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Abstract. In this paper, we study a new two-step iteration scheme of mixed type for two

total asymptotically nonexpansive self-mappings and two total asymptotically nonexpansive

non-self mappings and establish some strong convergence theorems in the framework of

Banach spaces. Our results extend and generalize several results from the current existing

literature.

1. Introduction

Let C be a nonempty subset of a real Banach space E. Let T : C → C be a
nonlinear mapping. Then we denote the set of all fixed points of T by F (T ).
The set of common fixed points of four mappings S1, S2, T1 and T2 will be
denoted by F = F (S1)

⋂
F (S2)

⋂
F (T1)

⋂
F (T2). Throughout this paper N
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denotes the set of all positive integers and R+ denotes the set of all positive
real numbers.

Definition 1.1. A mapping T : C → C is said to be asymptotically nonexpan-
sive [6] if there exists a positive sequence {kn} in [1,∞) with limn→∞ kn = 1
such that

‖Tn(x)− Tn(y)‖ ≤ kn‖x− y‖ (1.1)

for all x, y ∈ C and n ∈ N.

The class of asymptotically nonexpansive mappings was introduced by Goebel
and Kirk [6] as a generalization of the class of nonxpansive mappings. They
proved that if C is a nonempty closed convex subset of a real uniformly convex
Banach space and T is an asymptotically nonexpansive mapping on C, then
T has a fixed point.

Definition 1.2. A mapping T : C → C is said to be asymptotically nonexpan-
sive in the intermediate sense if it is continuous and the following inequality
holds:

lim sup
n→∞

sup
x,y∈C

(
‖Tn(x)− Tn(y)‖ − ‖x− y‖

)
≤ 0. (1.2)

Observe that if we define

cn = lim sup
n→∞

sup
x,y∈C

(
‖Tn(x)− Tn(y)‖ − ‖x− y‖

)
and νn = max{0, cn},

then νn → 0 as n→∞. It follows that (1.2) is reduced to

‖Tn(x)− Tn(y)‖ ≤ ‖x− y‖+ νn (1.3)

for all x, y ∈ C and n ∈ N.

The class of mappings which are asymptotically nonexpansive in the in-
termediate sense was introduced by Bruck, Kuczumow and Reich [2]. It is
known [9], that if C is a nonempty closed convex bounded subset of a uni-
formly convex Banach space E and T is asymptotically nonexpansive in the
intermediate sense mapping, T has a fixed point. It is worth mentioning that
the class of mapping which are asymptotically nonexpansive in the intermedi-
ate sense contains properly the class of asymptotically nonexpansive mappings.

Albert et al. [1] introduced the concept of total asymptotically nonexpansive
mappings in 2006.

Definition 1.3. A mapping T : C → C is said to be total asymptotically
nonexpansive [1] if

‖Tn(x)− Tn(y)‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn, (1.4)
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for all x, y ∈ C and n ∈ N, where {µn} and {νn} are nonnegative real se-
quences such that µn → 0 and νn → 0 as n → ∞ and a strictly increasing
continuous function ψ : [0,∞)→ [0,∞) with ψ(0) = 0.

From the above definition, we see that the class of total asymptotically
nonexpansive mappings include the class of asymptotically nonexpansive map-
pings as a special case; see also [5] for more details.

Remark 1.4. From the above definition, it is clear that each asymptotically
nonexpansive mapping is a total asymptotically nonexpansive with νn = 0,
µn = kn − 1 for all n ≥ 1, ψ(t) = t, t ≥ 0.

Definition 1.5. A subset C of a Banach space E is said to be a retract of
E if there exists a continuous mapping P : E → C (called a retraction) such
that P (x) = x for all x ∈ C. If, in addition P is nonexpansive, then P is said
to be a nonexpansive retract of E.

If P : E → C is a retraction, then P 2 = P . A retract of a Hausdorff space
must be a closed subset. Every closed convex subset of a uniformly convex
Banach space is a retract.

In 2003, Chidume et al. [3] defined non-self asymptotically nonexpansive
mappings.

