $t \geq 0$.

Then $\lim_{n\to\infty} ||x_n - q||$ and $\lim_{n\to\infty} d(x_n, F)$ both exist for all $q \in F$.

Proof. Let $q \in F$ and let $h_n = \max\{\mu_{n_1}, \mu_n\}, l_n = \max\{\nu_{n_1}\}$ \sum *oof.* Let $q \in F$ and let $h_n = \max\{\mu_{n_1}, \mu_n\}$, $l_n = \max\{\nu_{n_1}, \nu_n\}$ with $\sum_{n=1}^{\infty} h_n < \infty$ and $\sum_{n=1}^{\infty} l_n < \infty$. From (1.11), we have

$$
||y_n - q|| = ||P((1 - \beta_n)S_2^n x_n + \beta_n T_2 (PT_2)^{n-1} x_n) - P(q)||
$$

\n
$$
\leq ||(1 - \beta_n)S_2^n x_n + \beta_n T_2 (PT_2)^{n-1} x_n - q||
$$

\n
$$
= ||(1 - \beta_n)(S_2^n x_n - q) + \beta_n (T_2 (PT_2)^{n-1} x_n - q)||
$$

\n
$$
\leq (1 - \beta_n) ||S_2^n x_n - q|| + \beta_n ||T_2 (PT_2)^{n-1} x_n - q||
$$

\n
$$
\leq (1 - \beta_n) [||x_n - q|| + \mu_{n_1} \psi(||x_n - q||) + \nu_{n_1}] + \beta_n [||x_n - q||
$$

\n
$$
+ \mu_n \psi(||x_n - q||) + \nu_n]
$$

\n
$$
\leq (1 - \beta_n) [||x_n - q|| + h_n M ||x_n - q|| + l_n] + \beta_n [||x_n - q||
$$

\n
$$
+ h_n M ||x_n - q|| + l_n]
$$

\n
$$
= (1 - \beta_n) [(1 + h_n M) ||x_n - q|| + l_n]
$$

\n
$$
+ \beta_n [(1 + h_n M) ||x_n - q|| + l_n]
$$

\n
$$
\leq (1 + h_n M) ||x_n - q|| + l_n.
$$

\n(3.1)

Again using (1.11), we have

$$
||x_{n+1} - q|| = ||P((1 - \alpha_n)S_1^n x_n + \alpha_n T_1 (PT_1)^{n-1} y_n) - P(q)||
$$

\n
$$
\leq ||(1 - \alpha_n)S_1^n x_n + \alpha_n T_1 (PT_1)^{n-1} y_n - q||
$$

\n
$$
= ||(1 - \alpha_n) (S_1^n x_n - q) + \alpha_n (T_1 (PT_1)^{n-1} y_n - q)||
$$

\n
$$
\leq (1 - \alpha_n) ||S_1^n x_n - q|| + \alpha_n ||T_1 (PT_1)^{n-1} y_n - q||
$$

\n
$$
\leq (1 - \alpha_n) [||x_n - q|| + \mu_{n_1} \psi(||x_n - q||) + \nu_{n_1}] + \alpha_n [||y_n - q||
$$

\n
$$
+ \mu_n \psi(||y_n - q||) + \nu_n]
$$

\n
$$
\leq (1 - \alpha_n) [||x_n - q|| + h_n M ||x_n - q|| + l_n] + \alpha_n [||y_n - q||
$$

\n
$$
+ h_n M ||y_n - q|| + l_n]
$$

\n
$$
= (1 - \alpha_n) [(1 + h_n M) ||x_n - q|| + l_n]
$$

\n
$$
+ \alpha_n [(1 + h_n M) ||y_n - q|| + l_n]
$$

\n
$$
+ \alpha_n (1 + h_n M) ||y_n - q|| + l_n.
$$
\n(3.2)

