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Abstract. In this paper, we introduce and study a new class of convex functions with

respect to an arbitrary function, which is called the k-convex function. These functions

are nonconvex functions and include the convex function and ϕ-convex convex as special

cases. We study some properties of k-convex functions. It is shown that the minimum

of k-convex functions on the k-convex sets can be characterized by a class of variational

inequalities, which is called the k-directional variational inequalities. Some open problems

are also suggested for future research.

1. Introduction

In recent years, several extensions and generalizations of the convex sets
and convex functions have been considered and investigated, see, for example
[1-13] and the references therein. In this paper, we consider a new class of
convex sets and convex functions which are called modified k-convex sets and
convex functions. These new class of convex sets and convex functions include
the ϕ-convex sets [9], Toader type convex sets and ϕ-convex functions [9] as
special cases. Several new concepts are defined and their properties have been
studied. We prove that the minimum of the differential k-convex functions on
the k-convex set can be characterized by a class of variational inequalities. In
order to convey the flavour of these new concepts, we have tried to emphasize
the basic characteristic of these new classes of nonconvex functions. Some
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basic properties of these nonconvex functions along with some open problems
are discussed.

2. PRELIMINARIES

Let Kk be a nonempty closed set in a normed space H. We denote by 〈·, ·〉
and ‖ · ‖ the inner product and norm, respectively.

Definition 2.1. The set Kk is said to be k-convex with respect to arbitrary
function k, if

g(u) + k(t)(v − u) ∈ Kk, ∀u, v ∈ Kk, t ∈ [0, 1].

Clearly, for k(t) = t, the set Kk is convex.
If k(t) = ts, s ∈ [0, 1] then the k-convex set Kk reduces to:

u+ ts(v − u) ∈ K, ∀u, v ∈ Kk, t ∈ [0, 1],

which is known as Toader type convex set.
We would like to point that the k-convex set was introduced and studied in

[2, 3]. A set Dk is said to be k-convex if, for all u, v ∈ Dk, t ∈ (0, 1) such that

k(1− t)u+ k(t)v ∈ Dk.

Note that, if k(1− t) + k(t) = 1, then the k-convex set Kk and k-convex set
Dk are equivalent. However, it is worth mentioning that these two different
convex sets have distinctly different properties.

From now onwards, the set Kk is a k-convex set, unless otherwise specified.
We now introduce the concept of k-convex function with respect to an arbitrary
function.

Definition 2.2. The function f on Kk is called k-convex, if there exists an
arbitrary function k such that

f(u+ k(t)(v − u)) ≤ (1− t)f(u) + tf(v), ∀u, v ∈ Kk, t ∈ [0, 1].

Obviously every convex function with k(t) = t is k-convex, but the converse
may not be true. Also for t = 1, the k-convex function reduces to:

f(u+ k(1)(v − u)) ≤ f(v), ∀u, v ∈ K. (2.1)

If k(t) = T s, s ∈ [0, 1], then we have a new class of convex functions, which is
called Toader’s type convex functions.

Definition 2.3. The function f on Kk is said to be quasi k-convex, if there
exists a function k such that

f(u+ k(t)(v − u)) ≤ max{f(u), f(v)}, ∀u, v ∈ Kk, t ∈ [0, 1].
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Definition 2.4. The function f on Kk is said to be logarithmic k-convex, if
there exists a function k such that

f(u+ k(t)(v − u)) ≤ (f(u)1−t(f(v))t, ∀u, v ∈ Kk, t ∈ [0, 1],

where f(·) > 0.

Lemma 2.5. Let f be a k-convex function. Then any local minimum of f on
Kk is a global minimum.

Proof. Let the k-convex function f have a local minimum at u ∈ Kk. Assume
the contrary, that is, f(v) < f(u) for some v ∈ Kk. Since f is a k-convex
function, so

f(u+ k(t)(v − u)) ≤ f(u) + t(f(v)− f(u)),

which implies that

f(u+ k(t)(v − u))f(u) < 0,

for arbitrary small t > 0, contradicting the local minimum. �

Essentially using the technique and ideas of the classical convexity, one can
easily prove the following results.