Definition 1.6. A non-self mapping T : C → E is said to be asymptoti-
cally nonexpansive [3] if there exists a positive sequence {kn} in [1,∞) with
limn→∞ kn = 1 such that

‖T (PT )n−1(x)− T (PT )n−1(y)‖ ≤ kn‖x− y‖ (1.5)

for all x, y ∈ C and n ∈ N.

Recently, Yolacan and Kiziltunc [18] defined non-self total asymptotically
nonexpansive mappings.

Definition 1.7. Let C be a nonempty closed and convex subset of a Ba-
nach space E. A non-self mapping T : C → E is said to be total asymptoti-
cally nonexpansive [18] if there exist sequences {µn} and {νn} in [0,∞) with
µn → 0 and νn → 0 as n → ∞ and a strictly increasing continuous function
ψ : [0,∞)→ [0,∞) with ψ(0) = 0

‖T (PT )n−1(x)− T (PT )n−1(y)‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn, (1.6)

for all x, y ∈ C and n ∈ N.

Chidume et al. [3] studied the following iteration process for non-self asymp-
totically nonexpansive mappings:
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x1 = x ∈ C,
xn+1 = P (αnT (PT )n−1xn + (1− αn)xn), n ≥ 1, (1.7)

where {αn} is a sequence in (0, 1).

Chidume et al. [4] studied the following iteration scheme:

x1 = x ∈ C,
xn+1 = P (αnT (PT )n−1xn + (1− αn)xn), n ≥ 1, (1.8)

where {αn} is a sequence in (0, 1), and C is a nonempty closed convex subset
of a real uniformly convex Banach space E, P is a nonexpansive retraction
of E onto C, and proved some strong and weak convergence theorems for
asymptotically nonexpansive non-self mappings in the intermediate sense in
the framework of uniformly convex Banach spaces.

In 2006, Wang [16] generalized the iteration process (1.8) as follows:

x1 = x ∈ C,
xn+1 = P ((1− αn)xn + αnT1(PT1)

n−1yn),

yn = P ((1− βn)xn + βnT2(PT2)
n−1xn), n ≥ 1, (1.9)

where T1, T2 : C → E are two asymptotically nonexpansive non-self mappings
and {αn}, {βn} are real sequences in [0, 1), and proved some strong and weak
convergence theorems for asymptotically nonexpansive non-self mappings.

In 2012, Guo et al. [7] generalized the iteration process (1.9) as follows:

x1 = x ∈ C,
xn+1 = P ((1− αn)Sn

1 xn + αnT1(PT1)
n−1yn),

yn = P ((1− βn)Sn
2 xn + βnT2(PT2)

n−1xn), n ≥ 1, (1.10)

where S1, S2 : C → C are two asymptotically nonexpansive self mappings and
T1, T2 : C → E are two asymptotically nonexpansive non-self mappings and
{αn}, {βn} are real sequences in [0, 1), and proved some strong and weak con-
vergence theorems for mixed type asymptotically nonexpansive mappings.

Now, we define the mixed type iteration scheme.

Let E be a real Banach space, C be a nonempty closed convex subset of E
and P : E → C be a nonexpansive retraction of E onto C. Let S1, S2 : C → C
be two total asymptotically nonexpansive self mappings and T1, T2 : C → E
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are two total asymptotically nonexpansive non-self mappings. Then the mixed
type iteration scheme for the mentioned mappings is as follows:

x1 = x ∈ C,
xn+1 = P ((1− αn)Sn

1 xn + αnT1(PT1)
n−1yn),

yn = P ((1− βn)Sn
2 xn + βnT2(PT2)

n−1xn), n ≥ 1, (1.11)

where {αn} and {βn} are real sequences in [0, 1).

The purpose of this paper is to study newly defined mixed type iteration
scheme (1.11) and establish some strong convergence theorems in the setting
of real Banach spaces.