Using equation (3.1) in (3.2) , we obtain

$$
||x_{n+1} - q|| \leq (1 - \alpha_n)(1 + h_n M) ||x_n - q||
$$

\n
$$
+ \alpha_n (1 + h_n M) [(1 + h_n M) ||x_n - q|| + l_n] + l_n
$$

\n
$$
\leq [(1 - \alpha_n) + \alpha_n](1 + h_n M)^2 ||x_n - q|| + (2 + h_n M)l_n
$$

\n
$$
= (1 + h_n M)^2 ||x_n - q|| + (2 + h_n M)l_n
$$

\n
$$
\leq (1 + M_1 h_n) ||x_n - q|| + M_2 l_n
$$
\n(3.3)

for some $M_1, M_2 > 0$. Since $\sum_{n=1}^{\infty} h_n < \infty$ and $\sum_{n=1}^{\infty} l_n < \infty$, it follows from Lemma 2.3 that $\lim_{n\to\infty}||x_n - q||$ exists.

Now, taking the infimum over all $q \in F$ in (3.3), we have

$$
d(x_{n+1}, F) \leq [1 + M_1 h_n] d(x_n, F) + M_2 l_n \tag{3.4}
$$

for all $n \in \mathbb{N}$. It follows from $\sum_{n=1}^{\infty} h_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$ and Lemma 2.3 that $\lim_{n\to\infty} d(x_n, F)$ exists. This completes the proof.

Theorem 3.2. Let E be a real Banach space, C be a nonempty closed convex subset of E. Let $S_1, S_2 \colon C \to C$ be two total asymptotically nonexpansive self mappings with sequences $\{\mu_{n_1}\}\$ and $\{\nu_{n_1}\}\$ as defined in Proposition 2.2 and $T_1, T_2: C \to E$ are two total asymptotically nonexpansive non-self mappings with sequences $\{\mu_n\}$ and $\{\nu_n\}$ as defined in Proposition 2.1 and

$$
F = F(S_1) \bigcap F(S_2) \bigcap F(T_1) \bigcap F(T_2) \neq \emptyset.
$$

Let $\{x_n\}$ be the iteration scheme defined by (1.11), where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in $[0, 1)$ and the following conditions are satisfied:

568 G. S. Saluja, J. K. Kim and H. G. Hyun

(i)
$$
\sum_{n=1}^{\infty} \mu_{n_1} < \infty
$$
, $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} \nu_{n_1} < \infty$, $\sum_{n=1}^{\infty} \nu_{n_1} < \infty$;
(ii) there exists a constant $M > 0$ such that $\psi(t) \leq M t$, $t \geq 0$.

Then $\{x_n\}$ converges strongly to a common fixed point of S_1 , S_2 , T_1 and T_2 if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$, where $d(x, F) = \inf \{ ||x - p|| : p \in F \}.$

Proof. The necessity is obvious. Indeed, if $x_n \to q \in F$ as $n \to \infty$, then

$$
d(x_n, F) = \inf_{q \in F} d(x_n, q) \le ||x_n - q|| \to 0 \quad (n \to \infty).
$$

Thus $\liminf_{n\to\infty} d(x_n, F) = 0.$

Conversely, suppose that $\liminf_{n\to\infty} d(x_n, F) = 0$. By Lemma 3.1, we have that $\lim_{n\to\infty} d(x_n, F)$ exists. Further, by assumption $\liminf_{n\to\infty} d(x_n, F) = 0$, from (3.4) and Lemma 2.3(ii), we conclude that $\lim_{n\to\infty} d(x_n, F) = 0$. Now, we show that $\{x_n\}$ is a Cauchy sequence in E. Indeed, from (3.3), we have

$$
||x_{n+1} - q|| \leq [1 + M_1 h_n] ||x_n - q|| + M_2 l_n
$$

for each $n \in \mathbb{N}$, where h_n and l_n be taken as in Lemma 3.1 and $q \in F$. For any $m, n, m > n \in \mathbb{N}$, we have

$$
||x_m - q|| \leq [1 + M_1 h_{m-1}] ||x_{m-1} - q|| + M_2 l_{m-1}
$$

\n
$$
\leq e^{M_1 h_{m-1}} ||x_{m-1} - q|| + M_2 l_{m-1}
$$

\n:
\n
$$
\leq (e^{\sum_{i=n}^{m-1} M_1 h_i}) ||x_n - q|| + M_2 (e^{\sum_{i=n+1}^{m-1} M_i h_i}) \sum_{i=n}^{m-1} l_i
$$