Theorem 2.6. If f is a k-convex function on Kk, then the level set Lα =
{u ∈ Kk : f(u) ≤ α, α ∈ R} is k-convex with respect to k.

Theorem 2.7. A function f is a k-convex function if and only if epi(f) =
{(u, α) : u ∈ Kk, α ∈ R, f(u) ≤ α} is a k-convex set with respect to k.

Theorem 2.8. A function f is a quasi k-convex function if and only if the
level set Lα = {u ∈ Kk : f(u) ≤ α, α ∈ R} is a k-convex set with respect to k.

Definition 2.9. A function f is said to be a pseudo k-convex function with
respect to k, if there exists a strictly positive function b(·, ·) such that

f(v) < f(u)⇒ f(u+ k(t)(v − u))

≤ f(u) + t(t− 1)b(u, v), ∀u, v ∈ Kk, t ∈ (0, 1).

Theorem 2.10. If the function f is a k-convex function with respect to k,
then f is pseudo k-convex function with respect to k.
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Proof. Without loss of generality, we assume that f(v) < f(u), for all u, v ∈
Kk. For every t ∈ [0, 1], we have

f(u+ k(t)(v − u)) ≤ (1− t)f(u) + tf(v)

< f(u) + t(t− 1){f(u)− f(v)}
= f(u) + t(t− 1)b(u, v),

where b(u, v) = f(u) − f(v) > 0. Thus, it follows the function f a is pseudo
k-convex function with respect to k, the required result. �

Theorem 2.11. Let f be a k-convex function with respect to k. If g : L→ R
is a nondecreasing function, then g ◦ f is a k-convex function with respect to
the function k.

Proof. Since f is a k-convex function and g is decreasing, we have, for all
u, v ∈ Kk and t ∈ [0, 1]

g ◦ f(u+ k(t)(v − u)) = g[f(u) + k(t)(f(v)− f(u)))]

≤ g[(1− t)f(u) + tf(v)]

≤ (1− t)g ◦ f(u) + tg ◦ f(v),

from which it follows that g ◦ f is a k-convex function with respect to k. �

3. Main Results

We now introduce the concept of k-directional derivative.

Definition 3.1. We define the k-directional derivative of f at a point u ∈ Kk

in the direction v ∈ Kk by

Dϕf(u, v) := f ′k(u; v) = lim
t→0+

f(u+ k(t)v)− f(u)

t
.

Note that for k(t) = t, the k-directional derivative of f at u in the direction
v coincides with the usual directional derivative of f at u in a direction v given
by

Df(u, v) := f ′(u; v) = lim
t→0+

f(u+ tv)− f(u)

t
.

It is well known that the function v → f ′k(u; v) is subadditive, positively
homogeneous and |f ′k(u; v)| ≤ ν ‖ v ‖, where ν > 0 is a constant.

Definition 3.2. A differential function f on Kk is said to be k-invex, if

f(v)− f(u) ≥ f ′k(u; v − u), ∀u, v ∈ Kk,
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where f ′k(u; v) is the k-directional derivative of f at u ∈ Kk in the direction
of v ∈ Kk

Theorem 3.3. Let f be a differential k-convex function on Kk. Then the
function v → f ′k(u; v) is positively homogeneous and k-convex.

Proof. It is follow from the definition of the k-directional derivative that
f ′k(u;λv) = λf ′k(u; v), whenever v ∈ Kk and λ ≥ 0, hence the function
v → f ′k(u; v) is positively homogeneous.