2. Preliminaries

A mapping T : C → C with F (T ) 6= ∅ is said to satisfy condition (A) [14] if
there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(t) > 0
for all t ∈ (0,∞) such that ‖x− Tx‖ ≥ f(d(x, F (T ))) for all x ∈ C, where

d(x, F (T )) = inf{‖x− p‖ : p ∈ F (T )}.
A mapping T : C → C is called:
(1) demicompact if any bounded sequence {xn} in C such that {xn−Txn}

is convergent, then it has a convergent subsequence {xni};
(2) semi-compact (or hemicompact) if any bounded sequence {xn} in C

such that {xn − Txn} → 0 as n→∞ has a convergent subsequence.

Every demicompact mapping is semi-compact but the converse is not true in
general.

Senter and Dotson [14] have approximated fixed point of a nonexpansive
mapping T by Mann iterates whereas Maiti and Ghosh [10] and Tan and Xu
[15] have approximated the fixed points using Ishikawa iterates under condition
(A) of [14]. Tan and Xu [15] pointed out that condition (A) is weaker than
the compactness of C.

Proposition 2.1. Let C be a nonempty subset of a Banach space E which
is also a nonexpansive retract of E, and T1, T2 : C → E be two total asymp-
totically nonexpansive non-self mappings. Then there exist nonnegative real
sequences {µn} and {νn} in [0,∞) with µn → 0 and νn → 0 as n→∞ and a
strictly increasing continuous function ψ : R+ → R+ with ψ(0) = 0 such that

‖T1(PT1)n−1(x)− T1(PT1)n−1(y)‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn, (2.1)

and

‖T2(PT2)n−1(x)− T2(PT2)n−1(y)‖ ≤ ‖x− y‖+ µnψ(‖x− y‖) + νn, (2.2)
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for all x, y ∈ C and n ∈ N.

Proof. Since T1, T2 : C → E are two total asymptotically nonexpansive non-
self mappings, there exist nonnegative real sequences {µ′n}, {µ′′n}, {ν ′n} and
{ν ′′n} in [0,∞) with µ′n, µ

′′
n → 0 and ν ′n, ν

′′
n → 0 as n→∞ and strictly increas-

ing continuous functions ψ1, ψ2 : R+ → R+ with ψ1(0) = 0 and ψ2(0) = 0 such
that

‖T1(PT1)n−1(x)− T1(PT1)n−1(y)‖ ≤ ‖x− y‖+ µ′nψ1(‖x− y‖) + ν ′n, (2.3)

and

‖T2(PT2)n−1(x)− T2(PT2)n−1(y)‖ ≤ ‖x− y‖+ µ′′nψ2(‖x− y‖) + ν ′′n, (2.4)

for all x, y ∈ C and n ∈ N.

Setting

µn = max{µ′n, µ′′n}, νn = max{ν ′n, ν ′′n}
and

ψ(a) = max{ψ1(a), ψ2(a)}, for a ≥ 0,

then we get that, there exist nonnegative real sequences {µn} and {νn} in
[0,∞) with µn → 0 and νn → 0 as n→∞ and a strictly increasing continuous
function ψ : R+ → R+ with ψ(0) = 0 such that

‖T1(PT1)n−1(x)− T1(PT1)n−1(y)‖ ≤ ‖x− y‖+ µ′nψ1(‖x− y‖) + ν ′n
≤ ‖x− y‖+ µnψ(‖x− y‖) + νn

and

‖T2(PT2)n−1(x)− T2(PT2)n−1(y)‖ ≤ ‖x− y‖+ µ′′nψ2(‖x− y‖) + ν ′′n
≤ ‖x− y‖+ µnψ(‖x− y‖) + νn,

for all x, y ∈ C and n ∈ N. This completes the proof. �

Proposition 2.2. Let C be a nonempty subset of a Banach space E and
let S1, S2 : C → C be two total asymptotically nonexpansive self mappings.
Then there exist nonnegative real sequences {µn1} and {νn1} in [0,∞) with
µn1 → 0 and νn1 → 0 as n→∞ and a strictly increasing continuous function
ψ : R+ → R+ with ψ(0) = 0 such that