\n
$$
\leq M' ||x_n - q|| + M' M_2 \sum_{i=n}^{m-1} l_i
$$

where $M' = e^{\sum_{i=n}^{\infty} M_1 h_i}$. Thus for any $q \in F$, we have

$$
||x_n - x_m|| \le ||x_n - q|| + ||x_m - q||
$$

\n
$$
\le ||x_n - q|| + M'||x_n - q|| + M'M_2 \sum_{i=n}^{m-1} l_i
$$

\n
$$
\le (M' + 1)||x_n - q|| + M'M_2 \sum_{i=n}^{\infty} l_i.
$$

Taking the infimum over all $q \in F$, we obtain

$$
||x_n - x_m|| \le (M' + 1)d(x_n, F) + M'M_2 \sum_{i=n}^{\infty} l_i.
$$

Thus it follows from $\lim_{n\to\infty} d(x_n, F) = 0$ and $l_n \to 0$ as $n \to \infty$ that $\{x_n\}$ is a Cauchy sequence in C. Since C is closed subset of E, the sequence $\{x_n\}$

converges strongly to some $q^* \in C$. Next, we show that $q^* \in F$. Now, $\lim_{n\to\infty} d(x_n, F) = 0$ gives that $d(q^*, F) = 0$. Since F is closed, $q^* \in F$. Thus q^* is a common fixed point of S_1 , S_2 , T_1 and T_2 . This completes the proof. \Box

Theorem 3.3. Let E be a real Banach space, C be a nonempty closed convex subset of E. Let $S_1, S_2: C \to C$ be two total asymptotically nonexpansive self mappings with sequences $\{\mu_{n_1}\}\$ and $\{\nu_{n_1}\}\$ as defined in Proposition 2.2 and $T_1, T_2: C \to E$ are two total asymptotically nonexpansive non-self mappings with sequences $\{\mu_n\}$ and $\{\nu_n\}$ as defined in Proposition 2.1 and

$$
F = F(S_1) \bigcap F(S_2) \bigcap F(T_1) \bigcap F(T_2) \neq \emptyset.
$$

Let $\{x_n\}$ be the iteration scheme defined by (1.11), where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in $[0, 1)$ and the following conditions are satisfied:

(i)
$$
\sum_{n=1}^{\infty} \mu_{n_1} < \infty
$$
, $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} \nu_{n_1} < \infty$, $\sum_{n=1}^{\infty} \nu_{n_1} < \infty$; (ii) there exists a constant $M > 0$ such that $\psi(t) \leq M t$, $t \geq 0$.

If one of S_1 , S_2 , T_1 and T_2 is completely continuous and $\lim_{n\to\infty}||x_n-S_ix_n||=$ $\lim_{n\to\infty} ||x_n-T_ix_n|| = 0$ for $i = 1, 2$, then the sequence $\{x_n\}$ converges strongly to a common fixed point of S_1 , S_2 , T_1 and T_2 .

Proof. Without loss of generality we can assume that S_1 is completely continuous. Since $\{x_n\}$ is bounded by Lemma 3.1, there exists a subsequence $\{S_1x_{n_k}\}$ of $\{S_1x_n\}$ such that $\{S_1x_{n_k}\}$ converges strongly to some $q_1 \in C$. Moreover, by hypothesis of the theorem we know that

$$
\lim_{k \to \infty} ||x_{n_k} - S_1 x_{n_k}|| = \lim_{k \to \infty} ||x_{n_k} - S_2 x_{n_k}|| = 0
$$