To prove the k-convexity of the function v → f ′k(u; v), we consider for all
u, v, z ∈ Kk, t ≥ 0, λ ∈ (0, 1),

1

t
[f(u+ k(t)(λv + (1− λ)z))− f(u)]

=
1

t
[f(λ(u+ k(t)v) + (1− λ)(u+ k(t)z))− f(u)]

≤ 1

t
[λf(u+ k(t)v) + (1− λ)f(u+ k(t)z)− f(u)]

= λ
f(u+ k(t)v)− f(u)

t
+ (1− λ)

f(u+ k(t)z)− f(u)

t
. (3.1)

Taking the limit as t→ 0+ in (3.1), we have

f ′k(u;λv + (1− λ)z) ≤ λf ′k(u; v) + (1− λ)f ′k(u; z),

which shows that the function v → f ′k(u; v) is k-convex. �

For k(t) = t, the k-convex function f becomes the convex function and the
k-convex set Kk is a convex set. Consequently, Theorem 3.3 reduces to the
well-known result in convexity, (see [2]).

Theorem 3.4. Let Kk be a k-convex set. If the function f : Kk → R is
differentiable k-convex such that k(0) = 0 and (2.1) holds, then the following
statements are equivalent.

(1) f is k-invex.
(2) ϕ-directional derivative f ′k(·, ·) of f is monotone, that is,

f ′k(u; v − u) + f ′k(v;u− v) ≤ 0, ∀u, v ∈ Kk.

Proof. Let f be a k-convex function. Then

f(u+ k(t)(v − u)) ≤ f(u) + t{f(v)− f(u)} ∀u, v ∈ K, t ∈ [0, 1],

which can be written as

f(v)− f(u) ≥ f(u+ k(t)(v − u))− f(u)

t
. (3.2)
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Taking the limit as t→ 0+ in (3.2), we have

f(v)− f(u) ≥ f ′k(u; v − u), ∀u, v ∈ K, (3.3)

showing that the k-convex function f is a k-invex function.

Changing the role of u and v in (3.3), we have

f(u)− f(v) ≥ f ′k(v;u− v), ∀u, v ∈ K, (3.4)

Adding (3.3) and (3.4), we have

f ′k(u; v − u) + f ′k(v;u− v) ≤ 0, ∀u, v ∈ K, (3.5)

which shows that the k-directional derivative f ′k(·, ·) is monotone.

Conversely, let (3.5) hold. Since Kk is a k-convex set, so

∀u, v ∈ Kk, t ∈ [0, 1], vt = u+ k(t)(v − u) ∈ Kk.

Replacing v by vt in (3.5) and simplifying,, we have

f ′k(vt; v − u) ≥ f ′k(u; v−u), ∀u, v ∈ Kk. (3.6)

Consider the auxiliary function

g(t) = f(u+ k(t)(v − u))− f(u) + tf ′k(u; v − u), ∀u, v ∈ Kk. (3.7)

Using k(0) = 0, we have

g(0) = 0, g(1) = f(u+ k(t)(v − u))− f(u) + f ′k(u : v − u). (3.8)

Since f is differentiable, so the function g(t) is also differentiable. Hence, using
(3.6), we have

g′(t) = f ′(u+ k(t)(v − u)), v − u)

≥ 2f ′k(u; v − u). (3.9)

Integrating the inequality (3.9) on the interval [0, 1] and using (3.8), we have

f(u+ k(t)(v − u))− f(u) + f ′k(u : v − u) = g(1)− g(0)

≥ 2

∫ 1

0
f ′(u; v − u)dt

= 2f ′k(u; v − u),

from which, using (2.1), we obtain

f ′k(u; v − u) ≤ f(u+ k(t)(v − u))− f(u) ≤ f(v)− f(u).

which is the required (3.3). �
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Theorem 3.5. Let the differential f ′(.; .) of the k-convex function f be Lips-
chitz continuous with constant β ≥ 0. If k(0) = 0, then

f(u+ k(1)(v − u))− f(u)

≤ f ′k(u; v − u) + β‖v − u‖2
∫ ′
0
k(t)dt, ∀u, v ∈ Kk. (3.10)

Proof. Since Kk is a k-convex set, for all u, v ∈ Kk, t ∈ [0, 1], we consider the
function

ϕ(t) = f(u+ k(t)(v − u))− f(u)− tf ′k(u; v − u).

Using k(0) = 0, we obtain

ϕ(0) = 0, ϕ(1) = f(u+ k(1)(v − u))− f(u)− f ′k(u; v − u).