‖Sn
1 (x)− Sn

1 (y)‖ ≤ ‖x− y‖+ µn1ψ(‖x− y‖) + νn1 , (2.5)

and

‖Sn
2 (x)− Sn

2 (y)‖ ≤ ‖x− y‖+ µn1ψ(‖x− y‖) + νn1 , (2.6)

for all x, y ∈ C and n ∈ N.
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Proof. Since S1, S2 : C → C are two total asymptotically nonexpansive self
mappings, there exist nonnegative real sequences {µ′n1

}, {µ′′n1
}, {ν ′n1

} and
{ν ′′n1
} in [0,∞) with µ′n1

, µ′′n1
→ 0 and ν ′n1

, ν ′′n1
→ 0 as n → ∞ and strictly

increasing continuous functions ψ3, ψ4 : R+ → R+ with ψ3(0) = 0 and ψ4(0) =
0 such that

‖Sn
1 (x)− Sn

1 (y)‖ ≤ ‖x− y‖+ µ′n1
ψ3(‖x− y‖) + ν ′n1

(2.7)

and

‖Sn
2 (x)− Sn

2 (y)‖ ≤ ‖x− y‖+ µ′′n1
ψ4(‖x− y‖) + ν ′′n1

, (2.8)

for all x, y ∈ C and n ∈ N.

Setting

µn1 = max{µ′n1
, µ′′n1
}, νn1 = max{ν ′n1

, ν ′′n1
}

and

ψ(a) = max{ψ3(a), ψ4(a)}, for a ≥ 0,

then we get that, there exist nonnegative real sequences {µn1} and {νn1}
in [0,∞) with µn1 → 0 and νn1 → 0 as n → ∞ and a strictly increasing
continuous function ψ : R+ → R+ with ψ(0) = 0 such that

‖Sn
1 (x)− Sn

1 (y)‖ ≤ ‖x− y‖+ µ′n1
ψ3(‖x− y‖) + ν ′n1

≤ ‖x− y‖+ µn1ψ(‖x− y‖) + νn1

and

‖Sn
2 (x)− Sn

2 (y)‖ ≤ ‖x− y‖+ µ′′n1
ψ4(‖x− y‖) + ν ′′n1

≤ ‖x− y‖+ µn1ψ(‖x− y‖) + νn1 ,

for all x, y ∈ C and n ∈ N. This completes the proof. �

Next, we need the following useful lemma to prove our main results.

Lemma 2.3. ([15]) Let {αn}∞n=1, {βn}∞n=1 and {rn}∞n=1 be sequences of non-
negative numbers satisfying the inequality

αn+1 ≤ (1 + βn)αn + rn, ∀n ≥ 1.

If
∑∞

n=1 βn <∞ and
∑∞

n=1 rn <∞, then

(i) limn→∞ αn exists;
(ii) In particular, if {αn}∞n=1 has a subsequence which converges strongly

to zero, then limn→∞ αn = 0.
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3. Main results

In this section, we prove some strong convergence theorems of iteration scheme
(1.11) for two total asymptotically nonexpansive self mappings and two total
asymptotically nonexpansive non-self mappings in the framework of real Ba-
nach spaces. First, we shall need the following lemma.

Lemma 3.1. Let E be a real Banach space, C be a nonempty closed convex
subset of E. Let S1, S2 : C → C be two total asymptotically nonexpansive self
mappings with sequences {µn1} and {νn1} as defined in Proposition 2.2 and
T1, T2 : C → E are two total asymptotically nonexpansive non-self mappings
with sequences {µn} and {νn} as defined in Proposition 2.1 and

F = F (S1)
⋂
F (S2)

⋂
F (T1)

⋂
F (T2) 6= ∅.

Let {xn} be the iteration scheme defined by (1.11), where {αn} and {βn} are
real sequences in [0, 1) and the following conditions are satisfied:

(i)
∑∞

n=1 µn1 <∞,
∑∞

n=1 µn <∞,
∑∞

n=1 νn1 <∞,
∑∞

n=1 νn1 <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.

Then limn→∞ ‖xn − q‖ and limn→∞ d(xn, F ) both exist for all q ∈ F .