and

$$
\lim_{k \to \infty} ||x_{n_k} - T_1 x_{n_k}|| = \lim_{k \to \infty} ||x_{n_k} - T_2 x_{n_k}|| = 0
$$

which implies that

$$
||x_{n_k} - q_1|| \le ||x_{n_k} - S_1 x_{n_k}|| + ||S_1 x_{n_k} - q_1|| \to 0
$$

as $k \to \infty$ and so $x_{n_k} \to q_1 \in C$. Thus, by the continuity of S_1 , S_2 , T_1 and T_2 , we have

$$
||q_1 - S_i q_1|| = \lim_{k \to \infty} ||x_{n_k} - S_i x_{n_k}|| = 0
$$

and

$$
||q_1 - T_i q_1|| = \lim_{k \to \infty} ||x_{n_k} - T_i x_{n_k}|| = 0
$$

for $i = 1, 2$. Thus it follows that $q_1 \in F = F(S_1) \cap F(S_2) \cap F(T_1) \cap F(T_2)$. Again, since $\lim_{n\to\infty} ||x_n - q_1||$ exists by Lemma 3.1, we have $\lim_{n\to\infty} ||x_n - q_1||$ $q_1\|=0$. This shows that the sequence $\{x_n\}$ converges strongly to a common fixed point of S_1 , S_2 , T_1 and T_2 . This completes the proof. **Theorem 3.4.** Let E be a real Banach space, C be a nonempty closed convex subset of E. Let $S_1, S_2: C \to C$ be two total asymptotically nonexpansive self mappings with sequences $\{\mu_{n_1}\}\$ and $\{\nu_{n_1}\}\$ as defined in Proposition 2.2 and $T_1, T_2: C \to E$ are two total asymptotically nonexpansive non-self mappings with sequences $\{\mu_n\}$ and $\{\nu_n\}$ as defined in Proposition 2.1 and

$$
F = F(S_1) \cap F(S_2) \cap F(T_1) \cap F(T_2) \neq \emptyset.
$$

Let $\{x_n\}$ be the iteration scheme defined by (1.11), where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in $[0, 1)$ and the following conditions are satisfied:

(i) $\sum_{n=1}^{\infty} \mu_{n_1} < \infty$, $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} \nu_{n_1} < \infty$, $\sum_{n=1}^{\infty} \nu_{n_1} < \infty$; (ii) there exists a constant $M > 0$ such that $\psi(t) \leq M t$, $t \geq 0$.

If one of S_1 , S_2 , T_1 and T_2 is semi-compact and $\lim_{n\to\infty}||x_n - S_i x_n||$ = $\lim_{n\to\infty}$ $||x_n-T_ix_n|| = 0$ for $i = 1, 2$, then the sequence $\{x_n\}$ converges strongly to a common fixed point of S_1 , S_2 , T_1 and T_2 .

Proof. Since by hypothesis $\lim_{n\to\infty} ||x_n - S_i x_n|| = \lim_{n\to\infty} ||x_n - T_i x_n|| = 0$ for $i = 1, 2$ and one of S_1 , S_2 , T_1 and T_2 is semi-compact, there exists a subsequence $\{x_{n_j}\}\$ of $\{x_n\}$ such that $\{x_{n_j}\}\$ converges strongly to some $q_2 \in C$. Moreover, by the continuity of S_1 , S_2 , T_1 and T_2 , we have $||q_2 - S_i q_2|| =$ $\lim_{j \to \infty} ||x_{n_j} - S_i x_{n_j}|| = 0$ and $||q_2 - T_i q_2|| = \lim_{j \to \infty} ||x_{n_j} - T_i x_{n_j}|| = 0$ for $i = 1, 2$. Thus it follows that $q_2 \in F = F(S_1) \cap F(S_2) \cap F(T_1) \cap F(T_2)$. Since $\lim_{n\to\infty} ||x_n - q_2||$ exists by Lemma 3.1, we have $\lim_{n\to\infty} ||x_n - q_2|| = 0$. This shows that the sequence $\{x_n\}$ converges strongly to a common fixed point of S_1, S_2, T_1 and T_2 . This completes the proof.