Also

ϕ′(t) = f ′k(u+ k(t)(v − u); v − u)− f ′k(u; v − u). (3.11)

Integrating (3.11) on the integral [0, 1] and using the Lipschitz continuity of
f ′k(.; .) with constant β ≥ 0, we have

ϕ(1) = f(u+ k(1)(v − u))− f(u)− f ′k(u; v − u)

≤
∫ 1

0
|ϕ′(t)|dt

=

∫ ′
0
|f ′k(u+ k(t)(v − u); v − u)− f ′k(u; v − u)|dt

≤ β

∫ ′
0
k(t)‖v − u‖2dt

= β‖v − u‖2
∫ ′
0
k(t)dt,

the required result. �

It is well known that the minimum of the differentiable convex function
on the convex set can be characterized by a class of variational inequalities.
We proved u ∈ Kk is the minimum of the differentiable k-convex functions
can be characterized by a class of variational inequality, which is known as
the directional variational inequality. This is the main motivation of our next
result.

Theorem 3.6. Let f be a differentiable k-convex function on Kk. Then the
u ∈ Kk is the minimum of the differentiable k-convex function f on Kk, if
and only if, u ∈ Kk satisfies the inequality

f ′k(u; v − u) ≥ 0, ∀u, v ∈ Kk. (3.12)
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Proof. Let u ∈ K be a minimum of the k-convex function f . Then

f(u) ≤ f(v), ∀v ∈ Kk. (3.13)

SinceK is a k-convex set, so, for all u, v,∈ Kk, t ∈ [0, 1], vt = u+k(t)(v−u) ∈
K. Taking v = vt in (3.13), we have

f(u) ≤ f(vt) = f(u+ k(t)(v − u)),

which implies that

f(u+ k(t)(v − u))− f(u)

t
≥ 0.

Taking the limit as t→ 0+ in the above inequality, we have

f ′k(u; v − u) ≥ 0 ∀v ∈ Kk,

the required (3.12).
Conversely, let u ∈ Kk be a solution of (3.12). Since f is a k-convex

function, it follows, using (3.12), that

f(v)− f(u) ≥ f ′k(u; v − u) ≥ 0,

which implies that

f(u) ≤ f(v), ∀v ∈ Kk,

showing that u ∈ Kk is the minimum of the k-convex function f , the required
result. �

The inequality of the type (3.12) is called the k-directional variational in-
equality. For k(t) = t, problem (3.12) reduces to the directional variational
inequalities. It is worth mentioning that even the directional variational in-
equalities have not been studied in the literature.

Theorem 3.7. If the k-directional derivative of f is pseudomonotone and
hemicontinuous, then the k-directional variational inequality is equivalent to
finding u ∈ K such that

−f ′k(v;u− v) ≥ 0 ∀v ∈ Kk. (3.14)

Proof. Let u ∈ Kk be a solution of inequality (3.12). Then, using the pseu-
domonotonicity of the differental f ′k(u; v), we have (3.14). Since kk is a k-
convex set, so, for all u, v ∈ Kk, t ∈ [0, 1], vt = u+ k(t)(v − u) ∈ Kk.
Replacing v by vt in (3.14), we obtain

f ′k(vt;u− vt) = f ′k(u+ k(t)(v − u) : v − u) ≥ 0 ∀v ∈ Kk. (3.15)

Using the hemicontinuity of the differential f ′k(u; v) and taking the limit, we
obtain the inequality (3.12), since limt−→0 k(0) = 0. �
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Remark 3.8. We would like to mention that the inequality of the type (3.14)
is known as the Minty k-directional variational inequality or dual k-directional
variational inequality. Using this equivalent result, one can show that the so-
lution set of the directional variational inequalities is a closed convex set. If
k(t) = 1, then we have the known results for the directional variational inequal-
ities. We would like to point that for k(t) = ts, s ∈ [0, 1], we obtain some new
classes of k-convex functions. For the applications, numerical methods and
other aspects of variational inequalities, see [4-6] and the references therein.
Interested readers are may explore the applications in various branches of pure
and applied sciences.
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