Proof. Let q ∈ F and let hn = max{µn1 , µn}, ln = max{νn1 , νn} with∑∞
n=1 hn <∞ and

∑∞
n=1 ln <∞. From (1.11), we have

‖yn − q‖ = ‖P ((1− βn)Sn
2 xn + βnT2(PT2)

n−1xn)− P (q)‖
≤ ‖(1− βn)Sn

2 xn + βnT2(PT2)
n−1xn − q‖

= ‖(1− βn)(Sn
2 xn − q) + βn(T2(PT2)

n−1xn − q)‖
≤ (1− βn)‖Sn

2 xn − q‖+ βn‖T2(PT2)n−1xn − q‖
≤ (1− βn)[‖xn − q‖+ µn1ψ(‖xn − q‖) + νn1 ] + βn[‖xn − q‖

+µnψ(‖xn − q‖) + νn]

≤ (1− βn)[‖xn − q‖+ hnM‖xn − q‖+ ln] + βn[‖xn − q‖
+hnM‖xn − q‖+ ln]

= (1− βn)[(1 + hnM)‖xn − q‖+ ln]

+βn[(1 + hnM)‖xn − q‖+ ln]

≤ (1 + hnM)‖xn − q‖+ ln. (3.1)
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Again using (1.11), we have

‖xn+1 − q‖ = ‖P ((1− αn)Sn
1 xn + αnT1(PT1)

n−1yn)− P (q)‖
≤ ‖(1− αn)Sn

1 xn + αnT1(PT1)
n−1yn − q‖

= ‖(1− αn)(Sn
1 xn − q) + αn(T1(PT1)

n−1yn − q)‖
≤ (1− αn)‖Sn

1 xn − q‖+ αn‖T1(PT1)n−1yn − q‖
≤ (1− αn)[‖xn − q‖+ µn1ψ(‖xn − q‖) + νn1 ] + αn[‖yn − q‖

+µnψ(‖yn − q‖) + νn]

≤ (1− αn)[‖xn − q‖+ hnM‖xn − q‖+ ln] + αn[‖yn − q‖
+hnM‖yn − q‖+ ln]

= (1− αn)[(1 + hnM)‖xn − q‖+ ln]

+αn[(1 + hnM)‖yn − q‖+ ln]

= (1− αn)(1 + hnM)‖xn − q‖
+αn(1 + hnM)‖yn − q‖+ ln. (3.2)

Using equation (3.1) in (3.2), we obtain

‖xn+1 − q‖ ≤ (1− αn)(1 + hnM)‖xn − q‖
+αn(1 + hnM)[(1 + hnM)‖xn − q‖+ ln] + ln

≤ [(1− αn) + αn](1 + hnM)2‖xn − q‖+ (2 + hnM)ln

= (1 + hnM)2‖xn − q‖+ (2 + hnM)ln

≤ (1 +M1hn)‖xn − q‖+M2ln (3.3)

for some M1,M2 > 0. Since
∑∞

n=1 hn <∞ and
∑∞

n=1 ln <∞, it follows from
Lemma 2.3 that limn→∞ ‖xn − q‖ exists.

Now, taking the infimum over all q ∈ F in (3.3), we have

d(xn+1, F ) ≤ [1 +M1hn]d(xn, F ) +M2ln (3.4)

for all n ∈ N. It follows from
∑∞

n=1 hn < ∞,
∑∞

n=1 ln < ∞ and Lemma 2.3
that limn→∞ d(xn, F ) exists. This completes the proof. �

Theorem 3.2. Let E be a real Banach space, C be a nonempty closed convex
subset of E. Let S1, S2 : C → C be two total asymptotically nonexpansive self
mappings with sequences {µn1} and {νn1} as defined in Proposition 2.2 and
T1, T2 : C → E are two total asymptotically nonexpansive non-self mappings
with sequences {µn} and {νn} as defined in Proposition 2.1 and

F = F (S1)
⋂
F (S2)

⋂
F (T1)

⋂
F (T2) 6= ∅.