Theorem 3.5. Let E be a real Banach space, C be a nonempty closed convex subset of E. Let $S_1, S_2: C \to C$ be two total asymptotically nonexpansive self mappings with sequences $\{\mu_{n_1}\}\$ and $\{\nu_{n_1}\}\$ as defined in Proposition 2.2 and $T_1, T_2: C \to E$ are two total asymptotically nonexpansive non-self mappings with sequences $\{\mu_n\}$ and $\{\nu_n\}$ as defined in Proposition 2.1 and

$$
F = F(S_1) \bigcap F(S_2) \bigcap F(T_1) \bigcap F(T_2) \neq \emptyset.
$$

Let $\{x_n\}$ be the iteration scheme defined by (1.11), where $\{\alpha_n\}$ and $\{\beta_n\}$ are real sequences in $[0, 1)$ and the following conditions are satisfied:

- (i) $\sum_{n=1}^{\infty} \mu_{n_1} < \infty$, $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} \nu_{n_1} < \infty$, $\sum_{n=1}^{\infty} \nu_{n_1} < \infty$;
- (ii) there exists a constant $M > 0$ such that $\psi(t) \leq M t$, $t \geq 0$.

If S_1 , S_2 , T_1 and T_2 satisfy the following conditions:

- (C_1) $\lim_{n\to\infty}$ $||x_n S_i x_n|| = \lim_{n\to\infty} ||x_n T_i x_n|| = 0$ for $i = 1, 2;$
- (C_2) there exists a continuous function $\varphi: [0, \infty) \to [0, \infty)$ with $\varphi(0) = 0$ and $\varphi(t) > 0$ for all $t \in (0, \infty)$ such that

$$
\varphi(d(x,F)) \le a_1 \|x - S_1x\| + a_2 \|x - S_2x\| + a_3 \|x - T_1x\| + a_4 \|x - T_2x\|
$$

for all $x \in C$, and a_1, a_2, a_3, a_4 are nonnegative real numbers such that $a_1 + a_2 + a_3 + a_4 = 1$, where $d(x, F) = \inf \{ ||x - p|| : p \in F \}.$

Then the sequence $\{x_n\}$ converges strongly to a common fixed point of $S_1, S_2,$ T_1 and T_2 .

Proof. It follows from the hypothesis that

$$
\lim_{n \to \infty} \varphi(d(x_n, F)) \le a_1 \cdot ||x_n - S_1 x_n|| + a_2 \cdot ||x_n - S_2 x_n||
$$

+ a_3 \cdot ||x_n - T_1 x_n|| + a_4 \cdot ||x_n - T_2 x_n||
= 0.

That is,

$$
\lim_{n \to \infty} \varphi(d(x_n, F)) = 0.
$$

Since $\varphi: [0, \infty) \to [0, \infty)$ is a continuous function and $\varphi(0) = 0$, therefore we have

$$
\lim_{n \to \infty} d(x_n, F) = 0.
$$

Therefore, Theorem 3.2 implies that $\{x_n\}$ must converges strongly to a common fixed point of S_1 , S_2 , T_1 and T_2 . This completes the proof.

Now, we give some examples in support of our result: take two mappings $T_1 = T_2 = T$ and $S_1 = S_2 = S$.