Let {xn} be the iteration scheme defined by (1.11), where {αn} and {βn} are
real sequences in [0, 1) and the following conditions are satisfied:
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(i)
∑∞

n=1 µn1 <∞,
∑∞

n=1 µn <∞,
∑∞

n=1 νn1 <∞,
∑∞

n=1 νn1 <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.

Then {xn} converges strongly to a common fixed point of S1, S2, T1 and T2 if
and only if lim infn→∞ d(xn, F ) = 0, where d(x, F ) = inf{‖x− p‖ : p ∈ F}.

Proof. The necessity is obvious. Indeed, if xn → q ∈ F as n→∞, then

d(xn, F ) = inf
q∈F

d(xn, q) ≤ ‖xn − q‖ → 0 (n→∞).

Thus lim infn→∞ d(xn, F ) = 0.
Conversely, suppose that lim infn→∞ d(xn, F ) = 0. By Lemma 3.1, we have

that limn→∞ d(xn, F ) exists. Further, by assumption lim infn→∞ d(xn, F ) = 0,
from (3.4) and Lemma 2.3(ii), we conclude that limn→∞ d(xn, F ) = 0. Now,
we show that {xn} is a Cauchy sequence in E. Indeed, from (3.3), we have

‖xn+1 − q‖ ≤ [1 +M1hn]‖xn − q‖+M2ln

for each n ∈ N, where hn and ln be taken as in Lemma 3.1 and q ∈ F . For
any m,n,m > n ∈ N, we have

‖xm − q‖ ≤ [1 +M1hm−1]‖xm−1 − q‖+M2lm−1

≤ eM1hm−1‖xm−1 − q‖+M2lm−1
...

≤
(
e
∑m−1

i=n M1hi

)
‖xn − q‖+M2

(
e
∑m−1

i=n+1 Mihi

)m−1∑
i=n

li

≤ M ′‖xn − q‖+M ′M2

m−1∑
i=n

li

where M ′ = e
∑∞

i=n M1hi . Thus for any q ∈ F , we have

‖xn − xm‖ ≤ ‖xn − q‖+ ‖xm − q‖

≤ ‖xn − q‖+M ′‖xn − q‖+M ′M2

m−1∑
i=n

li

≤ (M ′ + 1)‖xn − q‖+M ′M2

∞∑
i=n

li.

Taking the infimum over all q ∈ F , we obtain

‖xn − xm‖ ≤ (M ′ + 1)d(xn, F ) +M ′M2

∞∑
i=n

li.

Thus it follows from limn→∞ d(xn, F ) = 0 and ln → 0 as n → ∞ that {xn}
is a Cauchy sequence in C. Since C is closed subset of E, the sequence {xn}
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converges strongly to some q∗ ∈ C. Next, we show that q∗ ∈ F . Now,
limn→∞ d(xn, F ) = 0 gives that d(q∗, F ) = 0. Since F is closed, q∗ ∈ F . Thus
q∗ is a common fixed point of S1, S2, T1 and T2. This completes the proof. �

Theorem 3.3. Let E be a real Banach space, C be a nonempty closed convex
subset of E. Let S1, S2 : C → C be two total asymptotically nonexpansive self
mappings with sequences {µn1} and {νn1} as defined in Proposition 2.2 and
T1, T2 : C → E are two total asymptotically nonexpansive non-self mappings
with sequences {µn} and {νn} as defined in Proposition 2.1 and

F = F (S1)
⋂
F (S2)

⋂
F (T1)

⋂
F (T2) 6= ∅.

Let {xn} be the iteration scheme defined by (1.11), where {αn} and {βn} are
real sequences in [0, 1) and the following conditions are satisfied:

(i)
∑∞

n=1 µn1 <∞,
∑∞

n=1 µn <∞,
∑∞

n=1 νn1 <∞,
∑∞

n=1 νn1 <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.

If one of S1, S2, T1 and T2 is completely continuous and limn→∞ ‖xn−Sixn‖ =
limn→∞ ‖xn−Tixn‖ = 0 for i = 1, 2, then the sequence {xn} converges strongly
to a common fixed point of S1, S2, T1 and T2.

Proof. Without loss of generality we can assume that S1 is completely continu-
ous. Since {xn} is bounded by Lemma 3.1, there exists a subsequence {S1xnk

}
of {S1xn} such that {S1xnk

} converges strongly to some q1 ∈ C. Moreover,
by hypothesis of the theorem we know that

lim
k→∞

‖xnk
− S1xnk

‖ = lim
k→∞

‖xnk
− S2xnk

‖ = 0

and

lim
k→∞

‖xnk
− T1xnk

‖ = lim
k→∞

‖xnk
− T2xnk

‖ = 0

which implies that

‖xnk
− q1‖ ≤ ‖xnk

− S1xnk
‖+ ‖S1xnk

− q1‖ → 0

as k → ∞ and so xnk
→ q1 ∈ C. Thus, by the continuity of S1, S2, T1 and

T2, we have

‖q1 − Siq1‖ = lim
k→∞

‖xnk
− Sixnk

‖ = 0

and

‖q1 − Tiq1‖ = lim
k→∞

‖xnk
− Tixnk

‖ = 0

for i = 1, 2. Thus it follows that q1 ∈ F = F (S1)
⋂
F (S2)

⋂
F (T1)

⋂
F (T2).

Again, since limn→∞ ‖xn − q1‖ exists by Lemma 3.1, we have limn→∞ ‖xn −
q1‖ = 0. This shows that the sequence {xn} converges strongly to a common
fixed point of S1, S2, T1 and T2. This completes the proof. �
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Theorem 3.4. Let E be a real Banach space, C be a nonempty closed convex
subset of E. Let S1, S2 : C → C be two total asymptotically nonexpansive self
mappings with sequences {µn1} and {νn1} as defined in Proposition 2.2 and
T1, T2 : C → E are two total asymptotically nonexpansive non-self mappings
with sequences {µn} and {νn} as defined in Proposition 2.1 and

F = F (S1)
⋂
F (S2)

⋂
F (T1)

⋂
F (T2) 6= ∅.

Let {xn} be the iteration scheme defined by (1.11), where {αn} and {βn} are
real sequences in [0, 1) and the following conditions are satisfied:

(i)
∑∞

n=1 µn1 <∞,
∑∞

n=1 µn <∞,
∑∞

n=1 νn1 <∞,
∑∞

n=1 νn1 <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.

If one of S1, S2, T1 and T2 is semi-compact and limn→∞ ‖xn − Sixn‖ =
limn→∞ ‖xn−Tixn‖ = 0 for i = 1, 2, then the sequence {xn} converges strongly
to a common fixed point of S1, S2, T1 and T2.

Proof. Since by hypothesis limn→∞ ‖xn − Sixn‖ = limn→∞ ‖xn − Tixn‖ = 0
for i = 1, 2 and one of S1, S2, T1 and T2 is semi-compact, there exists a
subsequence {xnj} of {xn} such that {xnj} converges strongly to some q2 ∈ C.
Moreover, by the continuity of S1, S2, T1 and T2, we have ‖q2 − Siq2‖ =
limj→∞ ‖xnj − Sixnj‖ = 0 and ‖q2 − Tiq2‖ = limj→∞ ‖xnj − Tixnj‖ = 0 for
i = 1, 2. Thus it follows that q2 ∈ F = F (S1)

⋂
F (S2)

⋂
F (T1)

⋂
F (T2). Since

limn→∞ ‖xn − q2‖ exists by Lemma 3.1, we have limn→∞ ‖xn − q2‖ = 0. This
shows that the sequence {xn} converges strongly to a common fixed point of
S1, S2, T1 and T2. This completes the proof. �

Theorem 3.5. Let E be a real Banach space, C be a nonempty closed convex
subset of E. Let S1, S2 : C → C be two total asymptotically nonexpansive self
mappings with sequences {µn1} and {νn1} as defined in Proposition 2.2 and
T1, T2 : C → E are two total asymptotically nonexpansive non-self mappings
with sequences {µn} and {νn} as defined in Proposition 2.1 and

F = F (S1)
⋂
F (S2)

⋂
F (T1)

⋂
F (T2) 6= ∅.