Example 3.6. Let E be the real line with the usual norm $|.|$, $C = [0,\infty)$ and P be the identity mapping. Assume that $S(x) = x$ and $T(x) = \sin x$ for all $x \in C$. Let ϕ be the strictly increasing continuous function such that $\phi \colon \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$. Let $\{\mu_n\}_{n \geq 1}$ and $\{\nu_n\}_{n \geq 1}$ be two nonnegative real sequences defined by $\mu_n = \frac{1}{n^2}$ and $\nu_n = \frac{1}{n^3}$ for all $n \ge 1$ with $\mu_n \to 0$ and $\nu_n \to 0$ as $n \to \infty$. Then S and T are total asymptotically nonexpansive mappings with common fixed point 0, that is, $F = F(S) \cap F(T) = \{0\}.$

Example 3.7. Let $E = \mathbb{R}$ be the real line with the usual norm $\Vert . \Vert = \Vert . \Vert$, $C = [-1, 1]$ and P be the identity mapping. For each $x \in C$, define two mappings T, $S: C \to C$ by

$$
T(x) = \begin{cases} -2\sin{\frac{x}{2}}, & \text{if } x \in [0,1],\\ 2\sin{\frac{x}{2}}, & \text{if } x \in [-1,0) \end{cases}
$$

and

$$
S(x) = \begin{cases} \frac{x}{2}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}
$$

Then T and S are asymptotically nonexpansive mappings with constant sequence $\{k_n\} = \{1\}$ for all $n \geq 1$ and are uniformly L-Lipschtzian mappings with $L = \sup_{n>1} \{k_n\}$ and hence are total asymptotically nonexpansive mapping by Remark 1.4. Also $F(T) = \{0\}$ is the unique fixed point of T and $F(S) = \{0\}$ is the unique fixed point of S, that is, $F = F(S) \cap F(T) = \{0\}$ is the unique common fixed point of S and T.

4. CONCLUSION

In this paper, we establish some strong convergence theorems for newly defined mixed type two-step iteration scheme for two total asymptotically nonexpansive self mappings and two total asymptotically nonexpansive nonself mappings using completely continuous and semi-compactness conditions in the framework of real Banach spaces. Our results extend and generalize the corresponding results of $[3, 4, 7, 8, 11, 12, 13, 15, 16, 17]$ to the case of more general class of mappings and iteration scheme.

REFERENCES

- [1] Ya.I. Albert, C.E. Chidume and H. Zegeye, Approximating fixed point of total asymptotically nonexpansive mappings, Fixed Point Theory Appl., 2006, Article ID 10673 (2006).
- [2] R.E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math., 65 (1993), 169–179.
- [3] C.E. Chidume, E.U. Ofoedu and H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 280 (2003), 364–374.
- [4] C.E. Chidume, N. Shahzad and H. Zegeye, Convergence theorems for mappings which are asymptotically nonexpansive in the intermediate sense, Numerical Funct. and Optim., 25(3-4) (2004), 239–257.
- [5] C.E. Chidume and E.U. Ofoedu, Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings, J. Math. Anal. Appl., 333 (2007), 128–141.
- [6] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1) (1972), 171–174.
- [7] W.P. Guo, Y.J. Cho and W. Guo, Convergence theorems for mixed type asymptotically nonexpansive mappings, Fixed Point Theory and Appl., (2012), 2012:224.
- [8] S.H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn., $53(1)$ (2001), 143–148.
- [9] W.A. Kirk, Fixed point theorems for non-lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math., 17 (1974), 339–346.
- [10] M. Maiti and M.K. Ghosh, Approximating fixed points by Ishikawa iterates, Bull. Austral. Math. Soc., 40 (1989), 113–117.
- [11] M.O. Osilike and S.C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling, 32 (2000), 1181–1191.
- [12] B.E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl., 183 (1994), 118–120.
- [13] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., **43**(1) (1991), 153–159.
- [14] H.F. Senter and W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380.
- [15] K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301–308.
- [16] L. Wang, Strong and weak convergence theorems for common fixed point of nonself asymptotically nonexpansive mappings, J. Math. Anal. Appl., 323(1) (2006), 550–557.
- [17] S. Wei and W.P. Guo, Strong convergence theorems for mixed type asymptotically nonexpansive mappings, Comm. Math. Res., 31 (2015), 149–160.
- [18] E. Yolacan and H. Kiziltunc, On convergence theorems for total asymptotically nonexpansive non-self mappings in Banach spaces, J. Nonlinear Sci. Appl., 5 (2012), 389–402.