Let {xn} be the iteration scheme defined by (1.11), where {αn} and {βn} are
real sequences in [0, 1) and the following conditions are satisfied:

(i)
∑∞

n=1 µn1 <∞,
∑∞

n=1 µn <∞,
∑∞

n=1 νn1 <∞,
∑∞

n=1 νn1 <∞;
(ii) there exists a constant M > 0 such that ψ(t) ≤M t, t ≥ 0.

If S1, S2, T1 and T2 satisfy the following conditions:

(C1) limn→∞ ‖xn − Sixn‖ = limn→∞ ‖xn − Tixn‖ = 0 for i = 1, 2;
(C2) there exists a continuous function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0

and ϕ(t) > 0 for all t ∈ (0,∞) such that

ϕ(d(x, F )) ≤ a1‖x− S1x‖+ a2‖x− S2x‖+ a3‖x− T1x‖+ a4‖x− T2x‖
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for all x ∈ C, and a1, a2, a3, a4 are nonnegative real numbers such that
a1 + a2 + a3 + a4 = 1, where d(x, F ) = inf{‖x− p‖ : p ∈ F}.

Then the sequence {xn} converges strongly to a common fixed point of S1, S2,
T1 and T2.

Proof. It follows from the hypothesis that

lim
n→∞

ϕ(d(xn, F )) ≤ a1.‖xn − S1xn‖+ a2.‖xn − S2xn‖

+a3.‖xn − T1xn‖+ a4.‖xn − T2xn‖
= 0.

That is,
lim
n→∞

ϕ(d(xn, F )) = 0.

Since ϕ : [0,∞) → [0,∞) is a continuous function and ϕ(0) = 0, therefore we
have

lim
n→∞

d(xn, F ) = 0.

Therefore, Theorem 3.2 implies that {xn} must converges strongly to a com-
mon fixed point of S1, S2, T1 and T2. This completes the proof. �

Now, we give some examples in support of our result: take two mappings
T1 = T2 = T and S1 = S2 = S.

Example 3.6. Let E be the real line with the usual norm |.|, C = [0,∞)
and P be the identity mapping. Assume that S(x) = x and T (x) = sin x
for all x ∈ C. Let φ be the strictly increasing continuous function such that
φ : R+ → R+ with φ(0) = 0. Let {µn}n≥1 and {νn}n≥1 be two nonnegative
real sequences defined by µn = 1

n2 and νn = 1
n3 for all n ≥ 1 with µn → 0

and νn → 0 as n→∞. Then S and T are total asymptotically nonexpansive
mappings with common fixed point 0, that is, F = F (S) ∩ F (T ) = {0}.

Example 3.7. Let E = R be the real line with the usual norm ‖.‖ = |.|,
C = [−1, 1] and P be the identity mapping. For each x ∈ C, define two
mappings T, S : C → C by

T (x) =

{
−2 sinx

2 , if x ∈ [0, 1],
2 sinx

2 , if x ∈ [−1, 0)

and

S(x) =

{
x
2 , if x 6= 0,
0, if x = 0.

Then T and S are asymptotically nonexpansive mappings with constant se-
quence {kn} = {1} for all n ≥ 1 and are uniformly L-Lipschtzian mappings
with L = supn≥1{kn} and hence are total asymptotically nonexpansive map-
ping by Remark 1.4. Also F (T ) = {0} is the unique fixed point of T and
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F (S) = {0} is the unique fixed point of S, that is, F = F (S) ∩ F (T ) = {0} is
the unique common fixed point of S and T .

4. Conclusion

In this paper, we establish some strong convergence theorems for newly
defined mixed type two-step iteration scheme for two total asymptotically
nonexpansive self mappings and two total asymptotically nonexpansive non-
self mappings using completely continuous and semi-compactness conditions
in the framework of real Banach spaces. Our results extend and generalize the
corresponding results of [3, 4, 7, 8, 11, 12, 13, 15, 16, 17] to the case of more
general class of mappings and iteration scheme.
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